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Abstract

One of the unique traits of membrane proteins is that a significant fraction of their hydropho-

bic amino acids is exposed to the hydrophobic core of lipid bilayers rather than being

embedded in the protein interior, which is often not explicitly considered in the protein struc-

ture and function predictions. Here, we propose a characteristic and predictive quantity, the

membrane contact probability (MCP), to describe the likelihood of the amino acids of a

given sequence being in direct contact with the acyl chains of lipid molecules. We show that

MCP is complementary to solvent accessibility in characterizing the outer surface of mem-

brane proteins, and it can be predicted for any given sequence with a machine learning-

based method by utilizing a training dataset extracted from MemProtMD, a database gener-

ated from molecular dynamics simulations for the membrane proteins with a known struc-

ture. As the first of many potential applications, we demonstrate that MCP can be used to

systematically improve the prediction precision of the protein contact maps and structures.

Author summary

The distribution of residues on protein surfaces is largely determined by the surrounding

environment. For soluble proteins, most of the residues on the outer surface are hydro-

philic, and people use the quantity “solvent accessibility” to describe and predict these sur-

face residues. In contrast, for membrane proteins that are embedded in a lipid bilayer,

many of their surface residues are hydrophobic and membrane-contacting, but there is

yet a widely-accepted quantity for the description or prediction of this characteristic prop-

erty. Here, we propose a new quantity termed “membrane contact probability (MCP)”,

which can be used to describe and predict the membrane-contacting surface residues of

proteins. We also propose a machine learning-based method to predict MCP from protein

sequences, utilizing the dataset generated by physics-based computer simulations. We

demonstrate that a quantity such as MCP is helpful for protein structure prediction, and

we believe that it will find broad applications in the structure and function studies of

membrane proteins.
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This is a PLOS Computational BiologyMethods paper.

Introduction

Proteins with various amino acid sequences are folded into specific structures with unique

functions [1]. The relationship between the sequence, structure, and function of proteins has

been extensively studied for decades. To characterize the structural and functional features of

various proteins, researchers defined some essential and predictive properties, such as the sec-

ondary structure (SS) and solvent accessibility (SA) [2–5], which are widely used in the analysis

and prediction of the structure and function of proteins [6–8].

Membrane proteins represent a large subgroup of proteins, which are responsible for the

substance transport and signal transduction across cell membranes. Currently, over 50% of the

known drugs target membrane proteins [9]. Therefore, studying the structures of membrane

proteins is of high interest. The recent progress of Cryo-EM has facilitated the determination

of many membrane protein structures [10], but these are still only a small fraction of the

known sequences that encode into membrane proteins [11, 12], rendering the structural pre-

diction of membrane proteins highly desirable.

Recent developments in deep learning have improved the protein structure prediction

accuracy to a large extent [7, 8, 13–15]. However, researchers have typically focused mostly on

soluble proteins, which are easier for structural determination; and therefore, a large structural

dataset is available. For those soluble proteins, SS and SA can be routinely predicted to charac-

terize their local structural features [2, 3, 5], which are then extensively used as inputs for con-

tact map (CM) and structure predictions [6–8, 16, 17]. Although membrane proteins share

some common features with soluble proteins, and both SS and SA are essential and applicable

to membrane proteins too, membrane proteins are distinct from soluble proteins in the sense

that a significant part of their amino acids on the outer surface are in direct contact with the

hydrophobic acyl chains of lipid molecules. This means that a large fraction of the outer sur-

face of membrane proteins is covered by hydrophobic residues, which would be considered

not ‘solvent exposed’ and therefore embedded in the ‘interior’, if one predicts in the same way

as for soluble proteins. Strikingly, this remarkable difference between membrane proteins and

soluble proteins has been rarely considered in the structural predictions to date, probably due

to the absence of a quantitative prediction method for this lipid-exposing property from

sequences. We believe that the membrane-contacting feature of a membrane protein should

be explicitly considered and utilized with the same weight as SA in the structure and function

studies of membrane proteins.

The SA of a given protein can be predicted with deep learning-based models to high accu-

racy [18]. The dataset of SA for the training was generated by analyzing the outer surface of

proteins with a known structure via rolling a water-size sphere over the surface [19, 20]. In

principle, one can use similar protocols to generate lipid accessibility datasets of membrane

proteins with a known structure. In fact, there have been such attempts [21–24] to calculate

the relative or absolutely accessible surface area for lipids. For example, mp_lipid_acc [25],

part of the Rosetta software suite, can identity lipid-accessible surface area or lipid accessible

residues based on known α-helix and β-sheet membrane protein structures. However, in most

of the above cases, researchers used a highly simplified and shape-fixed membrane slab to

define the lipid environment for the calculation of the lipid accessibility of residues, which was

merely a spacial property. Based on these calculations, researchers also tried to predict lipid

accessibility from membrane protein sequences [26–29], but the dataset of only about 100 pro-

teins seemed too small to get a satisfactory prediction. Therefore, there has not been a well-
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defined and widely accepted quantity to describe the membrane-contacting properties of

amino acids of a sequence, although there are multiple methods to predict the transmembrane

topology of a membrane protein [30–34] (S1 Table).

To account for the hydrophobic-surface feature of membrane proteins, we propose a new

characteristic quantity in this work, the membrane contact probability (MCP), to describe the

likelihood of direct contact between the protein amino acids and the hydrophobic acyl chains

of lipid molecules. We show that we can use a deep learning-based method, DCRNN [35], to

predict the MCP to a good accuracy for a given protein sequence, based on the highly informa-

tive data from the MemProtMD database [36, 37]. We integrated MCP into the recently devel-

oped ResNet-based contact map predictor [6, 17, 38], and the results showed a consistent and

significant improvement of the contact map and structure prediction. Therefore, we propose

that the MCP is an essential property of membrane proteins, which can be predicted and used

for broad applications such as the contact map and structure prediction of (membrane)

proteins.

Results

MCP can be predicted with good accuracy for membrane proteins

We consider an amino acid to be in direct contact with the hydrophobic core of membranes if

its α carbon atom is within 6 Å of the lipid acyl chain carbon atoms, and define the MCP to be

the fraction-of-time probability of a certain amino acid in direct contact with the hydrophobic

acyl chains of a lipid bilayer. The MCP is difficult to obtain directly from experimental mea-

surements, but it can be easily calculated from molecular dynamics (MD) simulations of mem-

brane proteins. Stansfeld et al. performed systematic coarse-grained (CG) MD simulations for

all of the membrane proteins with a known structure, and the simulation and analysis results

were deposited into a database named MemProtMD [36, 37]. Based on this pioneering work,

we extracted the MCP information of all of the simulated membrane proteins as the training

dataset (termed ‘MCP-Large’) for our DCRNN model (please refer to the “Materials and meth-

ods” section and Fig 1 for details). With this model, we were able to predict the MCP for a

given sequence to good accuracy. Please note that, while the training dataset was obtained

from MD simulations for the membrane proteins with a known structure, our prediction

model does not require any structural information. A protein sequence is all that is needed for

the MCP prediction.

As shown in Table 1, the overall Pearson Correlation Coefficient (PCC) between our MCP

prediction and the MD observation (obtained from MemProtMD, which can be viewed as the

ground truth here) of the studied membrane proteins reached 0.77 for the training set, 0.76 for

the validation set, and 0.77 for the test set, respectively. Ideally, it would be better to use data-

sets of lower sequence similarity (<25%). However, due to the limited membrane protein data

available, using a low-sequence-similarity dataset would lead to the under-training problem.

As a test, we trained an MCP predictor with a small dataset containing less-redundant

sequences, in which the sequence identity between the training set and test set was less than

40% (termed ‘MCP-Small’). The prediction accuracy was still satisfactory with an overall PCC

of about 0.65 (S2 Table), but significantly dropped compared to with the larger dataset. There-

fore, in this work, we utilized the MCP predictor trained by the MCP-Large dataset, which

made the method less De Novo but generating more accurate predictions. As a comparison,

the highest prediction accuracy of SA is around 80% at present [18], after many years of devel-

opment with a much larger training dataset.

We analyzed the prediction performance for the α-helix and β-sheet structures, two of the

most common secondary structures of transmembrane proteins. The α/β PCC was calculated
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Fig 1. The method schemes. The overall scheme is presented in the black dashed rectangular in the top panel, and the key steps are described in: (A)

Extraction of MCP from the MemProtMD database. (B) The DCRNN model for the MCP prediction. (C) The process of MCP prediction from a

query sequence. (D) The method of MCP incorporated into the ResNet model. The MCP was used as a 1D input in the same way as SA. (E) The unit

of the ResNet model. Each unit of the ResNet model contains two convolution layers and two activation layers.

https://doi.org/10.1371/journal.pcbi.1009972.g001
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according to the MCP values of each residue within the corresponding secondary structure

types. As shown in Table 1, the prediction accuracy is better for the α-helix structures

(PCC = 0.84 for the test) than for the β-sheet structures (PCC = 0.71), probably because we

had a larger dataset of α-helix structures in the training set (54%), compared to that of the β-

sheet structures (23%). The coil structures were the most difficult ones (PCC = 0.58), as these

are the most flexible and less abundant (23%) structures in the datasets. Further analysis

showed that the predictor performs more reliably for multi-pass α-helix proteins than single-

pass ones (S3 Table), which may also be related to the amount of proteins of different classes

in the datasets (S4 Table).

We picked an α-helix and a β-sheet membrane proteins from the test set as representative

cases to investigate the prediction details (Fig 2). As can be seen, most of the hydrophobic

lipid-contacting amino acids were successfully predicted (Fig 2A and 2B), with the overall pre-

diction PCCs of 0.76 and 0.71 for the α-helix and β-sheet membrane proteins, respectively. We

mapped the MCP onto the surface of the protein structures, and it is evident that the distribu-

tion of high MCP values is indeed in the transmembrane region, consistent with the MD

observations (Fig 2C–2H). For the α-helix protein (5aym), most of the residues contacting the

hydrophobic core of the lipid bilayer were identified (Fig 2A and 2G). For the β-sheet protein

(4e1t), there were some lipid-contacting residues missing in our prediction, as shown with the

dashed circles in Fig 2H. However, the predicted high-MCP residues are mostly in the trans-

membrane region and on the outer surface (S1 Fig), indicating that the MCP prediction can

reach a satisfactory accuracy in characterizing the membrane hydrophobic core-contacting

residues. The results obtained from the MCP predictor trained by the MCP-Small dataset were

similar (S2 Fig).

MCP is complementary to SA and provides important structural

information for membrane proteins

For the two membrane proteins discussed above, we also predicted the SA from their

sequences [4] and colored the protein according to the SA values of each amino acid (Fig 2I

and 2J). As can be seen, the SA prediction was reasonable, but the high-SA amino acids do not

cover the full surface of the two membrane proteins, highlighting the deficiency of only using

SA to describe the outer surface of a membrane protein. In fact, the high-SA region (blue-col-

ored surface) and high-MCP region (red-colored surface) are complementary to each other on

Table 1. The performance of our MCP predictor.

Evaluation Training Validation Test

Overall

MSE 0.047 0.050 0.048

PCC 0.774 0.764 0.769

α–helix (H)

MSE 0.053 0.057 0.056

PCC 0.848 0.832 0.838

β–sheet (E)

MSE 0.026 0.028 0.027

PCC 0.737 0.697 0.713

Coil (C)

MSE 0.012 0.012 0.013

PCC 0.614 0.561 0.580

https://doi.org/10.1371/journal.pcbi.1009972.t001
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the outer surfaces of the two proteins, and together they give a complete description of the

outer surface of the membrane protein structures (Fig 2E–2J).

To give a more comprehensive analysis, we plotted the predicted MCP and SA of two data-

sets in Fig 3. Fig 3A was generated from the test dataset pdb25-test-500 [6], which contained

25 membrane proteins and 302 soluble proteins after removing the sequence redundancy with

respect to our training set (327 test proteins in total). Therefore, some outer-surface amino

acids in the dataset should be exposed to water molecules, and some to lipid molecules. If one

does not consider MCP and uses only the SA to predict and characterize the amino acids of

the dataset, the residues would be considered to be either exposed to water or embedded in the

interior, which is usually the logic of many SA predictors. However, from Fig 3A, we can tell

that a significant number of amino acids, especially those in region II, are neither exposed to

water molecules nor embedded in the interior of proteins. They are exposed to lipid molecules.

Therefore, this plot highlighted the necessity of taking the MCP into account while considering

the outward-facing amino acids of a membrane protein.

Therefore, the amino acids located in regions II, III, and IV are likely to be those exposed to

the hydrophobic core of the lipid bilayers, those embedded in the protein interior, and those

exposed to water molecules, respectively. At a first glance, region I seems puzzling: are there

residues that have a high probability to be exposed to both water and lipid molecules? Further

analysis using the OPM server [41] revealed that most of the amino acids located in region I

actually represent these residues of the membrane protein sitting at the water-membrane

interface (S3 Fig). It should be noted that only a very small fraction of the amino acids was

found to be located in this region under the cutoff of 0.5 for this dataset. To be specific, the

Fig 2. Membrane contact probability (MCP) of two representative membrane proteins. (A-B) Comparison between the MD observation (cyan)

and the prediction (red) of the MCPs. (C-D), Side and top views of the two representative proteins. (E-F), The outer surface of the representative

membrane proteins, colored according to the MCP values obtained from MD simulations. (G-H), Similar to (E-F), but colored according to the

predicted MCP values. (I-J), Similar to (E-F), but colored according to the predicted SA values by RaptorX. The PDB ID of the α-helix membrane

protein was 5aym [39], representing a crystal structure of a bacterial homologue of iron transporter ferroportin in the outward-facing state with

soaked iron with more than 10 transmembrane helices and 440 residues. The PDB ID of the β-sheet membrane protein was 4e1t [40], an X-ray

crystal structure of the transmembrane beta-domain from invasion from Yersinia pseudotuberculosis with 245 residues.

https://doi.org/10.1371/journal.pcbi.1009972.g002
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Fig 3. The 2D plot of the complementary MCP and SA predicting the likely location of amino acids in a protein,

for the 327-protein dataset (A) and 102 Pfam protein dataset (B), respectively. The figures are roughly divided into

four regions: (I) Both the MCP and SA values are larger than 0.5, indicating the amino acids in this region are likely to

be exposed to both water and lipid molecules; (II) MCP>0.5 and SA<0.5, meaning the amino acids in this region are

more likely to be exposed to hydrophobic lipid molecules than to water molecules; (III) MCP<0.5 and SA<0.5,

meaning the amino acids are not likely to be exposed to either lipid or water molecules, so they are probably embedded

in the interior of proteins; and (IV) MCP<0.5 and SA>0.5, meaning the amino acids are more likely to be exposed to

water molecules than to the lipid bilayer.

https://doi.org/10.1371/journal.pcbi.1009972.g003
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amino acids in region I only account for 0.018% (14/79796) of the total amount of the amino

acids in the dataset.

The MCP predictor performed well for non-transmembrane proteins too

We also examined how the predictor performs for non-transmembrane proteins. We picked

another two representative proteins from the test dataset: one is a half-membrane-embedded

protein, and the other is a soluble protein. As can be seen in Fig 4, most of the membrane-con-

tacting residues of the half-membrane-embedded protein were correctly predicted, and none

of the soluble protein residues were predicted to be membrane-contacting. These results indi-

cate that our predictor may have a good performance for non-transmembrane proteins too.

As a further test, we conducted the MCP prediction for a soluble protein dataset, composed

of 102 Pfam proteins after removing the sequence redundancy with respect to our training set,

which was previously used as a test set for contact map and protein structure prediction [6].

The results are shown in Fig 3B. As can be seen, most of the amino acids were predicted to be

not lipid-exposed (MCP <0.5), which was expected since the dataset was supposed to contain

soluble proteins only. However, there were still about 14 amino acids predicted to be likely

having direct contact with the hydrophobic acyl chains of lipid molecules, which was

unexpected.

These 14 amino acids were distributed in seven proteins (S5 Table). Considering our aver-

age prediction performance was around 70% (PCC), we ruled out the cases in which there

were less than three high-MCP predictions in ten successive amino acids of a protein, consid-

ering them outliers, and then there was only one protein left, whose sequence corresponds to a

Fig 4. Membrane contact probability (MCP) of two representative non-transmembrane proteins. (A-B) Comparison between the MD

observation (cyan) and the prediction (red) of the MCPs. (C-D), Side and top views of the two representative proteins. (E-F), The outer surface of the

representative proteins, colored according to the MCP values obtained from MD simulations. (G-H), Similar to (E-F), but colored according to the

predicted MCP values. (I-J), Similar to (E-F), but colored according to the predicted SA values by RaptorX. The PDB ID of the half-membrane-

embedded protein was 5nup, which is an X-ray crystal structure of the Gram-negative bacterial α-helical outer membrane (OM) protein composed of

236 residues. The PDB ID of the soluble protein was 1a70, which is an X-ray crystal structure of ferredoxin I (Fd I) from Spinacia oleracea with 97

residues.

https://doi.org/10.1371/journal.pcbi.1009972.g004
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crystal structure of the Sar1-GDP complex [42]. Our prediction indicated that six of its resi-

dues should be in direct contact with the hydrophobic lipid acyl chains, and these residues are

in proximity in the sequence (S5 Table), located on the N-terminal helix of the protein Sar1.

Two of the six residues were resolved in the X-ray structure, both of which were on the outer

surface. We suspected that these residues may interact with the hydrophobic core of a mem-

brane, although they belong to a soluble protein. Therefore, we ran multiscale MD simulations

to check whether this soluble protein would have direct contact with the hydrophobic core of a

lipid bilayer. Indeed, our self-assembly CG MD and atomistic MD simulation results demon-

strated that this protein would be stably anchored onto a membrane’s surface (Fig 5A–5C),

and both the coarse-grained and atomistic simulations confirmed a stable binding interface

(Fig 5D–5G). In fact, previous experimental studies also showed that Sar1 is responsible for

membrane trafficking, and its N-terminal helix probably serves as a wedge that inserts into the

outer leaflet of the endoplasmic reticulum (ER) membrane and regulates the membrane curva-

ture and fission [43]. Therefore, the ‘abnormal’ MCP prediction turned out to be a functionally

relevant one: although some soluble proteins are not embedded in a lipid bilayer, they may

bind and dip into the membrane deeply enough so that some amino acids can reach the hydro-

phobic core region.

Following Stansfeld’s protein-lipid contacting definition [44], we determined the lipid-

interacting residues as those within 6 Å of the lipid tails and calculated the lipid interacting

probability of each residue in the simulations. The MCP values obtained from our MD simula-

tions and DCRNN prediction were not completely identical (Fig 5H and 5I), but the compari-

son demonstrated that they overlapped at residues M1, F3, G11, F12 and F18 (the purple

regions in Fig 5H), showing a converged membrane-interacting interface. Therefore, it

appeared that the MCP predictor was good for the soluble proteins too, and perhaps could be

used to identify the membrane-interacting residues of soluble or membrane-anchored

proteins.

As a comparison, we used other software of relevant functions to conduct predictions for

this protein (S4 Fig). From the result of BCL::Jufo9D [45], a server for the prediction of trans-

membrane span, the N-terminal helix of the protein Sar1 was predicted to be more likely a

transition region (TR in S4 Fig), which is somewhat consistent with our results, but less quan-

titative and less specific when compared to the MCP prediction and the MD observations. The

N-terminal helix was not predicted to be membrane-spanning by the transmembrane topology

predictors OCTOPUS [32] or TMHMM [30] (S4 Fig).

MCP can improve the prediction precision of protein contact maps and

structures

SA has long been used as a fundamental input for protein structure prediction. As demon-

strated, MCP is an essential character of amino acids and complementary to SA in describing

the outer surface of membrane proteins, so it is natural to think that the MCP would be helpful

for protein structure prediction, too. Notably, the prediction precision of protein contact map

was hugely improved in the last couple of years, especially since the introduction of the ResNet

into the field by the XU group [6, 46]. In the state-of-the-art ResNet method, as well as most if

not all of the prediction methods, SA is an essential 1D input for the model. To validate the

usefulness of the MCP, we incorporated the MCP into the ResNet the same way as SA, consid-

ering the MCP as a 1D input in parallel with SA (please refer to the “Materials and methods”

section and Fig 1C and 1D for details), and then we checked whether the contact map predic-

tion can be improved.
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We took the above dataset containing 327 test proteins as our prediction target, and we

compared the prediction results of our MCP-incorporated ResNet contact map prediction

with the original ResNet model. The top L/k (k = 10, 5, 2, 1) results are shown in Table 2 and

demonstrate that the inclusion of MCP in the ResNet predictor systematically improved the

Fig 5. The Sar1 structure (1f6b) anchored on a membrane. (A) The initial and (B) final structures of the 1f6b system in the coarse-grained self-

assembly MD simulations. (C) The atomistic structure of 1f6b transformed from the CG MD simulation outcome (B). The orange and grey

spheres represent the lipid head groups and hydrophobic tails, respectively. The red arrow represents the first principal axis of the protein. Water

molecules were filled in the whole simulation box, but are not shown here for clarity. (D) The distance between the COM of the protein and the

COM of the bilayer in the nine CG simulation trajectories. (E) The orientation of 1f6b in the trajectories, represented by the angle between the

first principal axis of the protein structure and the Z-axis of the simulation system. (F) Similar to (D), (G) similar to (E), but obtained from three

atomistic MD simulations. (H) The orientation of 1f6b bound to the lipid bilayer obtained from MD simulations, with the membrane-

interacting residues colored according to panel (I). (I) The overlaid MCP generated by our MCP predictor (red) and MD simulations (blue).

https://doi.org/10.1371/journal.pcbi.1009972.g005
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prediction precision. On average, the prediction precision can be improved by about 3%, if

only the top L/k predictions are considered. The results showed that the MCP is particularly

useful for the improvement of long-range contact prediction, with an improvement of up to

7% in the first L predictions of the long-range tests. In order to evaluate the prediction preci-

sion for the whole contact maps, we calculated the PCC between the predictions and the native

contact maps calculated from known protein structures of the whole dataset. The PCC is about

0.29 with the original ResNet predictor and about 0.37 with our MCP-incorporated ResNet

predictor (S5 Fig). Thus, the relative improvement of the prediction precision is about 28%

with the incorporation of the MCP into the ResNet model, when the whole contact map is

considered.

As further validation, we calculated the prediction precision for a dataset composed of 495

test proteins, which was a subset of PDB25 [47] created in May 2020 (25% non-redundant

sequences with a resolution higher than 2.5 Å and R-factors less than 1.0). Any test proteins

sharing >25% sequence identity with any training proteins were excluded. Again, the ResNet

predictor with MCP incorporated showed a consistently higher precision (S6 Table). We fur-

ther separated the dataset into two subsets, the soluble proteins and membrane proteins, and

we calculated the prediction precision for each subset. As can be seen in S6 Table, the predic-

tion precision was improved by about 2% for the top predictions of all of the proteins in the

dataset, which was not very significant. However, when we looked at the whole prediction

rather than the top predictions of the contact maps, we can see that the MCP is highly useful to

improve the prediction of membrane proteins, with the PCC values of 0.132 for the original

ResNet predictor and 0.222 for our MCP-incorporated ResNet predictor when compared to

the native contact maps of all the membrane protein in the dataset. Thus, the relative PCC

improvement for membrane proteins was around 68%. The prediction for soluble proteins

was improved too, with the values of 0.147 and 0.177 for the two models, respectively. Thus,

the relative PCC improvement for soluble proteins was around 20%. Although the overall

PCCs are still low for the entire contact maps, these results present a clear improvement in the

contact map prediction when the MCP is incorporated into the ResNet model, and the

improvement is more significant for membrane proteins than soluble proteins.

Using the aforementioned 5aym and 4e1t as representative cases, we analyzed the differ-

ences of the CM predictions before and after the incorporation of MCP in the ResNet model

and compared to the results from other CM prediction tools [48–51] (S7 Table). It is obvious

that the MCP-incorporated ResNet predictor performed the best. In Fig 6, we show the native

contact maps, and the ResNet predictions with and without using the MCP information for

the two membrane proteins, respectively. The prediction with the MCP is better correlated

with the native CMs with a PCC of 0.53 and 0.69, while the prediction without the MCP

showed a PCC of about 0.35 and 0.62 compared to the native CMs, respectively. Looking at

the six panels of Fig 6, one can immediately recognize that the incorporation of MCP removed

many false positives compared to the model without MCP. As a result, the top L/5 long-range

Table 2. The overall contact prediction precision of the 327 test proteins.

Methods Short Medium Long

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.46 0.33 0.19 0.13 0.53 0.40 0.24 0.16 0.65 0.58 0.42 0.29

ResNet 0.75 0.62 0.39 0.23 0.80 0.70 0.49 0.31 0.89 0.85 0.74 0.59

ResNet+MCP 0.78 0.65 0.41 0.24 0.85 0.75 0.53 0.33 0.91 0.89 0.80 0.66

https://doi.org/10.1371/journal.pcbi.1009972.t002
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contact prediction precision was improved by 10% and 6% for the two cases, respectively (S7

Table).

Based on the predicted contact maps, we further predicted the structures of the above two

representative proteins using CONFOLD2 [52]. From the top-five models, it is clear that the

prediction with the MCP-incorporated contact maps yield consistently better results than with

the contact maps without MCP incorporated (S8 Table). The best-predicted structures are

shown in Fig 7, where the predicted structures using the MCP-incorporated contact maps are

closer to the crystal structures with RMSDs of 3.25 and 3.41 Å, while the predictions without

MCP have RMSDs of 4.55 and 4.12 Å compared to the crystal structures, respectively.

Discussion

Protein folding is driven by both enthalpy and entropy. The distribution of the amino acids on

the outer surface of a protein is mainly determined by entropy. For a soluble protein, the

majority of the outer-surface amino acids are hydrophilic to form a better match with the sur-

rounding water molecules and maximize the entropy. This phenomenon has been widely rec-

ognized and utilized in accessing the structural and functional properties of soluble proteins

for many years [53]. The widely-accepted quantity describing which amino acids are more

likely to be exposed to water is solvent accessibility (SA), which is a crucial quantity for the

analysis and prediction of soluble protein structures [4, 5, 8]. Amino acids with high SA values

are likely located on the outer surface, while those with low SA values are probably embedded

in the interior of the protein to reduce the hydrophobic mismatch, thus providing a strong

Fig 6. Incorporation of the predicted MCP improved the CM prediction for the two representative cases. The cutoff for the CM prediction was 8

Å between β carbon atoms. (A), (B) The predicted CMs for 5aym without and with MCP incorporated, respectively. (C) The native CM calculated

from the known structure 5aym. (D-F) Similar to (A-C), but for the protein 4e1t.

https://doi.org/10.1371/journal.pcbi.1009972.g006
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conformational constraint on the protein structure for a given sequence. However, for mem-

brane proteins, SA is not the whole story about their outer surfaces. A significant part of the

outer-surface amino acids of membrane proteins are hydrophobic, and they have direct con-

tact with the hydrophobic acyl chains, also driven by entropy. Therefore, high-SA amino acids

cannot cover the full surface of a membrane protein, and low SA values may even apply a false

constraint on the distribution of the outer-surface hydrophobic amino acids by wrongly

embedding them into the interior of the membrane protein. Therefore, we believe a comple-

mentary quantity to describe the membrane contact probability of amino acids is highly valu-

able for membrane protein studies.

Lipid molecules are much larger and more complex than water molecules, introducing

more uncertainties to the MCP calculation if the same roll-a-sphere protocol is adopted as in

the SA calculations. For example, the interface of some oligomeric transmembrane proteins

can be filled with lipid molecules, which is hard to determine from the structural viewpoint

alone [54]. Therefore, here, we propose a new method to extract the MCP information for the

membrane proteins with a known structure by utilizing the outcome of MD simulations

(MemProtMD). The advantage of this method is that the MCP values were directly obtained

from statistical analysis of the MD simulations, which contain the full details of the acyl chains

moving around the membrane proteins, both spatially and temporally, and therefore provide

much more accurate, dynamic, and complete information about the MCP.

Hydrophobic scale is widely used to characterize the hydrophobic property of amino acids,

and thus can also be used to characterize/color the outer surface of a protein. We compared

the MCP prediction to the Wimley-White hydrophobicity scale [55] to check whether MCP

Fig 7. The MCP-incorporated CM predictions improved the protein structure prediction accuracy for the two

representative cases. (A), (B) The predicted protein structures for 5aym using the predicted CMs without and with

MCP incorporated, respectively. The crystal structure was shown in cyan and the predicted structures were shown in

grey. (C-D) Similar to (A-B), but for the protein structure 4e1t.

https://doi.org/10.1371/journal.pcbi.1009972.g007
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has any advantages over simple hydrophobicity scales. As shown in S6 Fig, it is obvious that

our MCP prediction gives a much more clear representation of the membrane-interacting resi-

dues than the simple hydrophobicity scale for both membrane proteins and soluble proteins.

The MCP prediction also agrees much better with the MD observations than the simple hydro-

phobicity scale, indicating that MCP is indeed a more appropriate quantity in characterizing

the outer surface of a (membrane) protein.

As shown in Fig 3, the MCP and SA are complementary to each other in defining the outer

surface of a membrane protein. One can easily imagine that the inclusion of the MCP is benefi-

cial to the structural analysis and prediction of proteins for two reasons. First, the incorpo-

ration of the MCP can tell which hydrophobic residues should face outward rather than be

embedded in the interior (as learned from soluble proteins), and thus can reduce the false con-

straints forcing the hydrophobic residues to become embedded. Second, the opposite is proba-

bly true as well: the incorporation of the MCP can increase the true positives for the

hydrophobic residues embedded inside and the hydrophilic residues exposed to the outside.

Therefore, when we trained the MCP-incorporated ResNet model for the contact map predic-

tion, the precision for both the soluble and membrane proteins was improved. As a natural

result, we show that MCP is helpful for 3D protein structure prediction as well (Fig 7 and S8

Table). In addition to improving contact maps, which is helpful for 3D structure prediction,

we believe MCP can also be directly used for 3D structure prediction and evaluation. For

example, one can apply extra constraints to push the high-MCP residues onto the protein sur-

face during the 3D structure modeling of membrane proteins, or take the MCP into account

when scoring the modeled protein structures.

As only the single-chain information was used to construct the dataset, one might wonder

whether the model works for oligomeric complexes too. Our analysis showed that: 1) The

model performs better for single-chain proteins than for complexes (S9 Table). 2) For a single

chain within a complex, the protein-membrane and protein-protein interfaces can be distin-

guished from the predicted MCP (S7 Fig), where the protein-protein interface residues showed

lower MCP predictions than those of the protein-membrane interface. However, one cannot

tell where the protein-protein interface is from the MCP alone, as the low-MCP region may be

embedded in the protein interior as well. 3) Similar to above, for a single-chain protein and a

monomeric chain of a complex with similar fold but low sequence similarity, the predicted

MCP can distinguish them (S8 Fig). Therefore, it appears that the MCP predictor works rea-

sonably well for oligomeric transmembrane complexes too.

Another potential application of MCP is to determine the correct orientation of membrane

proteins of known structure when embedded into membranes, similar to OPM and Mem-

Embed [41, 56, 57], for example. The predicted MCP can also help to position a membrane-

anchored protein in close proximity to a membrane with the interface residues facing the

membrane surface, which would be useful for setting up structural models for further studies

such as molecular dynamics simulations. We reserve to explore these potential applications in

future studies.

There are several known limitations of the method presented in this work: 1) To achieve a

better performance, the datasets contain redundant sequences, which may add bias to the

model and makes it not really De Novo. Unfortunately, with the limited amount of membrane

protein structures, it is difficult to use a low-sequence-similarity dataset to achieve the best pre-

diction performance for now. 2) The prediction for the random coiled structures is not very

reliable, which is natural considering these are the most flexible and least abundant structures

in membrane proteins. 3) In the datasets extracted from MemProtMD, there was only one

type of lipid molecules, 1,2-dihexadecanoyl-rac-glycero-3-phosphocholine (DPPC), making it

impossible to identify lipid-type-specific interactions. However, the analysis showed that a
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membrane protein has very similar membrane contacts in spite of the lipid molecule types in

the membrane (S9 Fig), so as far as the hydrophobic core-contacting information is concerned,

the prediction should be satisfactory. 4) The highly probable lipid-interacting sites can be pre-

dicted, but one can not distinguish whether it is a specific lipid binding or a non-specific bind-

ing site from the prediction alone, as the training dataset does not contain such information,

so the method cannot be used to identify specific lipid-binding sites. To overcome these prob-

lems, much larger datasets with more rich information, such as the distribution of diverse lip-

ids and the lipid residence time around membrane proteins, would be required.

In summary, we propose that the MCP is an essential, characteristic, and predictive quan-

tity of proteins that should be explicitly considered in the study of membrane proteins. The

usage of MD outcomes as the training dataset for deep learning may generate a more accurate

prediction for the MCP and other similar properties of proteins. We believe that the MCP

would be able to find a wide range of applications in various aspects of the structure and func-

tion studies of membrane-interacting proteins.

Materials and methods

MCP prediction

Extraction of the MCP information from the MemProtMD database. Our aim was to

predict the MCP efficiently and accurately from any given protein sequence in the absence of

structural information, which could then be used for structural and functional analysis of the

protein. To do this, we needed a large dataset of the MCP of membrane proteins for the train-

ing using machine learning-based methods. It is difficult to obtain the MCP information

directly from experiments, but molecular dynamics (MD) simulations have been proven to be

a reliable method for studying the interactions between the membrane proteins with a known

structure and lipid bilayers [58–60]. With MD simulations, we can get dynamic and quantita-

tive information regarding the protein and membrane contact. In fact, Stansfeld et al. per-

formed extensive MD simulations for all of the membrane proteins with a known structure

and deposited the relevant data into the MemProtMD database [36, 37, 44], which paved the

way for the current study.

The MemProtMD database contains the information about the stable orientation of the

membrane proteins with a known structure in an explicit lipid bilayer environment. The infor-

mation was obtained by running sophisticated multi-scale MD simulations [58–60]. The data-

base also contains statistical information of the contact between the membrane proteins and

lipid bilayer. As it is more difficult to discriminate the headgroup contact from the solvent

contact, we chose to only consider the hydrophobic acyl tail contact of each protein residue at

this stage. We considered that a certain protein residue was in direct contact with the hydro-

phobic acyl tail if the distance between them was less than 6 Å. Such a cutoff value was shown

to be appropriate for discriminating the transmembrane region from water-exposed regions of

membrane proteins [58, 61] (S10 Fig). The contact probability was defined as the average

occupancy of the selected groups in direct contact calculated over the final 800 ns of the

coarse-grained (CG) MD trajectory, after each membrane protein simulation system reached

equilibrium. There are more than 3,500 MD simulation results in the web database and the

number continues to count (http://memprotmd.bioch.ox.ac.uk/) [37]. We downloaded the

PDB files of the atomistic structure with the acyl tail contact probability from the Mem-

ProtMD database. In the PDB files, the temperature factor value (also called the B-factor) of

each atom was replaced by the membrane contact probability obtained from MD analysis.

Therefore, we were able to extract the membrane contact probability value of each Cα as our

MCP observation for each residue. This procedure is shown in Fig 1A.
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We extracted 3604 simulation results from the web database in April 2019. There were

about 90% α-helical membrane proteins and 10% β-barrel membrane proteins in the dataset.

We separated each file by the number of chains. We excluded the sequences that were longer

than 700 residues or shorter than 26 residues.

During the dataset generation, the multi-chain proteins were split into single-chain

sequences, and only one chain of the same sequence was adopted into the dataset. We obtained

12691 result files, removed duplicate sequences, and extracted 5900 of them at random as the

membrane protein dataset in the end.

Generation of the dataset for the MCP model training. The values of MCP lie between 0

and 1, with 0 meaning no contact at all and 1 meaning persistent contact with the hydrophobic

core of membranes throughout the simulation time. A fractional number tells in what percent-

age of the simulation time a direct contact between an amino acid and hydrophobic acyl chains

of lipid molecules was observed. The above information extracted from MemProtMD pro-

vided the original dataset for the sequences of membrane proteins with a known structure.

To do the MCP prediction, we also included soluble proteins in the dataset. The training

dataset was composed of 5000 membrane protein sequences from the MemProtMD database

and 5000 soluble protein sequences. The soluble protein sequences were chosen randomly

from the soluble proteins of the PDB25 dataset with less than a 25% sequence identity [47].

Then, we set the MCP of each soluble protein residue to be zero. In addition, we divided the

remaining 900 membrane protein sequences into two subsets: 500 membrane protein

sequences were used as the test set, and the other 400 membrane protein sequences were used

as the validation set. The above dataset was termed ‘MCP-Large’ in this work.

We also constructed a dataset with less-redundancy sequences, in which we only used the

sequences with less than a 40% identity between any two sequences in the original dataset of

membrane proteins, resulting in 898 sequences. This smaller dataset was termed ‘MCP-Small’.

To ensure that the training set is relatively sufficient [24, 62], the 898 sequences were divided

into three subsets: 718 randomly chosen membrane protein sequences formed the training set,

90 membrane protein sequences were used as the test set, and the other 90 membrane protein

sequences were used as the validation set. Such a�8:1:1 dataset construction ensures a rela-

tively larger training set with reasonable validation and test sets for better convergence, which

was adopted and recommended by previous work [63, 64].

The DCRNN model for the MCP prediction. We considered the MCP prediction as a

regression problem and used a combination of deep convolutional and recurrent neural net-

work (DCRNN) to do the prediction, which is one of the state-of-the-art models used for pro-

tein secondary structure prediction [35]. Due to the long-range dependencies in the protein

sequence-based model, we referred to the bidirectional gate recurrent units (BGRUs) for the

global context extraction, which contains a forward gate recurrent unit (GRU) [65] and a back-

ward GRU. In the model, we also combined multiscale CNN layers for the local context

extraction.

As illustrated in Fig 1B, we can see an overview of the model for the MCP prediction. We

defined the loss function as the residual sum of the squares between the values from the predic-

tion and the MD observation plus L2 norms of the model parameters.

In our model, we utilized the protein features generated by RaptorX-Property [4], including

the predicted three-state secondary structure (SS3), three-state solvent accessibility (SA), and

PSSM, which were concatenated to be a 1 × 26 array for each residue. For a protein with a

sequence length of L, the resulting matrix had a dimension of L × 26, which was padded with

zeros to be a 700 × 26 matrix for the sequences shorter than 700. Then the matrix was operated

by a sliding window with the kernel size of k × 26 (k = 3, 7, 9) and a channel size of 64, as

shown in Fig 1B. For each protein sequence, we ran HHblits 3.0.3 [66] (with E-value 0.001 and
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3 iterations) to search the uniclust30 database dated October 2017 to find its sequence homolo-

gous and then built its multiple sequence alignment (MSA). We only consider single chains

for the prediction for now.

Our code was implemented with Tensorflow (https://www.tensorflow.org) of Python

(https://www.python.org/). The weights in our neural networks were initialized with the

default parameters in Tensorflow. We trained all of the layers in the deep network using the

Adam optimizer [67]. We set the batch size to be 1. The training was conducted on a worksta-

tion with a six-core (12-thread) Intel Xeon E5–1650 CPU and a GTX 1080 Nvidia GPU. It

took around 24 hours to train one model with 200 epochs.

The model reached convergence after 20 epochs of training according to the MSE curves,

and we stopped the training at 100 epochs when no sign of over-training was observed (S11

Fig). The 10-fold validation results are shown in S10 and S11 Tables.

Protein contact map prediction

The dataset for the protein contact map prediction. Our training data were a subset of

PDB25 [47] created in April 2018, which only included proteins with less than a 25% sequence

identity. We excluded a protein from the training set if it met one of the following conditions:

(1) sequence length shorter than 26 or larger than 700, (2) resolution worse than 2.5 Å, (3) has

domains made up of multiple protein chains, or (4) has unusual amino acids other than the 20

standard ones. In the end, there were 10054 sequences in our training set, which contained

around 150 membrane proteins. We did not manually balance the soluble and membrane pro-

teins during training, as previous studies showed that ResNet works for membrane proteins

even if the training set only contained a small fraction of membrane proteins [46], meaning

the learning is quite transferable. The basic statistics of the dataset are shown in S12 Table

according to the database SCOPe [68, 69].

The ResNet model for the protein contact map prediction. The deep residual net

(ResNet) has been widely used for image recognition and won first place on the ILSVRC 2015

classification task [70]. Xu et al. developed and utilized the ResNet for the contact map predic-

tion of proteins and won first place on CASP 12 and CASP 13 (RaptorX). To test if the MCP is

useful for the structural prediction of membrane proteins, we integrated the MCP into the

ResNet model created by Xu et al. [6] and checked whether the prediction performance could

be improved. The revised model contained two residual neural networks. Fig 1E shows each

residual block of ResNet.

For the design of the convolution kernel, we used 17 in 1-D convolution and 5 × 5 in 2-D

convolution like the original implementation in the RaptorX-Contact [6]. We constructed the

model with 60 2D convolutional layers and two 1D convolutional layers when we combined

the model with the MCP.

We used similar input features as the original ResNet model [6], plus the additional MCP

predicted from the protein sequence in parallel to SA as a 1D input (Fig 1D). In addition to the

MCP predicted by our model, the input features included the PSSM, SS3, and SA generated by

RaptorX-Property [4], as well as the evolutionary coupling (EC) information generated by

CCMpred [48], pairwise potential, and mutual information generated by alnstats [71]. The

pairwise potential is computed by averaging contact potential terms [72, 73] across the two

alignment columns, derived from the MSA. The mutual information is calculated between

positions of two different protein families in a joint alignment of sequences from the same set

of organisms [74]. For each protein sequence, we ran HHblits 3.0.3 (with an E-value of 0.001

and 3 iterations) to search the uniclust30 database dated October 2017 to find its sequence
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homologous and then built its MSA. Then we generated sequence profiles from the MSA and

predicted all of the needed features above.

The prediction of the protein CM was transformed into a binary classification problem. For

each amino acid pair, we restricted the prediction result within [0, 1] through the sigmoid

function, which represents the possibility of the two residues (β carbon) within a distance of 8

Å, a cutoff value widely accepted in the field. Therefore, the output of the contact map predic-

tion was a matrix showing the probability of two residues within 8 Å.

We then evaluated the prediction precision of the top L/k (k = 10,5,2,1) predicted contacts,

where L is the protein sequence length, by comparing the predictions with the native contacts

calculated from known protein structures. The prediction precision was defined as the per-

centage of native contacts among the top L/k predicted contacts. We also divided the contacts

into three groups according to the sequence distance of two residues. A contact is short-,

medium-, and long-range when its sequence distance falls into [6, 11], [12, 23], and� 24,

respectively.

For the MCP-incorporated ResNet CM predictor, we compared the CM prediction results

using the MCP predictors trained by the MCP-Large dataset and the MCP-Small dataset. In

the end, we used the MCP-Large predictor for the CM prediction in this work.

Our code was implemented with Tensorflow in Python. Weights in our neural networks

were initialized with the default parameters in Tensorflow. We used the Adam optimizer to do

the training with a batch size of 1. The training was conducted with a Tesla V100 Nvidia GPU

with 32 GB of GPU memory, on which it takes around 40 hours to train a model with 20

epochs.

The model reached convergence after 20 epochs of training according to the precision

curves (S12 Fig). The 10-fold validation results are shown in S13 Table. The normalized

confusion matrix, the prediction accuracy, and the area under the curve (AUC) are shown

in S14 and S15 Tables, respectively. A cutoff of 0.5 was used for the confusion matrix and pre-

diction accuracy calculation. Although these are not commonly used to evaluate the model

performance in the CM predictions as the CM matrices are highly sparse, they show that

the MCP-incorporated CM predictor consistently outperforms the ResNet model without

MCP.

Contact-driven protein structure prediction

With the predicted contact maps and the predicted three-state secondary structures [75], we

can build protein structure models of a query sequence using CONFOLD2 [52]. With the

scripts in the CONFOLD2 package, we converted the predicted secondary structures to dis-

tance, dihedral, and hydrogen bond restraints. We used the top-xL contacts as contact distance

restraints, where x = 0.1, 0.2, 0.3, . . ., 4.0 and L is the length of the protein. For each predicted

contact, the distance of the two corresponding residues was set in the range from 3.5 Å to 8 Å.

Then we fed the processed data to the Crystallography & NMR System (CNS) [76] for model

construction. For each x value, 20 structure models were constructed, and then the top-five

models in each subset were selected according to the contact energy score [52], resulting in

200 models in total. Then, we ranked these 200 models using the satisfaction score according

to their top L/5 long-range contacts [52]. We selected the top-50 models and clustered them

into five subsets with the pairwise TM-score [77]. Finally, we selected the model closest to the

centroid of each cluster and obtained five top models. Then we calculated the RMSD value of

each model with regard to the crystal structure (S8 Table). In the above processes, the contact

maps (with or without MCP incorporated) were the only difference for the model

construction.
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Molecular dynamics simulations

We used MD simulations to validate whether the predicted soluble protein with multiple high-

MCP amino acids was indeed interacting with and anchored into the membrane. The atomis-

tic protein structure was downloaded from Protein Data Bank (PDB ID: 1f6b). There were

missing residues (residue 1–12 in 1f6b) in the N-terminus. To avoid the uncertainty induced

by the incomplete protein structure, we filled these missing residues with MODELLER [78].

According to the secondary structure prediction results generated by RaptorX [4], we con-

strained the residue 3–9 of 1f6b to form a helix. 15 possible structures were generated by

MODELLER and the best-scored structure was picked as the initial structure for the following

MD simulations.

First, coarse-grained (CG) MD simulations were performed with the MARTINI 3.0 force

field [79]. The CG structure and topology files were generated with the scriptmartinize.py [80,

81]. Following Stansfeld’s protocol when generating the MemProtMD database [36], we built

the lipid-around-protein system with the self-assembly protocol, in which the protein was put

into the simulation box with a random pose and 1,2-dihexadecanoyl-rac-glycero-3-phospho-

choline (DPPC) molecules were placed randomly around the protein (Fig 5A). After a tens-of-

nanoseconds simulation, the lipid molecules formed a bilayer spontaneously, and the protein

found its most stable orientation (Fig 5B). The elastic network (ELN) was used to maintain the

global conformation of the proteins during the simulations. To reproduce the flexibility of the

loop, we removed the ELN between all of the loop regions and their neighboring residues.

Before performing production MD simulations, we equilibrated the system to eliminate inap-

propriate contacts and reach the target conditions. After the 5000-step energy minimization

procedure, 0.5-ns NVT (canonical ensemble) equilibration was performed with a time step of

20 fs. Then, we ran nine 500-ns independent simulations with a time step of 20 fs under the

NPT (isothermal-isobaric) ensemble for each system. The V-rescale algorithm and the Berend-

sen algorithm were used to maintain the system temperature (310 K) and pressure (1.0 Bar)

[82, 83], respectively. The electrostatic interactions were calculated with the reaction-field

method. The Coulomb interaction and van der Waals interaction were both cut off at 1.1 nm.

Then the script backward.py [84] was used to transform the equilibrated coarse-grained sys-

tem (Fig 5B) to all-atom system, which was utilized as the initial system (Fig 5C) for the follow-

ing all-atom simulations. After the 5000-step energy minimization, the system was

equilibrated for 0.5 ns in the NVT ensemble and 1.0 ns in the NPT ensemble. Position

restraints with a force constant of 1000 kJ/mol/nm2 were applied on all heavy atoms of the pro-

tein to maintain the conformation during the equilibration process. The Berendsen algorithm

[83] was used to keep the system temperature and pressure at 310 K and 1.0 Bar, respectively.

The van der Waals interaction were cut off at a distance of 1.0 nm. The long-range electrostatic

interactions were calculated with the Particle-Mesh Ewald (PME) method [85]. After the sys-

tem was equilibrated to the desired condition, we removed the position restraints and per-

formed three 500-ns all-atom MD simulations to evaluate the stability of the protein

anchoring on the membrane surface. The temperature and pressure coupling algorithms were

set to V-rescale and Parrinello-Rahman [82, 86] to maintain the system temperature at 310 K

and pressure at 1.0 Bar, respectively. Both coupling constants were set to 1.0 ps. The all-atom

MD simulation was performed with the Amber99sb-ildn force field [87] in combination with

the Slipids force field [88, 89].

Supporting information

S1 Fig. Comparison of the MCP prediction and the exposure (indicated by the relative sol-

vent accessibility calculated by DSSP) for the two representative membrane proteins. The
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MCP and outer exposure results are shown as red and teal lines, respectively. According to

DSSP, the buried residues are defined to have an RSA value of 0-0.1, so the outer surface resi-

dues have a RSA values of 0.1-1. We calculated the percentage of membrane-contacting resi-

dues with high MCP values (>0.5) lying in the outer residues with RSA>0.1. The value is

84.0% for 5aym, and 88.9% for 4e1t. Therefore, most of the membrane-contacting residues

predicted by MCP are outer-surface residues.

(TIF)

S2 Fig. Membrane contact probability (MCP) of four representative proteins with the pre-

dictor trained by the MCP-Small dataset. (A-D) Comparison between the observation (cyan)

and the prediction (red) of the MCPs. (E-H), Side and top views of the four representative pro-

teins. (I-L), The outer surface of the representative proteins, colored according to the observed

MCP values obtained from MD simulations. (M-P), Similar to (I-L), but colored according to

the predicted MCP values. (Q-T), Similar to (I-L), but colored according to the predicted SA

values by RaptorX.

(TIF)

S3 Fig. The structures of the membrane proteins showing where the residues in region I of

Fig 3A are. The hydrophobic boundaries of the lipid bilayer are represented by the red and

blue pseudo-atoms, indicating the outer and inner surfaces of the bilayer, respectively.

(TIF)

S4 Fig. The prediction results of BCL::Jufo9D, OCTOPUS, and TMHMM for the Sar1

sequence. (A) The results of BCL::Jufo9D (red for membrane core (MC), sky blue for transi-

tion region (TR), and orange for solution (SO)). (B) The results of OCTOPUS (red for mem-

brane, blue for inside, and fuchsia for outside). (C) The results of TMHMM (red for

membrane, blue for inside, and fuchsia for outside).

(TIF)

S5 Fig. Comparison of the PCCs between the predictions and the native contact maps for

the original ResNet predictor and our MCP-incorporated ResNet predictor. The original

ResNet predictor (X-axis) vs our MCP-incorporated ResNet predictor (Y-axis) for the

327-protein dataset (A) and 495-protein dataset (B), respectively. The dashed line is the func-

tion y = x. Each point represents a test protein, with red points for membrane proteins.

(TIF)

S6 Fig. The protein surfaces colored according to the MCP and the Wimley-White hydro-

phobicity scales. (A-D), The colored outer surfaces of the four representative proteins pre-

sented in Figs 2 and 4, according to the observed MCP values from MD simulations. (E-H),

Similar to (A-D), but colored according to the predicted MCP values. (I-L), Similar to (A-D),

but colored according to the value of the Wimley-White hydrophobicity scales. (M-P), Similar

to (I-L), but with a different color bar.

(TIF)

S7 Fig. The MCP prediction results for two membrane-embedded complexes (PDB IDs:

5mkk and 2pno). The two complex proteins were in the test dataset with the overall prediction

PCCs of 0.84 and 0.61, representing one of the good and one of the poor predictions, respec-

tively. (A-B) Comparison between the observation (light blue) and the prediction (red) of

MCP. The horizontal bars on the top of the panels indicate the regions of the protein-mem-

brane (red) and protein-protein interfaces (gray). (C-D) The outer surface of the two proteins

colored according to the predicted MCP values. (E-F) Similar to (C-D), but from another

view. As can be seen, the protein-protein interface residues (gray bar) overall show low MCP
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values than those at the protein-membrane interfaces (red bar). The protein-membrane inter-

face residues were defined by MCP>0.2, while the protein-protein interface residues were

defined with the script ‘InterfaceResidues’ of Pymol.

(TIF)

S8 Fig. The MCP prediction results for two membrane proteins with similar folds but dif-

ferent oligo states, salmon for the monomeric protein (PDB ID: 5o0t) and olive for the

oligomeric protein (PDB ID: 5ys3). (A) The structure alignment of the two proteins showed

a similar fold (TM-score = 0.45, normalized by the length of 5ys3). (B) The sequence alignment

of the two proteins (sequence similarity = 20.9%, calculated by MUSCLE). (C-D) The outer

surface of the two proteins colored according to the predicted MCP values. (E-F) Similar to

(C-D), but from another side view. (G-H) Similar to (C-D), but from the top view.(I-J) Com-

parison between the MD observation (light blue) and the prediction (red) of MCP. The hori-

zontal bars on the top of the panels indicate the regions of the protein-membrane (red) and

protein-protein interfaces (gray). As can be seen, the protein-protein interface residues (gray

bar) show overall low MCP values than those at the protein-membrane interfaces (red bar) in

the transmembrane region. The protein-membrane interface residues were defined by MCP

>0.2, while the protein-protein interface residues were defined with the script ‘InterfaceResi-

dues’ of Pymol.

(TIF)

S9 Fig. Comparison of the observed MCP in MD simulations with different types of lipids

in membranes: cyan, orange, and purple lines for the membranes composed of DPPC

(100%), POPC (100%), and mixed POPE (50%) and POPG (50%), respectively. These

results show that the saturation, head group and net charge of the lipids have minor impacts

on the observed MCP in the hydrophobic core region, and the differences are mostly located

at the membrane-water interfaces.

(TIF)

S10 Fig. Comparison of the results of MCP analysis with different cutoff values. (A-D),

The colored outer surface of the protein (PDB ID: 5aym) according to the observed MCP val-

ues obtained from MD simulations with different cutoff values of 4, 5, 6, and 8 Å, respectively.

As can be seen, a cutoff value smaller than 6 Å would lead to weak signals, while a cutoff value

larger than 8 Å would start to overestimate the transmembrane region. (E), Comparison

between the observed MCPs with different cutoff values; black, blue, red, and cyan lines for 4,

5, 6, and 8 Å, respectively.

(TIF)

S11 Fig. MSE curves of the MCP predictor in the 10-fold cross-validation. The left panel

was obtained with the MCP-Large dataset, and the right panel with the MCP-Small dataset.

(TIF)

S12 Fig. Precision curves for the test procedure of the contact map predictor in the 10-fold

cross-validation: blue and orange lines for the results without and with MCP incorporated,

respectively.

(TIF)

S1 File. Datasets used in this work. This file contains the datasets for the MCP model and

contact map predictor in this work.

(PDF)
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S1 Table. The related prediction methods for membrane protein features.

(DOCX)

S2 Table. The performance of the MCP predictor using the MCP-Small dataset.

(DOCX)

S3 Table. The performance of our MCP predictor for different transmembrane protein

classes.

(DOCX)

S4 Table. The amount of proteins of different classes in the datasets.

(DOCX)

S5 Table. The amino acids predicted with high MCP values in the 102 Pfam soluble protein

dataset.

(DOCX)

S6 Table. The contact map prediction precision of the additional 495-protein dataset:

overall, soluble, and membrane proteins.

(DOCX)

S7 Table. The contact map prediction precision for the two representative cases: 5aym and

4e1t.

(DOCX)

S8 Table. The RMSD of the top five structure prediction models with respect to the crystal

structures for the two representative cases: 5aym and 4e1t.

(DOCX)

S9 Table. The performance of our MCP predictor for different oligomeric states.

(DOCX)

S10 Table. The performance of our MCP predictor in the 10-fold cross-validation using

the MCP-Large dataset.

(DOCX)

S11 Table. The performance of our MCP predictor in the 10-fold cross-validation using

the MCP-Small dataset.

(DOCX)

S12 Table. The basic statistics of the datasets according to the database SCOPe.

(DOCX)

S13 Table. The performance (precision of medium- and long-range contact) of our contact

map predictor in the 10-fold cross-validation.

(DOCX)

S14 Table. The normalized confusion matrix of the contact map prediction (cutoff = 0.5).

(DOCX)

S15 Table. The accuracy (cutoff = 0.5) and AUC of the contact map prediction.

(DOCX)
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18. Zhang B, Li L, Lü Q. Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent

Neural Network. Biomolecules. 2018; 8:33. https://doi.org/10.3390/biom8020033 PMID: 29799510

19. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. https://doi.org/10.1002/bip.

360221211 PMID: 6667333

20. Ma J, Wang S. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a

Multitask Learning Framework under the Conditional Neural Fields Model. BioMed Research Interna-

tional. 2015; 2015:678764. https://doi.org/10.1155/2015/678764 PMID: 26339631

21. Beuming T, Weinstein H. A knowledge-based scale for the analysis and prediction of buried and

exposed faces of transmembrane domain proteins. Bioinformatics. 2004; 20 12:1822–1835. https://doi.

org/10.1093/bioinformatics/bth143 PMID: 14988128

22. Yuan Z, Zhang F, Davis M, Bodén M, Teasdale R. Predicting the solvent accessibility of transmembrane

residues from protein sequence. Journal of Proteome Research. 2006; 5 5:1063–1070. https://doi.org/

10.1021/pr050397b PMID: 16674095

23. Illergård K, Callegari S, Elofsson A. MPRAP: An accessibility predictor for a-helical transmem-brane

proteins that performs well inside and outside the membrane. BMC Bioinformatics. 2009; 11:333.

24. Lu C, Liu Z, Kan B, Gong Y, Ma Z, Wang H. TMP-SSurface: A Deep Learning-Based Predictor for Sur-

face Accessibility of Transmembrane Protein Residues. Crystals. 2019; 9(12):640. https://doi.org/10.

3390/cryst9120640

25. Leman JK, Lyskov S, Bonneau R. Computing structure-based lipid accessibility of membrane proteins

with mp_lipid_acc in RosettaMP. BMC Bioinformatics. 2017; 18:115. https://doi.org/10.1186/s12859-

017-1541-z

26. Adamian L, Liang J. Prediction of transmembrane helix orientation in polytopic membrane proteins.

BMC Structural Biology. 2006; 6:13. https://doi.org/10.1186/1472-6807-6-13 PMID: 16792816

27. Phatak M, Adamczak R, Cao B, Wagner M, Meller J. Solvent and lipid accessibility prediction as a basis

for model quality assessment in soluble and membrane proteins. Current Protein & Peptide Science.

2011; 12 6:563–573. https://doi.org/10.2174/138920311796957603 PMID: 21787302

28. Lai JS, Cheng CW, Lo A, Sung TY, Hsu WL. Lipid exposure prediction enhances the inference of rota-

tional angles of transmembrane helices. BMC Bioinformatics. 2013; 14:304. https://doi.org/10.1186/

1471-2105-14-304 PMID: 24112406

29. Nugent T, Jones D. Predicting Transmembrane Helix Packing Arrangements using Residue Contacts

and a Force-Directed Algorithm. PLoS Computational Biology. 2010; 6. https://doi.org/10.1371/journal.

pcbi.1000714 PMID: 20333233

30. Krogh A, Larsson B, von Heijne G, Sonnhammer E. Predicting transmembrane protein topology with a

hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001; 305

3:567–580. https://doi.org/10.1006/jmbi.2000.4315 PMID: 11152613

PLOS COMPUTATIONAL BIOLOGY Membrane contact probability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009972 March 30, 2022 24 / 27

https://doi.org/10.1016/j.sbi.2018.08.008
http://www.ncbi.nlm.nih.gov/pubmed/30219656
https://doi.org/10.1146/annurev.bb.25.060196.000553
https://doi.org/10.1146/annurev.bb.25.060196.000553
http://www.ncbi.nlm.nih.gov/pubmed/8800466
https://doi.org/10.1186/gb-2012-13-6-160
http://www.ncbi.nlm.nih.gov/pubmed/22738306
https://doi.org/10.1038/s41592-020-0779-y
https://doi.org/10.1038/s41592-020-0779-y
http://www.ncbi.nlm.nih.gov/pubmed/32132733
https://doi.org/10.1126/science.abj8754
http://www.ncbi.nlm.nih.gov/pubmed/34282049
https://doi.org/10.1093/bioinformatics/btx781
https://doi.org/10.1093/bioinformatics/btx781
http://www.ncbi.nlm.nih.gov/pubmed/29228185
http://www.ncbi.nlm.nih.gov/pubmed/29931279
https://doi.org/10.3390/biom8020033
http://www.ncbi.nlm.nih.gov/pubmed/29799510
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
https://doi.org/10.1155/2015/678764
http://www.ncbi.nlm.nih.gov/pubmed/26339631
https://doi.org/10.1093/bioinformatics/bth143
https://doi.org/10.1093/bioinformatics/bth143
http://www.ncbi.nlm.nih.gov/pubmed/14988128
https://doi.org/10.1021/pr050397b
https://doi.org/10.1021/pr050397b
http://www.ncbi.nlm.nih.gov/pubmed/16674095
https://doi.org/10.3390/cryst9120640
https://doi.org/10.3390/cryst9120640
https://doi.org/10.1186/s12859-017-1541-z
https://doi.org/10.1186/s12859-017-1541-z
https://doi.org/10.1186/1472-6807-6-13
http://www.ncbi.nlm.nih.gov/pubmed/16792816
https://doi.org/10.2174/138920311796957603
http://www.ncbi.nlm.nih.gov/pubmed/21787302
https://doi.org/10.1186/1471-2105-14-304
https://doi.org/10.1186/1471-2105-14-304
http://www.ncbi.nlm.nih.gov/pubmed/24112406
https://doi.org/10.1371/journal.pcbi.1000714
https://doi.org/10.1371/journal.pcbi.1000714
http://www.ncbi.nlm.nih.gov/pubmed/20333233
https://doi.org/10.1006/jmbi.2000.4315
http://www.ncbi.nlm.nih.gov/pubmed/11152613
https://doi.org/10.1371/journal.pcbi.1009972


31. Jones DT. Improving the accuracy of transmembrane protein topology prediction using evolutionary

information. Bioinformatics. 2007; 23(5):538–544. https://doi.org/10.1093/bioinformatics/btl677 PMID:

17237066

32. Viklund H, Elofsson A. OCTOPUS: improving topology prediction by two-track ANN-based preference

scores and an extended topological grammar. Bioinformatics. 2008; 24 15:1662–1668. https://doi.org/

10.1093/bioinformatics/btn221 PMID: 18474507

33. Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS. Transmembrane topology and signal peptide

prediction using dynamic bayesian networks. PLoS Computational Biology. 2008; 4(11):e1000213.

https://doi.org/10.1371/journal.pcbi.1000213 PMID: 18989393

34. Feng SH, Zhang WX, Yang J, Yang Y, Shen HB. Topology prediction improvement of α-helical trans-

membrane proteins through helix-tail modeling and multiscale deep learning fusion. Journal of Molecu-

lar Biology. 2020; 432(4):1279–1296. https://doi.org/10.1016/j.jmb.2019.12.007 PMID: 31870850

35. Li Z, Yu Y. Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neu-

ral Networks. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence

(IJCAI); 2016.

36. Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker J, Newstead S, et al. MemProtMD: Auto-

mated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. Structure(London,

England:1993). 2015; 23:1350–1361. https://doi.org/10.1016/j.str.2015.05.006 PMID: 26073602

37. Newport TD, Sansom M, Stansfeld PJ. The MemProtMD database: a resource for membrane-embed-

ded protein structures and their lipid interactions. Nucleic Acids Research. 2019; 47:D390–D397.

https://doi.org/10.1093/nar/gky1047 PMID: 30418645

38. Li Y, Zhang C, Bell EW, Yu DJ, Zhang Y. Ensembling multiple raw coevolutionary features with deep

residual neural networks for contact-map prediction in CASP13. Proteins: Structure. 2019; 87:1082–

1091. https://doi.org/10.1002/prot.25798 PMID: 31407406

39. Taniguchi R, Kato H, Font J, Deshpande C, Wada M, Ito K, et al. Outward- and inward-facing structures

of a putative bacterial transition-metal transporter with homology to ferroportin. Nature Communica-

tions. 2015; 6:8545. https://doi.org/10.1038/ncomms9545 PMID: 26461048
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