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Simple Summary: Around 80% of children treated for childhood cancer become long-term survivors.
Although chemotherapy and radiotherapy improve survival of these patients, they cause a low-grade
chronic inflammation (inflamm-aging) which induces premature aging processes and vital organ
failure, a condition known as frailty. Understanding frailty’s biological and molecular mechanisms
and identifying inflamm-aging key biomarkers in childhood cancer survivors could be useful to
facilitate the screening of comorbidities and to understand whether treatments, used to counteract
inflamm-aging, may prevent side effects.

Abstract: Anti-cancer treatments improve survival in children with cancer. A total of 80% of children
treated for childhood cancer achieve 5-year survival, becoming long-term survivors. However,
they undergo several chronic late effects related to treatments. In childhood cancer survivors a
chronic low-grade inflammation, known as inflamm-aging, is responsible for frailty, a condition
characterized by vital organ failure and by premature aging processes. Inflamm-aging is closely
related to chemotherapy and radiotherapy, which induce inflammation, accumulation of senescent
cells, DNA mutations, and the production of reactive oxygen species. All these conditions are
responsible for the onset of secondary diseases, such as osteoporosis, cardiovascular diseases, obesity,
and infertility. Considering that the pathobiology of frailty among childhood cancer survivors is still
unknown, investigations are needed to better understand frailty’s biological and molecular processes
and to identify inflamm-aging key biomarkers in order to facilitate the screening of comorbidities
and to clarify whether treatments, normally used to modulate inflamm-aging, may be beneficial.
This review offers an overview of the possible biological mechanisms involved in the development
of inflamm-aging, focusing our attention on immune system alteration, oxidative stress, cellular
senescence, and therapeutic strategies.

Keywords: childhood cancer survivors; inflamm-aging; frailty; immune system; oxidative stress;
senescence; therapeutic strategies

1. Introduction

One of the greatest medical successes over the past five decades is the improvement
in survival among children with cancer. It is estimated that 80% of children treated
for childhood achieve 5-year survival, becoming long-term survivors (>5 years) [1,2].
Although increased survival rates are encouraging, several late effects often accompany the
advancements in childhood cancer patients’ treatment [3–5]. The chronic late effects may
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increase over time and influence the physiological aging process, resulting in a premature
alteration of vital organ system function during adulthood and predispose individuals
to a major risk to prematurely develop chronic age-related health conditions, frequent
hospitalization, and early mortality.

This condition is known as frailty [6,7]. Frailty is a condition characterized by the
onset of diseases related to aging and an increase in mortality; it can be observed both in
older adults and childhood cancer survivors (CCS) [8,9]. In the elderly, frailty is influenced
by lifestyle and genetics, while in young adult survivors of cancer it is more likely related
to organ system damage following treatments [10,11]. Type of drugs, dosage, time of
exposure, and extension of the irradiated area are all associated with the reduced fitness
of long-term survival cancer patients. Exposure to oncogenic insults (chemo- and radio-
therapy) leads to inflammation, the accumulation of senescent cells, and the increasing of
reactive oxygen species (ROS) and DNA mutations [12,13]. Radiation exposure activates
an immune response, determining the activation of macrophages and the recruitment of
neutrophils and lymphocytes and pro-inflammatory mediators’ production in order to
support anti-tumor activity [14,15]. After irradiation, chemotherapy, or Hematopoietic
stem cell transplantation (HSCT) long-term immune system alteration could persist [16,17].
Some studies have shown that compared with controls, survivors who underwent HCT
for a primary hematologic malignancy at age ≤21 had a similar BMI but a higher percent
fat mass [18]. In particular, CCS show a high risk of long-term negative consequences
after HSCT [19,20], among them metabolic syndrome [19,21–23]. In the general popu-
lation, metabolic syndrome pathophysiology is related to lifestyle factors, like reduced
physical activity and incorrect diet, which are responsible for an increase of BMI and,
consequently, low-grade inflammation [20,24]. In cancer survivors, metabolic syndrome
pathogenesis is not yet well known, and it is reported that it occurs in the absence of
overt obesity [20,21]. Several studies reported that low-grade inflammation, caused by the
cytokine release from abdominal fat, is related to metabolic syndrome in CCS of HSCT, as
well as in the general population [20,23–25]. Furthermore, in HSCT survivors, other factors
could contribute to inflammation: immune dysregulation and alloreactivity in the form of
chronic GVHD [20]. Definitely, low-grade inflammation has a key role in the pathogenesis
of metabolic syndrome after HSCT; in particular, there is an important relation between
inflammatory molecule levels and the increased android/ginoid fat ratio, indicating that
central fat accumulation is responsible for the increased levels of these molecules [23,26].
Inflammatory response alteration is closely related to the onset of dysmetabolism; indeed,
it could alter insulin resistance, fat metabolism, and microvascular dysfunction [23,26].
Muhic et al. demonstrated that lifestyle factors and endocrine function alteration have
a key role in frailty. It is known that total body irradiation (TBI) influences glucose and
lipid metabolism, determining type 2 diabetes mellitus and glucose intolerance [20,27–29].
Accordingly, Muhic et al. found that TBI is a risk factor for the metabolic syndrome in HSCT
long-survivors. Indeed, they found high levels of glucose in plasma in these patients [20].
The exact mechanism of TBI-induced negative consequences is not well known; it would
appear that it causes mitochondrial damage, inducing hyperlipidemia and the alteration
of fat storage [20,30]. Furthermore, it was demonstrated that TBI determines a decrease
in testosterone concentrations and, consequently, an increase in central fat accumulation,
responsible for the inflammatory cytokines release [28,31].

Inflammation is responsible for the activation of two important cytotoxic mediators,
ROS and reactive nitrogen species (RNS), which determine DNA damage [32,33]. Moreover,
ROS/RNS stimulate the production of cytokines and adhesion molecules, and lymphocytes
activation and proliferation [34]. The resulting condition of chronic low-grade systemic
inflammation is named “inflamm-aging” [35]. Chronic inflammation shares several fea-
tures of acute inflammation; however, it is persistent and of a low grade and induces
responses that lead to tissue damage. Several mechanisms contribute to this condition: the
continuous release of reactive molecules by infiltrating leukocytes; the cytokine production
by both damaged non-immune and activated immune cells that regulate the inflammatory
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response [36]. Inflamm-aging is a systemic process that can involve any organ and tissue
and predisposes the development of several disorders including osteoporosis, infertility,
and metabolic and cardiovascular diseases [4,37–40] (Figure 1). The premature onset of
these chronic diseases in CCS is particularly alarming considering that epidemiologic
studies in survivors reveal that CCS aged 24 years have similar incidence rates of the onset
of chronic diseases to their older family members aged 50 years [41]. Since the pathobiology
of frailty among CCS is still unknown, the elucidation of frailty’s biological and molecular
mechanisms in CCS and the identification of inflamm-aging key biomarkers are necessary
both to facilitate screening of comorbidities in this population and to understand whether
treatments, normally used to modulate inflamm-aging, may be in CCS. This review offers
an overview of the possible biological mechanisms involved in the development of chronic
systemic inflammation, focusing our attention on immune system alteration, oxidative
stress, cellular senescence, and therapeutic strategies.

Figure 1. Frailty. Chemotherapy and radiotherapy cause a low-grade chronic inflammation in
childhood cancer survivors, which is responsible for premature ageing processes and vital organ
failure. This condition, known as frailty, determines the onset of several pathological conditions,
such as metabolic diseases, cardiovascular diseases, neurodegenerative diseases, and osteoporosis.

2. Inflamm-Aging and Immune System Alterations

Persistent alterations of the immune system in long-term childhood and adolescent
cancer survivors result in a chronic low-grade inflammation similar to that observed with
aging and contribute to a higher risk of secondary diseases [32]. A radiation-induced
immune response, including macrophage activation and neutrophil and lymphocyte re-
cruitment, leads to the production of pro-inflammatory mediators to support anti-tumor
activity [14,15] (Figure 2). This inflammatory process could persist following chemo- and
radiotherapy, or hematopoietic stem cell transplantation (HSCT) [42–45]. The mechanisms
responsible for long-term chronic immune disturbances in cancer survivors and their po-
tential consequences on survivors’ health still remain unknown. An immunosenescent
phenotype, characterized by a decreased pool of naïve lymphocytes and the accumulation
of memory and effector cells, could be attributed to T cells. In 2018, Daniel et al. identified a
low-grade inflammation and an altered immune cell function in survivors treated with total
body irradiation (TBI) and HSCT. Cancer treatments could induce long-term epigenetic
changes in immune cells, in particular in T cell subsets distribution. They found a higher
frequency of type 1 cytokine producing T cells in survivors and an over-activation of p38
and mTORC1 in these cells [34]. The over-activation of both p38 and mTORC1 is consistent
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with the greater frequency of Th1 cells and the higher levels of pro-inflammatory cytokines
in survivors who received TBI/HSCT [34]. These changes in T cells might be involved
in the perpetuation of the pro-inflammatory condition. Recently, Sulicka-Grodzicka et al.
evaluated factors discriminating CS from controls, comparing selected biomarkers and
lymphocyte subpopulations. They demonstrated that survivors had higher levels of C-
reactive protein (CRP) and a shift towards activated CD8+CD38+ T cells [35]. CD38 is
an important marker that regulates activation and proliferation of human T lymphocytes.
T cells expressing high levels of CD38 have an enhanced cytokine production capability.
Moreover, T cells of CS present a higher expression of CD28 than age matched controls.
CD28 is essential in inducing T cell proliferation and survival and promotes the function of
regulatory T cells, such as the production of interleukin-10 (IL-10) which is significantly
elevated in young CD [46]. Ariffin et al. analyzed plasma inflammatory cytokines in
87 asymptomatic young adult survivors of childhood acute lymphoblastic leukemia (ALL)
identifying high concentrations of IL-2, IL-10, and IL-17a. IL-17a, which is produced by
activated Th17 cells, stimulates fibroblasts, endothelial cells, macrophages, and epithelial
cells to release proinflammatory mediators, such as IL-1, IL-6, tumor necrosis factor alpha
(TNF-α), nitric oxide synthase 2 (NOS-2), metalloproteases, and chemokines, resulting in
the induction of inflammation [32]. Elevated plasma levels of IL-17a in the survivor group
suggest microbial dysbiosis. In effect, many survivors experienced chemotherapy-induced
mucositis, episodes of febrile neutropenia, and received several broad-spectrum antibiotics
during the 2 years of leukemia therapy, which could alter the normal gut flora [32]. Accord-
ingly, it has been demonstrated that the microbiome perturbation is a source of the chronic
inflammation in patients with an immunodeficiency virus and a similar condition was
reported also in a cohort of CCS [47]. IL-17a has effects on the cardiovascular (CV) system
acting on vessel and cardiac cells, leading to inflammation, coagulation, and thrombosis.
Several clinical studies have shown its involvement in the pathogenesis of CV disease,
including premature atherosclerosis and myocardial infarction [48,49].

Figure 2. Radiation-induced immune response. Radiotherapy induces M1 pro-inflammatory
macrophages and lymphocytes activation, leading to an increased production of pro-inflammatory
cytokines, such as Interleukin (IL)-1, IL-6, and Tumor Necrosis Factor (TNF)-α, which contributes to
the low-grade chronic inflammation, a typical condition of long-term cancer survivor patients.
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3. Inflamm-Aging and Oxidative Stress

The hypothesis that oxidative stress stimulates inflamm-aging is well known and is
supported by some evidence [50,51] (Figure 3). Oxidative stress could contribute to the
pathogenesis of several diseases in CCS, leading to the activation of pro-inflammatory
pathways [52]. Mitochondria are the major source of reactive oxygen species (ROS). Due to
the proximity of mitochondrial DNA (mtDNA) to sites of ROS generation, mtDNA is prone
to accumulating mutations after exposure to chemotherapy and radiation [53]. mtDNA
mutator mice showed reduced levels of oxidative phosphorylation and developed a variety
of several disorders, including osteoporosis, neurodegeneration, cardiomyopathy, diabetes,
and muscle wasting [54–58]. In addition, inherited mitochondrial disorders are often
accompanied by muscle atrophy and weakness, fatigue, and a decrease in exercise capacity,
which are characteristics of the frailty phenotype described in CCS [8,59]. Moreover, the
accumulation of damaged mitochondria limits the ability of muscle stem cells to sustain or
to regenerate tissue, resulting in additional loss of muscle and, consequently, exacerbating
existing frail health [60–63]. Future investigations are necessary to evaluate the relation
between mitochondrial infidelity and accelerated aging in CCS.

Figure 3. Oxidative stress. Chemotherapy and radiotherapy induced mitochondrial DNA damage, causing an increased
production of Reactive Oxygen Species (ROS). ROS led to the activation of pro-inflammatory pathways, which induce
inflamm-aging onset.

Protein glycation is another factor which contributes to inflamm-aging [64]. Advanced
glycation end products (AGEs) are involved in the development and progression of in-
flammation [65]. AGEs’ high levels could be responsible for the alteration of function
and structure of different proteins, such as fibrinogen, collagen, and low-density lipopro-
tein, leading to an inflammatory response [66]. The protein folding alteration induces
an impairment of mitochondrial function, determining an increase of ROS production
and a decrease of adenosine triphosphate (ATP) synthesis and of antioxidant intracellular
activity [67,68]. Moreover, AGEs binding to their cell-bound receptor (RAGE) determines
proinflammatory cytokines release and ROS production [69]. There is a crosstalk between
AGEs increased levels and the onset of low-grade inflammation. Indeed, RAGE activation
induced an increased expression of IL-1β and IL-17, which are important biomarkers of
low-grade inflammation in CCS [70]. Accordingly, Felicetti et al. demonstrated that the
TBI-exposed ALL survivors are characterized by a chronic inflammatory state probably
due to AGEs’ increased levels; indeed, these patients present a seven-fold increase of AGEs
compared to healthy controls and increased levels of CRP, IL-1β, and IL-17 [64]. Since
AGEs are responsible for the onset of vascular damages and of endothelial cells activation,
their serum concentration could be considered as a predictor of the cardiovascular disease
severity in CCS [71].

Moreover, oxidative stress is not only a consequence of AGEs’ production, but also
a mediator of their production; indeed, AGEs’ formation also occurs in the presence
of oxidative stress [71]. It is known that the exposure to ionizing radiations or several
chemotherapy agents increase ROS production and, consequently, oxidative stress, which
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could be perpetuated after the end of cancer therapies due to AGEs’ accumulation, known
to be responsible for ROS production [72]. Oxidative stress-related cancer therapies could
induce an increase in AGEs production, which in turn could cause inflammation, decrease
antioxidant defenses, and induce ROS production, thus generating a vicious circle. Recently,
several studies have suggested a role for AGEs also in second malignant cancer onset and
progression in CCS. AGEs’ accumulation promotes the RAGE/RAS/NF-kB signaling
activation, angiogenesis, and consequently tumorigenesis. A blockade of RAGE inhibits
the angiogenesis of cancer reducing VEGF expression [73–76].

Moreover, mitochondrial stress can lead to the activation of stress responses through
NLRP3 inflammasome formation, which induces IL-1β and IL-18 maturation, through its
cleavage and secretion, and caspase-1 activation, suggesting the possible involvement of
NRL3 inflammasome in second malignant cancer onset and progression in CCS [77].

The oxidative stress worsens the cognitive decline induced by chemotherapy in chil-
dren with leukemia [78,79]. Corticosteroids and Methotrexate are the main drugs responsi-
ble for neurotoxicity in childhood ALL. In particular, Methotrexate causes an accumulation
of homocysteine, a toxic amino acid, in blood and cerebrospinal fluid, causing neuronal
tissue and vascular andothelium oxidative damage and, consequently, neurotoxicity [80].
Corticosteroids are known to influence mood and memory [81]. Cole et al. identified, as
predictors of cognitive outcome in childhood ALL, several polymorphisms such as en-
dothelial nitric oxide synthase (NOS3), hemo-Chromatosis (HFE), glutathione S-transferase
pi (GSTP1), and the prostaglandin transporter (SLCO2A1). In particular, the NOS3 poly-
morphism has been identified as the variant mostly related to the neurocognitive outcome
among the leukemia survivors analyzed. NOS3 has an important role in protection from
oxidative damage. Homozygosity for the T allele in NOS3 results in decreased enzyme
activity and in reduced capacity for oxidative stress protection. SLCO2A1 is not directly
associated with oxidative stress [82]. The prostaglandin transporter encoded by this gene
allows the movement of prostaglandins across the blood–brain barrier. Prostaglandins in
CNS modulate many brain activities by regulating cerebral blood flow, synaptic transmis-
sion, neurotrophin production, angiogenesis, and also in chronic inflammatory processes
generally associated with oxygen radicals’ production [83]. Therefore, functional variants
influencing prostaglandin entry in CNS could alter the protective mechanisms against
reactive oxygen species. Anthracycline is another important cause of morbidity in CCS [84].

Glutathione S-transferases (GSTs) are a class of phase II detoxification enzymes that
induces the elimination of anthracyclines and plays a role in oxidative damage [85].
Singh et al. observed an association between the GSTµ1 (GSTM1) null genotype and
anthracycline-related cardiomyopathy in anthracycline-exposed CCS. Moreover, they
demonstrated a downregulation of GSTM1 gene expression in the peripheral blood as well
as a reduced GSTM1 expression in human-induced pluripotent stem cell cardiomyocytes
(hiPSC-CMs) generated from CCS who had anthracycline-related cardiomyopathy. This
also provided a biological association between the GSTM1 null variant and anthracycline-
related cardiomyopathy [86].

4. Inflamm-Aging and Cellular Senescence in CCS

Inflamm-aging in CCS is responsible for an early onset of aging, which induces molec-
ular and cellular damage and the loss of physiological integrity [11,87]. In particular, cancer
treatment exposures are involved in this process [87]. Aging causes the loss of physiologic
capacity, determining an impairment of organ functions and death [87]. CCS are char-
acterized by a premature loss of physiologic function closely dependent on anti-cancer
treatments (chemo- and radiotherapy) [87], which induce not only the damage of malignant
cells but also of non-malignant cells, such as neurons, cardiomyocytes, and skeletal mus-
cle [11,87]. Cellular senescence, telomere attrition, DNA damage, and epigenetic alterations
are the main processes involved in the acceleration of aging in CCS [87–89]. Telomeres,
genetic elements located at the end of eukaryotic chromosomes, undergo a process to
progressively attrition during each cell division, contributing to cellular senescence [32].
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Telomere attrition is closely associated with chronic inflammation and, consequently, with
an increased risk of the onset of age-related diseases, suggesting telomere length as an
aging marker [32,90].

Aging determines an increase in the senescent cells rate [91], which shows a spe-
cific phenotype, known as senescence-associated secretory phenotype (SASP) [91–93].
Senescence progression is determined by the involvement of several factors, such as
p16INK4A/retinoblastoma protein, p53/p21CIP1, and is also characterized by an alter-
ation in genes expression, an arrest in cell cycle progression, apoptosis inhibition, and
SASP [33,94–97]. SASP is mainly represented by pro-inflammatory cytokines, growth
factors, chemokines, and other molecules which cause an alteration of the surrounding
environment, influencing both nearby and distant normal cells [91–93] and, consequently,
contributing to amplifying the negative effects of senescent cells on systemic function and
surrounding tissues [98,99]. It has been reported that in CCS, SASP causes the onset of
metabolic dysfunction, which contributes to an increased senescent cells rate [100,101].

Cellular senescence is a condition characterized by the loss of the cells’ capability
to replicate or grow, caused by several factors [87]. This growth arrest is subsequently
followed by permanent DNA alteration and by the impairment of repair mechanisms, thus
making CCS more vulnerable to environmental exposures [11]. In detail, the exposure to
chemo- and radiotherapy causes DNA damage, the over-expression of oncogenes, several
mutations, continuous cell replication, and ROS production, which are all responsible for
the onset of cellular senescence [96,100] (Figure 4). The proliferative arrest observed during
cellular senescence is caused by telomere shortening after several cycles of cell division
(replicative senescence) or by several stress events (stress-induced premature senescence,
SIPS) [102]. Cells in stress-induced or in proliferative senescence and in quiescence show
upregulated oncogenic miRNAs, which are involved in senescence and aging [11].

Figure 4. Senescence. Chemotherapy and radiotherapy cause DNA damage, impairment of repair
mechanisms, Reactive Oxigen Species (ROS production), and continuous cell replication which is
responsible for telomere shortening. All these consequences cause the onset of cellular senescence.
Senescent cells are characterized by an increased release of pro-inflammatory cytokines and by the
loss capability to grow and replicate, thus contributing to inflamm-aging.

Mesenchymal stromal cells (MSCs) exert immune-suppressive and anti-inflammatory
properties and are considered a promising source for treating autoimmune disease or
counteract aging [101]. They are strongly damaged by senescence [101]; in particular,
when MSCs become senescent, there is a reduction in their number and a loss of their
immuno-modulatory and anti-inflammatory properties, thus contributing to exacerbating
the inflamm-aging processes [101,103]. Indeed, it has been reported that aged MSCs release
high levels of pro-inflammatory cytokines [104] and determine the macrophage phenotype
switch from the M2 anti-inflammatory macrophages to the M1 pro-inflammatory ones [105],
increasing the inflammatory state of senescence [101]. Since senescent MSCs are involved in
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the development and progression of inflamm-aging, they could be considered an effective
target for anti-aging strategies [101].

Chemotherapy is mainly responsible for the onset of cellular senescence [91,99,106,107],
contributing to accelerating the aging-like state and determining the appearance of senes-
cence consequences, such as frailty and insulin resistance [91–93]. Indeed, it has been
demonstrated that cranial radiation induced an increased expression of p16INK4a in a
scalp biopsy specimen of children with acute lymphoblastic leukemia, confirming the role
of cancer treatment in cellular senescence onset [108]. Hence, the research of innovative
therapy to counteract these negative effects of anti-cancer drugs is needed [91,99,106,107].
Senolytics and SASP inhibitors are emerging promising drugs with a key role in prevent-
ing cellular senescence and its side effects [91,106,109]. In particular, senolytics degrade
senescent cells, while SASP inhibitors counteract SASP effects [91,106,109], counteracting
frailty, preventing cardiac and vascular disease risk, and determining a reduction of insulin
resistance, of radiation therapy negative effects, and of osteoporosis [11].

5. Therapeutic Strategies to Counteract Inflamm-Aging in CCS

It is known that CCS may be prone to develop prematurely several age-related disorders,
including osteoporosis, infertility, metabolic and cardiovascular diseases (CVD) [4,37–40].

Considering the severe effects of anti-neoplastic therapy in CCS, the investigation of
cellular and molecular processes related to premature aging and chronic inflammation
could be useful to discover novel therapeutic approaches to counteract the inflamm-aging
in CCS.

Specific therapeutic strategies to counteract frailty in CCS are not yet well established,
but it seems that pharmaceutical or nutraceutical agents and lifestyle improvement could
ameliorate or prevent the frailty condition [8,110].

In particular, low-grade inflammation, caused by anti-neoplastic therapies, promotes
pro-tumor microenvironment activation and, consequently, contributes to frailty [111–113].
Therefore, the identification of possible therapeutic interventions able to modulate inflam-
mation in CCS could ameliorate their health condition [112].

5.1. Preventive Strategies to Counteract Inflammation: Lifestyle and Exercise

It was demonstrated that exercise could be an important non-pharmacological thera-
peutic strategy to counteract inflammation [112,114,115]. In particular, it could modulate
immune system parameters [112], determining a reduction in tumor growth [112]. In-
creased pro-inflammatory cytokines levels are related to cancer outcomes. Indeed, in
several cancer types, high levels of tumor necrosis factor (TNF) were detected [116,117].
Accordingly, it is reported that exercise is able to reduce TNF, IL-6, IL-8, and IL-2 levels in
breast cancer [118].

In addition, immune function has a key role in cancer [112]. It was demonstrated
that exercise training improves immune function in cancer [112,119], determining an
increase of Natural Killer cells activity and lymphocyte proliferation [112,119]. Definitely,
immune and inflammatory responses are modulated by exercise modalities [112,120].
Therefore, considering the beneficial effect of exercise in reducing inflammatory status and
in modulating immune response, it could be considered an alternative non-pharmacologic
therapeutic approach to counteract low-grade chronic inflammation in CCS.

Recently, it has been demonstrated that lifestyle is an important risk factor for metabolic
and cardiac diseases in CCS [121,122]. Indeed, conducting a healthy lifestyle could prevent
chronic diseases’ development, such as obesity and CVD, in CCS [123]. It was demonstrated
that uncorrected lifestyle behaviors and unhealthy weight gain occur early in treatment
in CCS and may persist beyond treatment completion and potentially into adulthood;
therefore, a correct lifestyle should be initiated early in order to prevent all the consequent
negative effects [124–126].

Moreover, it has been demonstrated that exercise could be safe and effective in the
case of cardiac dysfunction in CCS [127].
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Since CVD is closely related to inflammation, the use of anti-inflammatory drugs
or drugs to counteract cardiovascular risk (hypertension, dyslipidemia) is proposed to
treat high-risk patients in order to ameliorate long-term outcomes [10]. Moreover, in a
recent study the therapeutic potential of the nutraceutical nicotinamide riboside (NR), a
form of vitamin B3, has been evaluated in order to increase blood levels of nicotinamide
adenine dinucleotide. Nicotinamide mononucleotide, derived from NR, improves cardiac
function in a murine model characterized by an alteration of mitochondrial oxidative
phosphorylation [128].

The main strategy to better manage aging consequences is aiming to ameliorate health
behaviors [10,129]. In particular, it is advisable to lead a correct lifestyle: aerobic exercise
and resistance training determines a reduction of fat volume and of pro-inflammatory
cytokines production and concentration [130]. In the general population, exercises induce
a reduction of chronic inflammation and of age-related telomere shortening, alter DNA
methylation, and determine an increase of mitochondrial DNA [131–137]. In CCS, it
is important to intervene with exercise both during and after anti-neoplastic treatment
in order to counteract therapy-associated negative effects, thus ameliorating strength,
walking speed, and lean mass [138–142]. Progression of these exercises should be modified
basing on patients’ physiologic conditions and needs [143]. Indeed, patients with cardiac
dysfunction show different responses to exercise based on the severity of their disease [143].
It has been reported that exercises in children with cancer or in CCS lead to an increase of
strength, walking speed, and lean mass [127,138,139,141,142,144]. However, further studies
are needed to better understand and clarify the most appropriate timing of the exercises’
application, or rather during therapy, immediately after therapy, or years later [87].

Since the increased risk of late effects in CCS is closely related to cancer therapies,
changes in the standard treatment regimen have been made in order to maintain or improve
cure rates and also to reduce the risk and the severity of late effects [145].

5.2. Biological Therapy and Immunotherapy to Counteract Inflammation

In recent years, new agents, more effective and less toxic than the canonical drugs
used to counteract cancer progression, have been discovered [146]. In particular, in patients
with sarcoma, lymphoma, and acute myeloid leukemia the simultaneous administration
of molecularly target agents and conventional chemotherapy was studied [147–149]. For
example, the combined use of the tyrosine kinase inhibitor, imatinib, and chemotherapy in
Philadelphia-positive acute lymphoblastic leukemia induced an increase of percentage of
3-year even-free survival from 50% to 80% [150]. In many pediatric malignancies the admin-
istration of antibody-based therapy together with chemotherapy ameliorates outcomes of
diseases. The use of several antibodies, such as brentuximab, gemtuzimab, and rituximab,
is well documented to improve the onset of newly diagnosed or relapsed lymphomas and
leukemias [151–153]. Further studies are currently underway for individuate therapeutics
strategies that are more effective than canonical anti-neoplastic treatments and also without
long-term side effects, which are unfortunately a consequence of chemotherapy and radio-
therapy [154]. For example, the effects of genetically engineered chimeric antigen receptor
(CAR) T cells has been the object of study in recent years [155]. Nevertheless, several
long-term side effects are observed also after use of “targeted” therapies [156]. Considering
this crucial aspect, it is necessary to perform a longitudinal systematic follow-up of children
which received novel emerging therapies in order to verify whether these therapies could
improve long-term outcomes compared with standard treatments [145,157].

Moreover, an emerging field is epitranscriptomics: it is based on the study of RNA
modifications that do not affect the RNA sequence but affect functionality via a series
of RNA binding proteins. Several kinds of epi-RNA modifications are known, such as
6-methyladenosine (m6A), 5-methylcytidine (m5C), and 1-methyladenosine. M6A mod-
ification is the most studied and could represent a potential RNA-modifying drug to
treat leukemia [158].
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5.3. Nutraceuticals’ Effect in Counteracting Inflammation

Recent studies have highlighted an emerging role of senolytics in inducing apopto-
sis of only senescent cells, but not of non-senescent cells [100,106,159–162]. Interestingly,
six anti-apoptotic signaling pathways of senescent cells were discovered and it would
seem that these pathways are involved in cancer cells’ defense against apoptosis [87,163].
Senolytics induce cancer cells apoptosis both in vitro and in vivo [100,159–162]. It has been
demonstrated that they are able to counteract the negative effects of chronic diseases in ani-
mal models, such as osteoporosis, CVD, obesity, liver steatosis, metabolic alteration, frailty,
muscle wasting induced by radiotherapy, and pulmonary fibrosis [137,159,162,164–167].
CCS show several of these chronic diseases and they appear to be responsive to these
treatments; in particular, senolytics are able to reduce the premature aging phenotypes and
all the consequent aging-associated diseases [8,100]. Moreover, another positive aspect
about the use of these drugs in CCS consists in their ability to transiently interfere with the
pro-survival pathways [87]. Additionally, in this case, it is necessary to establish the most
appropriate timing of their administration, more precisely or after therapy subsequent to
acute cellular damage, or after several years, when diseases appear [87].

6. Health and Management Tips for Childhood Cancer Survivors

The Childhood Cancer Survivor Study suggests that a 24-year-old childhood cancer
survivor has the same risk of developing serious chronic conditions as their 50-year-old
sibling [168]. CCS present deficits in attention, working memory, processing speed, and
neurocognitive problems in everyday life [169], hence the need to integrate lifestyle in-
terventions early in cancer care to promote healthy lifestyles. Studies suggested that the
safety and feasibility of lifestyle interventions are significant if introduced while patients
are receiving cancer treatment [170]. Most of the lifestyle interventions in CCS are focused
on behavioral interventions in healthy aging like nonsmoking, caloric restriction, and
physical activity [171]. A study demonstrated that both nutrition and physical activity are
necessary to counteract the early onset of obesity and chronic diseases in CCS [172,173].
Few survivorship programs for childhood cancer have a specific focus on nutrition. Gen-
erally, to increase diet quality, to avoid excessive intakes of empty calories and sodium,
and inadequate intakes of greens, beans, and whole grains are the recommendations for
the survivors [174,175]. Family environment and parenting style play important roles in
children’s dietary [176] intake and can become particularly important for children diag-
nosed with cancer at a young age. Very often, while the child is going through active cancer
treatment, parents have permissive attitudes favoring unhealthy eating and sedentary
behavior. Following treatment completion, parents find it difficult to reverse the unhealthy
eating habits and sedentary lifestyle that have been established during the cancer treat-
ment [177]. Therefore, it is important that parents have parenting skills and practices to
facilitate healthy lifestyle changes. CCS show less interest in physical activity than healthy
controls [178], thus they are more predisposed to poorer psychosocial welfare, greater
somatic symptoms, and higher risk for secondary diseases [121,179]. Several observational
and intervention studies suggest the positive correlation between physical activity and
better neurocognitive functions in CCS [180,181]. Barlow-Krelina et al. identified an as-
sociation of physical activity with neurocognitive problems many years post treatment,
with fewer problems over time for survivors who participated in physical activity more
constantly [171]. In particular, they observed improvements over 20 years post diagnosis,
suggesting the continued benefits of physical activity even long after cessation of treat-
ment [171]. This study is in accordance with Riggs et al. that demonstrated a positive
impact of physical activity on cognitive outcome in pediatric brain tumor survivors after
5.25 years post treatment [182]. Adherence to lifestyle interventions is very difficult for CCS.
The key to successful intervention is certainly to begin soon after treatment to establish
healthy lifestyle customs before the onset of frailty or other chronic conditions. Parental
involvement is an important aspect, as well as the oncology care team, in promoting
healthy lifestyles for children in cancer care. Future lifestyle interventions developed in
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partnership with cancer survivors, caregivers, and health care providers will help ensure
that the interventions address the needs of CCS and have the greatest impact.

7. Discussion

Current anti-neoplastic treatments improve the survival of children with cancer, so that
80% of children treated for childhood cancer will become long-term survivors (>5 years) [1].
Although chemotherapy promotes the survival rate for childhood cancer patients, unfortu-
nately it also predisposes the onset of different late pathological conditions [3–5]. In partic-
ular, in childhood cancer survivors (CCS) a premature aging process is observed which
induces the damage of vital organs and, consequently, the onset of chronic age-related dis-
eases, such as osteoporosis, cardiovascular diseases, obesity, and infertility [4,37–40]. This
condition is named frailty and is subsequent to a low-grade systemic chronic inflammation,
inflamm-aging, caused by chemo- and radiotherapy insults [35]. Anti-neoplastic therapies
are responsible for inflammation and for an increase of senescent cells, DNA mutation, and
oxygen reactive species (ROS) production [12,13]. The accumulation of senescent cells and
exposure to oncogenic insults (chemo-and radiotherapy) leads to inflammation, accumula-
tion of senescent cells, and the increasing of DNA mutations and reactive oxygen species
(ROS), which are involved in the stimulation of immune cells [14,15]. The continuous
activation of the immune system in CCS causes chronic low-grade inflammation which
predisposes to a higher risk of secondary diseases [32,183]. More specifically, chemo- and
radiotherapy induce a persistent activation and recruitment of immune cells, such as lym-
phocytes and macrophages, determining the production of pro-inflammatory molecules,
and amplifying the inflammatory response [14,15,42,43,45]. Oxidative stress has a key
role in inflamm-aging, contributing to the onset of several diseases in CCS through the
activation of pro-inflammatory pathways [52]. Since mitochondrial DNA (mtDNA) is close
to ROS generation sites, it could undergo mutations after anti-neoplastic treatments [53].
Inflamm-aging causes an early onset of aging in CCS, which induces molecular and cellular
damage and a premature loss of physiological function, determining an acceleration of
aging [11,87]. During aging, an increase of the number of senescent cells [91] is observed,
characterized by a specific senescence-associated secretory phenotype (SASP), mainly rep-
resented by pro-inflammatory molecules, which alters the surrounding environment and
causes the development of metabolic dysfunction [91–93]. During cellular senescence, cells
are characterized by an arrest of replication and grow, which causes both DNA alteration
and impairment of repair mechanisms, thus making CCS more vulnerable to environmental
exposures [11,87].

8. Conclusions

In conclusion, chemotherapy and radiotherapy predispose CCS to an increased risk
of developing diseases secondary to frailty and inflamm-aging. An understanding of the
molecular and cellular mechanisms underlying early aging and chronic inflammation
could be an important step in the research of new therapeutic strategies to counteract
the onset of diseases related to anti-neoplastic treatments. In recent years, new agents
more effective and less toxic than the standard anti-neoplastic therapy are used to ar-
rest cancer progression [146]. For example, antibodies-mediated therapy together with
standard chemotherapy seems to improve cancer outcome and to reduce the several nega-
tive long-term side effects in CCS [150–153]. Furthermore, ameliorating health behaviors
could be needed to contrast inflamm-aging-associated diseases [10]. Exercises are con-
sidered a crucial intervention to better manage all the early aging-dependent diseases
in CCS [100,106,159–162]. Considering senolytics’ abilities to induce the apoptosis of
senescent cells, they have been proposed to manage diseases related to inflamm-aging,
thus reducing the premature aging phenotypes and all the consequent aging-associated
diseases [8,162].
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Certainly, other investigations are needed to better understand the biologic mech-
anisms underlying frailty and inflamm-aging in CCS in order to find other therapeutic
strategies able to counteract and prevent all the disorders consequent to these conditions.
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