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Abstract 

Background:  Smallholder dairy farming in much of the developing world is based on the use of crossbred cows that 
combine local adaptation traits of indigenous breeds with high milk yield potential of exotic dairy breeds. Pedigree 
recording is rare in such systems which means that it is impossible to make informed breeding decisions. High-
density single nucleotide polymorphism (SNP) assays allow accurate estimation of breed composition and parentage 
assignment but are too expensive for routine application. Our aim was to determine the level of accuracy achieved 
with low-density SNP assays.

Methods:  We constructed subsets of 100 to 1500 SNPs from the 735k-SNP Illumina panel by selecting: (a) on 
high minor allele frequencies (MAF) in a crossbred population; (b) on large differences in allele frequency between 
ancestral breeds; (c) at random; or (d) with a differential evolution algorithm. These panels were tested on a dataset of 
1933 crossbred dairy cattle from Kenya/Uganda and on crossbred populations from Ethiopia (N = 545) and Tanzania 
(N = 462). Dairy breed proportions were estimated by using the ADMIXTURE program, a regression approach, and 
SNP-best linear unbiased prediction, and tested against estimates obtained by ADMIXTURE based on the 735k-SNP 
panel. Performance for parentage assignment was based on opposing homozygotes which were used to calculate 
the separation value (sv) between true and false assignments.

Results:  Panels of SNPs based on the largest differences in allele frequency between European dairy breeds and a 
combined Nelore/N’Dama population gave the best predictions of dairy breed proportion (r2 = 0.962 to 0.994 for 
100 to 1500 SNPs) with an average absolute bias of 0.026. Panels of SNPs based on the highest MAF in the crossbred 
population (Kenya/Uganda) gave the most accurate parentage assignments (sv = −1 to 15 for 100 to 1500 SNPs).

Conclusions:  Due to the different required properties of SNPs, panels that did well for breed composition did 
poorly for parentage assignment and vice versa. A combined panel of 400 SNPs was not able to assign parentages 
correctly, thus we recommend the use of 200 SNPs either for breed proportion prediction or parentage assignment, 
independently.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Based on bovine remains and terracotta figurines, it 
is assumed that the first domesticated cattle in Africa, 
around 5000  years ago, were humpless (Bos taurus) [1, 

2]. Nowadays, the West African N’Dama cattle (Bos tau-
rus) and closely related populations in West Africa are 
believed to be the only surviving population from the 
originally domesticated African cattle. Humped Zebu 
cattle (Bos indicus) were introduced to Africa with trad-
ers from Arabia 2000 to 3000 years ago [2, 3]. Crossbreed-
ing of local African taurine with introduced indicine 
cattle created a variety of new populations that make up 
most of the native cattle of Africa today [4–6]. Based on 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  jgibson5@une.edu.au 
1 School of Environmental and Rural Science, University of New England, 
Armidale 2350, Australia
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0371-2401
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-017-0342-1&domain=pdf


Page 2 of 18Strucken et al. Genet Sel Evol  (2017) 49:67 

analyses of karyotypes and genetic markers, Frisch et al. 
[7] inferred that East African Zebu breeds are a mixture 
of Bos indicus and Bos taurus, and that Sanga breeds are 
Bos taurus. Subsequent studies using microsatellites and 
then single nucleotide polymorphisms (SNPs) confirmed 
the mixed ancestry of East African Zebu breeds but iden-
tified that the Bos taurus component is primarily African 
rather than European Bos taurus [8]. Hanotte et  al. [8] 
also found that the ancestry of the tested Sanga breeds 
was also mixed but with substantially higher proportions 
of African Bos taurus than Zebu breeds.

During the second half of the twentieth century, glo-
balization and an increasing demand for milk fostered 
a new wave of crossbreeding in some parts of Africa. 
Northern American and European Bos taurus dairy 
breeds, known for their high production levels, were 
imported and crossed to native breeds in an attempt to 
improve the level of milk production. For example, in 
Kenya, Ayrshire, Jersey, and Guernsey cattle were origi-
nally imported, then Friesian and later Holstein domi-
nated bovine imports. In Uganda, imports of Friesian and 
later Holstein cattle dominated [9]. The rapid and large-
scale expansion of the East African highland dairy small-
holders indicates that, under appropriate conditions, 
crossbreeding and the use of crossbred cattle can yield 
significant increases in smallholder income.

Knowledge of breed composition is required to deter-
mine which crossbreeds perform best under the wide 
variety of smallholder dairy systems, and also, to make 
breeding decisions for producing progeny of the desired 
breed composition. Because of the lack of pedigree 
records, the breed composition of most animals is not 
known [10]. Furthermore, the lack of knowledge about 
breed proportions and about the relationships within 
and between populations may lead to the loss of native 
genetic resources and may build-up inbreeding depres-
sion [11, 12].

High-density (HD) SNPs can be used to assess the lev-
els of genetic diversity between individuals [13], to deter-
mine coefficients of kinship between pairs of individuals 
allowing for parentage exclusion [14], to obtain accurate 
estimates of breed proportions in crossbred animals [15], 
and to trace animal products to their source [16]. The HD 
SNP panels are too expensive for routine use in small-
holder systems. Genotyping a few hundred SNPs can be 
relatively inexpensive but how accurate are the estimates 
of breed composition or parentage assignment when 
using such small numbers of SNPs in crossbred dairy 
populations is not known.

The aim of this study was to determine the accuracy 
and bias when using small subsets of SNPs from a com-
mercially available 735k-SNP panel to estimate breed 
proportion and parentage assignment in crossbred dairy 

cattle populations in East Africa. We used a variety of 
methods to select the SNPs for reaching the highest pos-
sible accuracy (r2) of estimated breed proportions and 
parentage assignment. Based on the history of cross-
breeding in Africa, we included as baseline information 
the genotype frequencies in pure breeds such as the 
N’Dama (reference for African Bos taurus), Nelore (ref-
erence for pure Bos indicus), and several European and 
North American dairy breeds, which collectively repre-
sent the ancient and more recent ancestral gene pool of 
the crossbred dairy animals.

Methods
Animals
In total, 1933 crossbred dairy cows and local indigenous 
breeds of Ankole (n = 43), Nganda (n = 17), and Small 
East African Zebu (Zebu; n = 58) were sampled from 845 
households that are distributed at five sites in Kenya and 
two sites in Uganda (Dairy Genetics East Africa, DGEA1, 
project). In addition, genotype datasets for N’Dama (as 
the reference African Bos taurus breed; n = 20), Nelore 
(as the reference Bos indicus breed; n =  20), Guernsey 
(n =  20), Holstein (n =  20), and Jersey (n =  20) were 
sourced from the International Bovine HapMap consor-
tium. Furthermore, British Friesian (n  =  25) from the 
SRUC in Scotland and Canadian Ayrshire (n = 20) from 
the Canadian Dairy Network (CDN) were used as refer-
ence breeds.

An independent population of 545 crossbred animals 
from Ethiopia (DGEA2 project) was sampled from 400 
households at nine sites. Instead of the Kenyan and Ugan-
dan indigenous breeds, we included the Ethiopian Begait 
Barka (n = 30), Danakil Harar (n = 30), Fogera (n = 29), 
and Boran (n = 30) in the analyses of breed composition. 
An independent Tanzanian dataset (DGEA2 project) 
consisted of 462 crossbred animals sampled from 326 
households at three sites. Tanzanian indigenous breeds 
for the analysis of breed composition included Iringa Red 
(n = 13), Singida White (n = 22), and Tanzanian Boran 
(n = 20).

Genotype data
All animals were genotyped with the 777k-SNP 
BovineHD Beadchip (Illumina Inc., San Diego). In 
order to keep potentially interesting SNPs that could 
be excluded due to population stratification, criteria 
for genotype data filtering were applied per breed and 
focused on genotyping quality. Genotypes of the DGEA1 
and 2 and SRUC data were filtered using ‘SNPQC’ an R 
pipeline for quality control of Illumina SNP genotyping 
array data described in [17] to eliminate SNPs that had a 
median GC score lower than 0.6 and a sample-wise call 
rate lower than 90%. Only the SNPs on the 29 autosomal 
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bovine chromosomes were included in the analysis. 
Genotypes provided by the Bovine HapMap consortium 
and the Canadian Dairy Network were already quality-
controlled. The cleaned population datasets were merged 
and included 735,293 SNPs. SNPs that were excluded 
after quality control in one breed but not in another 
breed were set to “not available” (NA) in the breed for 
which they were excluded.

We checked the relationships between animals based 
on the genomic relationship matrix [18], with miss-
ing genotypes being replaced by the average genotype 
(encoded as 0, 1, 2) across all animals:

where Z is the centered genotype matrix and p is the allele 
frequency at locus l . Matrix Z was constructed by sub-
tracting from the genotype matrix M the P matrix, which 
equaled 2*(p − 0.5). The centering of Z was achieved by 
subtracting −1 from M.

Inbreeding coefficients (FIS) were calculated per breed 
according to Weir and Cockerham [19].

Observed breed compositions
Breed proportions of crossbred animals from both 
crossbred populations were estimated by using the full 
quality-controlled data in the ADMIXTURE 1.23 pro-
gram [20]. Analyses were performed by assuming that 
N’Dama, Nelore, Ayrshire, Friesian, Guernsey, Holstein, 
and Jersey represented ancestral populations. We used 
all 735k SNPs to estimate breed proportions to create a 
baseline for comparison with the estimates using sub-
sets of SNPs. Dairy proportion was defined as the sum of 
breed proportions across all European dairy breeds that 
was estimated in the crossbred populations. The Kenyan/
Ugandan dataset also included the local pure breeds of 
Ankole, Nganda, and Zebu whereas the Ethiopian dataset 
included Begait Barka, Danakil Harar, Fogera, and Ethio-
pian Boran, and the Tanzanian dataset included Iringa 
Red, Singida White, and Tanzanian Boran.

Observed pedigree
The pedigrees of the crossbred animals from Kenya/
Uganda, Ethiopia, and Tanzania were reconstructed 
based on the presence or absence of opposing homozy-
gotes [21, 22]. Opposing homozygotes (opH) occur if at 
the same SNP, two individuals carry opposite homozy-
gous genotypes [21]. The more opH are found between 
two individuals, the less likely are these individuals 
related. Except for genotyping errors and mutations, a 
parent and offspring cannot display opH. The distribu-
tion of opH that are associated with parent–offspring or 
other relationships is specific to the allele frequencies of 

GRM = ZZ′/2 ∗
∑

pl ∗
(

1− pl
)

,

the population and the number of SNPs used; however, 
with several tens of thousands SNPs or more, parent–off-
spring relationships can always be clearly separated from 
other relationships. By applying the approach of Strucken 
et  al. [23] if there are less than 1000 opH, it is possible 
to unambiguously distinguish between parent–offspring 
and unrelated individual pairs in the DGEA1 and 2 cross-
bred populations.

The Kenyan/Ugandan crossbred population contained 
171 cows with 189 offspring, of which 15 cows had two 
offspring and one cow had three offspring. The relation-
ship between two parent individuals was similar to that 
between half-sibs. The Ethiopian dataset included 38 
cows that each had one offspring, and the Tanzanian 
dataset included 31 cows and 34 offspring with three of 
these cows having two offspring.

Selection of subsets of SNPs
From the 735k SNPs in the Kenyan/Ugandan dataset, 
subsets of 100, 200, 300, 400, 500, 1000, and 1500 SNPs 
were chosen based on several selection criteria that are 
described below, resulting in SNPs located on all chro-
mosomes except for the smaller panels with less than 200 
SNPs; the number of SNPs was smaller on short than on 
long chromosomes. To minimize linkage disequilibrium, 
SNPs had to be at least one megabase (Mb) pair apart. 
Some of the methods to select SNPs were carried out 
within the crossbred population under investigation (e.g. 
with the highest minor allele frequency (MAF)), which 
implies that they should, ideally, be repeated when mov-
ing to a different population. However, the selected SNP 
panels were validated in independent crossbred popula-
tions to assess the potential for a wider application of our 
SNP panels. SNP panels were selected based on the crite-
ria described in the following paragraphs.

Highest minor allele frequency
Allele frequencies were calculated for the crossbred 
animals. SNPs were sorted by MAF and subsets were 
selected based on the highest MAF in the crossbred 
animals. These subsets are not independent since 
larger subsets always included SNPs in the smaller sub-
sets. The average distance between SNPs in the small-
est and largest panels were 19.4 Mb [standard deviation 
(SD) = 16.2 Mb] and 1.7 Mb (SD = 0.7 Mb), respectively.

Differences in absolute frequency
Allele frequencies were calculated for the ancestral 
breeds. The weighted average allele frequency across 
breeds was calculated based on the number of animals 
in each breed sample. Weighted averages were calculated 
across the Nelore and N’Dama populations (NelNd) and 
across all European dairy breeds (EU). The differences in 
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absolute frequencies were determined between Nelore 
and EU (NelEU), N’Dama and EU (NdEU), and NelNd 
and EU (NelNdEU). SNPs were sorted according to dif-
ferences in absolute frequencies and subsets that had the 
largest differences were selected. As above, these sub-
sets are not independent because larger subsets include 
all the SNPs in the smaller subsets. The average distance 
between SNPs per chromosome for the 100-SNP panel 
was 17.6 Mb (SD = 14.4 Mb), 17.4 Mb (SD = 16.3 Mb), 
and 15.6  Mb (SD  =  14.2  Mb) for NelEU, NdEU, and 
NelNdEU, respectively. For the 1500-SNP panel, the 
average distance between SNPs per chromosome was 
1.7  Mb (SD  =  0.7  Mb), 1.7  Mb (SD 0.7  =  Mb), and 
1.7 Mb (SD = 0.6 Mb) for NelEU, NdEU, and NelNdEU, 
respectively.

Random selection
We selected 10 random samples for each subset and 
results were averaged across these random samples. 
These random panels were not restricted by SNP spac-
ing (i.e. the 1  Mb pair restriction). The average dis-
tance between SNPs per chromosome ranged from 
20.4 Mb (SD = 16 Mb) for the 100-SNP panel to 1.7 Mb 
(SD = 1.6 Mb) for the 1500-SNP panel.

ISAG panel and 50k‑SNP chip
The official International Society for Animal Genetics 
(ISAG) panel for parentage assignment [24] consists of 
100 core SNPs, which are mostly derived from European 
breeds, plus an additional 100 SNPs from Bos indicus ani-
mals. We also tested 47,810 SNPs from the Illumina 50k-
SNP bovine chip v2 (San Diego, CA, USA).

Differential evolution (DE) algorithm
The differential evolution (DE) algorithm is based on 
Storn and Price [25] and ranks SNPs according to a ran-
dom key (vector of real values; [26]). This key evolves to a 
higher rank as the SNP is more suited to solve a particu-
lar problem (e.g. estimation of breed proportion or par-
entage assignment [27, 28]).

In our study, the “all animals” set (including pure 
and crossbred animals) was split into a training and a 
test population. The DE algorithm was initiated in the 
training population with 100 random samples of SNPs 
(‘parental sets’) for each panel size (i.e. 100, 200, 300, 400, 
500, 1000, 1500 SNPs). From these 100 parental sets, two 
sets were randomly selected to create an ‘offspring set’ 
consisting of 50% randomly sampled SNPs from each 
parental set. If this offspring set performed better than 
the initial 100 parental sets (according to a fitness func-
tion), then this offspring set was retained and the worst 
parental set was discarded. The dairy proportions were 

estimated internally with a SNP-best linear unbiased pre-
diction (BLUP) approach (see below), whereas the par-
entage test was based on number of opH.

The fitness function used to optimize prediction of 
dairy breed proportions was the coefficient of determina-
tion (r2) between the subsets of SNPs and the dairy breed 
proportions predicted with the 735k SNPs in ADMIX-
TURE. To optimize parentage assignments, the fitness 
function was the percentage of correctly assigned parent-
ages according to the reconstructed pedigree. This pro-
cess was run for 2000 iterations/generations. No spacing 
restriction between SNPs was applied since the DE algo-
rithm should select best SNPs by default.

The average distance between SNPs per chromo-
some for the panels to estimate breed proportions 
ranged from 23.6  Mb (SD =  12.8  Mb) for the 100-SNP 
panel to 1.6 Mb (SD = 1.6 Mb) for the 1500-SNP panel 
and for the panels to assign parentage, it ranged from 
19.7 Mb (SD = 11.2 Mb) for the 100-SNP panel to 1.7 Mb 
(SD = 1.6 Mb) for the 1500-SNP panel.

Accuracy and bias of breed proportion prediction
Total dairy proportion for an animal was the sum of 
the estimated individual breed proportions for Ayr-
shire, Guernsey, Jersey, Holstein, and Friesian. Accuracy 
of the prediction of dairy proportions for all subsets of 
SNPs was assessed by the coefficient of determination 
(r2) between observed (based on all 735k SNPs) and pre-
dicted (based on subsets of SNPs) dairy proportions of 
the 1933 crossbred animals. The linear bias of breed pro-
portions estimated from subsets of SNPs was assessed as 
the average deviation or average absolute difference esti-
mated minus the observed (735k SNPs) values.

Parentage assignment
The opH matrices were calculated for each subset of 
SNPs in the crossbred population. Subsequently, the sep-
aration value (sv) was used to quantify and visualize the 
performance of each SNP subset and was calculated as:

where FR is the number of opposing homozygotes in false 
parent–offspring relationships according to the recon-
structed pedigree information; and TR is the number of 
opposing homozygotes in true parent–offspring relation-
ships [23, 29].

Regression and SNP‑BLUP
Prediction of breed proportions was also made with 
a regression model and a SNP-BLUP approach to 
test the ability of the SNP panels to perform outside 
ADMIXTURE.

(1)sv = min(FR)−max(TR),
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The regression method was based on Kuehn et al. [30] 
and described in Dodds et al. [31] for prediction of breed 
proportions:

where y are the proportions of the designated allele in the 
genotypes for each SNP of each animal (encoded as allele 
counts 0, 0.5, 1); X is a matrix of allele frequencies in 
each reference breed (ADMIXTURE P-file output); b̂ are 
the breed proportions of each animal for each reference 
breed (to be estimated); and e are the residual errors. 
Coefficients of determination were calculated between 
predictions of breed proportions in the ADMIXTURE 
analysis (735k SNPs) and predictions of the regres-
sion method. In addition, the ADMIXTURE P-file was 
replaced by observed allele frequencies in the ancestral 
populations.

The SNP-BLUP approach required the replacement 
of missing genotypes (NA) with the average allele count 
across all animals. Only SNPs with a call rate higher than 
95% were used in this analysis to limit potential bias due 
to SNPs with only a few recorded genotypes. SNP-BLUP 
was performed as follows:

where ĝ is the effect of the SNPs to be estimated; y is a 
vector of dairy proportions (ADMIXTURE output for 
735k SNPs) scaled with a mean = 0 and SD = 1; Z is a 
design matrix allocating SNP genotypes (multiplied by 
their allele frequencies) to records; I is an identity matrix 
and � defines the contribution of genomic relationships. 
� was set to � =

(

1− h2
)

/(h2/d) with the heritability 

assumed to be h2 = 0.99 and d representing the average 
heterozygosity of the panel.

SNP effects (ĝ) were subsequently multiplied by Z to 
obtain estimates of dairy proportions (i.e. GEBV) for each 
panel. The estimated dairy proportions had to be rescaled 
(reversing the scaling of y) to be correctly interpreted. 
This approach was also used within the DE algorithm.

Validation
When SNPs are selected based on information that is 
independent of the test dataset, there is no ascertain-
ment bias. Selection of SNPs based on MAF in the cross-
bred population is subject to trivial ascertainment bias 
due to binomial sampling variance of allele frequencies 
(approximately ± 0.01).

The linear regression and SNP-BLUP estimates of 
breed proportions are subject to ascertainment bias and 
thus require validation. Validation was achieved by using 
the SNP effects that were estimated in the Kenyan/Ugan-
dan dataset to predict dairy proportions in the Ethiopian 

(2)y = Xb̂+ e,

(3)
[

ZZ′
+ I�

]

∗ ĝ = [Zy],

and Tanzanian dataset and vice versa. To determine 
whether population structure or random sampling 
caused bias in the estimates, we applied the SNP-BLUP 
approach to predict breed proportions for 50% of the ani-
mals in the Kenyan/Ugandan dataset by randomly select-
ing 50% of the animals in each breed (training dataset). 
Then, cross-validation of the estimates was performed on 
the other half of the Kenyan/Ugandan population as well 
as on the Ethiopian and Tanzanian crossbred animals 
(test datasets).

We further validated our sets of SNPs in independent 
crossbred populations. The subsets of SNPs that were 
selected from the Kenyan/Ugandan dataset were used to 
predict breed proportions and parentage assignment in 
the Ethiopian and Tanzanian datasets. The coefficient of 
determination and the absolute linear bias between the 
full dataset and the subsets within the Ethiopian and Tan-
zanian datasets were used to determine the performance 
of each subset of SNPs to accurately assign dairy propor-
tions, and the sv was used for parentage assignment.

Results and discussion
Description of data
After merging the quality-controlled datasets for each 
breed, 4.8, 5.1, and 5.8% of genotypes were missing in the 
entire Kenyan/Ugandan, Ethiopian, and Tanzanian data-
sets, respectively. Within the crossbred animals, 4.9, 5.5, 
and 4.8% of genotypes were missing in the Kenyan/Ugan-
dan, Ethiopian, and Tanzanian datasets, respectively. 
There was no general pattern of where the missing geno-
types occurred along the genome.

The average inbreeding coefficient (FIS) did not show 
any substantial average inbreeding in any of the breeds; 
however, the SD was very large (Table  1). The genomic 
relationship matrix (GRM) showed that the cross-
bred animals were mostly unrelated with no detect-
able inbreeding (Table 1). The assumed ancestral breeds 
included related individuals within the range of half-sib 
relations. Exceptions were the N’Dama and Nelore popu-
lations in which individuals appeared to be highly related 
and inbred, with Nelore showing an average diagonal ele-
ment of 1.82 (Table 1). The high values of the GRM for 
the Nelore population can be explained by ascertainment 
bias [32] combined with how the GRM is calculated. 
Nelore is a pure Bos indicus breed and N’Dama repre-
sents a unique African Bos taurus breed. The largest pro-
portion of SNPs on the 735k-Illumina chip was chosen 
based on high information content (high MAF) within 
non-African Bos taurus populations.

Figure 1 shows MAF and absolute allele frequencies for 
the various populations in our analyses and clearly illus-
trates the bias that is due to the criteria applied for select-
ing SNPs in the assay. The method of constructing the 
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GRM across multiple breeds [18] centers the matrix by 
using most of the animals in the dataset. Thus, the level of 
inbreeding appears to be high in the N’Dama and Nelore 
populations, which represent a small number of animals 
and they have MAF that clearly differ from those of other 
groups. When the GRM was constructed by using only 
the Nelore animals (n = 20), the average of the diagonal 
elements was equal to 0.975, which is consistent with the 

diagonal elements of the GRM for Nelore reported by 
Zavarez et al. [33].

The allele frequencies for the three crossbred popula-
tions showed a narrower inter-quartile range compared 
to the assumed ancestral populations (Fig. 1). Compared 
to the other breeds, more than twice the number of SNPs 
were not in Hardy–Weinberg equilibrium (the null-
hypothesis was rejected) in the crossbred populations 

Table 1  Average diagonal and off-diagonal elements of the GRM [18] and inbreeding coefficient (FIS) ± SD (SE) in cattle

a  XBred, Kenya/Uganda; E XBred, Ethiopia; T XBred, Tanzania

Diag Off-Diag FIS

Ayrshire 1.11 ± 0.044 (0.01) 0.34 ± 0.089 (0.02) −0.024 ± 0.206 (0.05)

Friesian 1.01 ± 0.025 (0.005) 0.18 ± 0.05 (0.01) −0.005 ± 0.191 (0.04)

Guernsey 1.16 ± 0.036 (0.008) 0.37 ± 0.089 (0.02) 0.018 ± 0.218 (0.05)

Holstein 1.11 ± 0.036 (0.008) 0.29 ± 0.089 (0.02) −0.021 ± 0.210 (0.05)

Jersey 1.21 ± 0.040 (0.009) 0.48 ± 0.134 (0.03) −0.0003 ± 0.218 (0.05)

N’Dama 1.28 ± 0.022 (0.005) 0.65 ± 0.027 (0.009) 0.013 ± 0.215 (0.05)

Nelore 1.82 ± 0.036 (0.008) 1.22 ± 0.045 (0.01) 0.003 ± 0.209 (0.05)

XBreda 0.98 ± 0.044 (0.001) 0.0004 ± 0.044 (0.001) 0.024 ± 0.037 (0.0008)

E XBreda 0.95 ± 0.070 (0.003) 0.01 ± 0.070 (0.003) 0.015 ± 0.050 (0.002)

T XBreda 0.954 ± 0.003 (0.0001) 0.004 ± 0.002 (0.0001) 0.032 ± 0.06 (0.003)

Fig. 1  Allele frequencies and minor allele frequencies for seven ancestral and three crossbred (XBred) cattle breeds. Bold horizontal lines indicate the 
median and plus symbol indicates the mean; the box for each population indicates the interquartile range, and the outermost bars for each popula‑
tion indicate the most extreme observations. XBred= Kenya/Uganda; E XBred= Ethiopia; T XBred= Tanzania
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(151,486 SNPs for the Kenyan/Ugandan, 58,493 for the 
Ethiopian, and 91,460 for the Tanzanian datasets), which 
is likely due to a proportion of the crossbred animals 
originating from the first generation progeny of crosses 
with pure dairy or indigenous breeds.

A principal component (PC) analysis based on the GRM 
for the combined Kenyan and Ugandan dataset separated 
the European dairy breeds from the Nelore breed and then 
from the African pure breeds and the first PC explained 
86.91% of the genetic variation. The second PC clearly sep-
arated the Nelore and N’Dama breeds from the European 
breeds and crossbreds, with the East African indigenous 
breeds being intermediate; it explained 1.75% of the genetic 
variation (Fig.  2a). The second PC also separated Kenyan 
and Ugandan crossbred animals, which spread between 
their respective indigenous breeds (Ankole and Nganda 
in Uganda and Zebu in Kenya) and European ancestral 
breeds. Although the indigenous samples were collected 
from animals that phenotypically appeared as pure indig-
enous, they clearly included animals that were admixed 
with European Bos taurus genes. When considering only 
the clusters of apparently pure indigenous animals, the 
variation between these three indigenous breeds was sub-
stantially larger in both dimensions (PC1 and PC2) than the 
difference between the European Bos taurus dairy breeds.

The first two PC in the Ethiopian dataset explained 
90.92 and 1.71% of the variation, respectively (Fig.  2b), 
and in the Tanzanian dataset, they explained 85.19 and 
3.23% of the variation, respectively (Fig.  2c). Most of 
the Ethiopian crossbreds aligned with their respective 
indigenous breeds and with the Friesian and Holstein 
breeds; however, some animals were positioned between 
an unknown indigenous population and the Ayrshire 
population. The Tanzanian crossbred animals were posi-
tioned between their indigenous breeds and the Holstein 
and Ayrshire breeds. However, when all the data from 
DGEA1 and 2 were analyzed simultaneously and the 
results were plotted to show the third PC, the Tanzanian 

crossbred animals were closer to the Friesian breed 
(see Additional file  1: Figure S1). Similar to the Ethio-
pian crossbreds, some Tanzanian crossbreds seemed to 
align with an unknown indigenous breed (Fig.  2c). The 
three-dimension PCA plot for the analysis that included 
indigenous breeds from all countries, showed that the 
Ethiopian and Tanzanian crossbred animals that were 
not aligned to a local indigenous breed, aligned with 
an unknown breed(s) between the East African Zebu 
and the Nganda breed (see Additional file 1: Figure S1). 
Crossbred animals from Tanzania that did not align 
with a local breed in the analysis were sampled from the 
Southern Highlands, whereas those from Ethiopia came 
from various locations across the country.

Description of the SNP panels
As expected given the sampling procedure applied, panels 
of SNPs that were selected on their highest MAF showed 
almost no variation in allele frequencies for the Kenya/
Uganda crossbred animals with median and mean allele 
frequencies at 0.5. The panel that showed the next to low-
est variation was the combined NdEU panel for which the 
interquartile range was between 0.35 and 0.6 (Fig. 3).

All other selection methods resulted in relatively large 
interquartile ranges. Deviation in mean and median 
allele frequency was largest for the NelEU panels (Fig. 3). 
Examination of these allele frequencies within the Nelore 
and EU breeds revealed that the shift in frequencies was 
very similar but in opposite directions for the European 
breeds versus the Nelore breed for all SNP panels (see 
Additional file 2: Figure S2). The observed frequency for 
the NelEU SNP panel in the crossbred animals (Fig.  3) 
most likely reflects that the average crossbred animal in 
this population was 69.7% (SD =  21.1%) European Bos 
taurus. A similar but less extreme effect was found for 
the NdEU SNP panel (see Additional file 2: Figure S2).

The ISAG SNP panel showed a narrow inter-quar-
tile range with a mean and median at 0.5, and the 

Fig. 2  Principal components for exotic and indigenous cattle populations a Kenya/Uganda, b Ethiopia, and c Tanzania. PC1 separates European 
from African breeds. PC2 separates Nelore and N’Dama breeds and African and European breeds
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inter-quartile range of the 50k-SNP panel was similar to 
that of the full 735k-SNP panel although the mean and 
median frequencies deviated more from 0.5 (Fig. 3).

The distributions of allele frequencies in the Ethiopian 
and Tanzanian crossbred animals were similar to that in 
the Kenya/Uganda crossbred animals, but with a wider 

Fig. 3  Allele frequencies for SNP panels in a crossbred cattle population (Kenya/Uganda). Bold horizontal lines indicate the median and plus symbol 
indicates the mean; MAF, highest minor allele frequencies; DE, differential evolution algorithm; Nel/ND versus EU, Nelore versus EU; N’Dama versus 
EU, highest absolute allele frequency difference
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range of frequencies for all SNP panels (see Additional 
file 3: Figure S3, Additional file 4: Figure S4).

Estimation of breed proportions
Proportions of dairy breed in the crossbred animals were 
on average equal to 0.70 (SD =  0.21), 0.78 (SD =  0.20), 
and 0.78 (SD = 0.18) for the Kenyan/Ugandan, Ethiopian, 
and Tanzanian datasets, respectively. This proportion was 
highest for Ayrshire in Kenyan crossbred animals and for 
Friesian in Ugandan crossbred animals, which was con-
sistent with the PCA results (Fig. 4). Based on a study of 
smallholder cattle that were sampled from mostly peri-
urban areas in Kenya, Gorbach et al. [12] reported that the 
crossbred cattle had very high dairy breed proportions, 

which reflected the fact that their samples originated from 
a much smaller, more intensive and older dairy produc-
tion area than in our study. They found that the main dairy 
breeds present in the crossbred individuals were Holstein 
and Jersey/Guernsey, the latter two being indistinguish-
able. However, their analysis did not include Ayrshire as a 
reference breed and Weerasinghe [15] showed that when 
Ayrshire was excluded from the ADMIXTURE analysis, 
most of the Ayrshire signal appeared as Guernsey or Jersey.

In Ethiopian crossbred animals, proportions of dairy 
breeds were highest for Holstein and Friesian (Fig.  4), 
which was consistent with the PCA analyses and the doc-
umented history of the country’s specific cattle imports 
[15]. In Tanzanian crossbred animals, the Friesian breed 

Fig. 4  Breed proportions of crossbred dairy cattle a Kenya/Uganda, b Ethiopia, and c Tanzania. Supervised ADMIXTURE analysis with seven fixed 
ancestral breeds: a 1 Ayrshire, 2 Guernsey, 3 Jersey, 4 Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Ankole, 9 Nganda, 10 Zebu. b 1 Ayrshire, 2 Guernsey, 
3 Jersey, 4 Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Begait Barka, 9 Danakil Harar, 10 Ethiopian Boran, 11 Fogera. c 1 Ayrshire, 2 Guernsey, 3 Jersey, 4 
Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Iringa Red, 9 Singida White, 10 Tanzanian Boran
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proportion was highest, which differed from the results 
of the PCA in which they aligned more closely with the 
Holstein and Ayrshire breeds (Fig.  4). Dairy breed pro-
portions were highest in crossbred animals from the 
Southern Highland sampling site (0.84, SD = 0.12) com-
pared to the other Tanzanian crossbreds, which was con-
sistent with the PCA.

We selected three SNP panels (NelEU, NdEU, and 
NelNdEU) based on the largest differences in allele fre-
quency between ancestral breeds. Our hypothesis was 
that SNPs that display the largest difference in allele fre-
quency between the indigenous ancestral breeds and the 
dairy breeds will provide the most accurate estimates 
of total dairy breed proportion. Total dairy breed pro-
portion was defined as the sum of breed proportions 
across Ayrshire, Guernsey, Jersey, Holstein, and Friesian 
breeds. Panels of SNPs that were selected by applying 
other methods were included to investigate the factors 
that determine accuracy of prediction and whether it was 
possible to develop SNP panels that could estimate both 
breed proportion and parentage assignment.

The various panels used in this study predicted dairy 
breed proportions in the Kenyan/Ugandan cross-
breds with an r2 of 0.725  to  0.963 (SE  =  0.004–0.012) 
for the smallest subsets of 100 SNPs, and 0.977–0.994 
(SE =  0.002–0.003) for the largest subsets of 1500 SNPs 
(Fig.  5a). As hypothesized, the NelNdEU SNP panel 
achieved the best results for all panel sizes, with an r2 
of 0.974 (SE =  0.004) with just 200 SNPs. The next best 
panel was the NdEU for all panel sizes except 100 SNPs, 
for which the DE algorithm performed slightly better 

(Fig.  5a). Surprisingly, the NelEU SNP panel performed 
worse compared to the other panels selected for larg-
est differences in allele frequency, with an r2 of 0.852 
(SE = 0.009) and 0.898 (SE = 0.007) for 100 and 200 SNPs, 
respectively, because as shown by Table 2 NelEU SNPs are 
efficient for distinguishing Bos taurus from Bos indicus 
but not for separating African from European Bos taurus. 

The performance of the panels selected with the DE 
algorithm did not improve much as the number of SNPs 
increased, and hence were outperformed by the NelNdEU 
and NdEU panels for more than 100 SNPs. The DE algorithm 
was designed to optimize a panel for the prediction of the 
735k ADMIXTURE estimates of dairy proportions. How-
ever, SNP-BLUP was used to estimate dairy proportions, 
rather than ADMIXTURE as for all other panels. In addition, 
when we predicted dairy proportions by using a SNP-BLUP 
approach independently of the DE algorithm (see next sec-
tion), the DE-based panels continued to perform less well 
than the NelNdEU and NdEU panels, which indicated that 
the DE algorithm failed to find the optimal solution with the 
number of iterations performed. Esquivelzeta-Rabell et  al. 
[28] used the DE algorithm to predict Korean Hanwoo pro-
portions in a Chinese Yeonbyun population and reported r2 
of 0.69 and 0.88 for 100 and 1000 SNPs, respectively. These 
coefficients of determination are lower than those obtained 
by using the same number of SNPs and the DE algorithm but 
the genetic differences between Yeonbyun and Hanwoo are 
much smaller than those between indigenous and European 
dairy breeds in our study.

Figure  5d shows the relationship between bias and 
accuracy for all methods of SNP selection and size of 

Fig. 5  Accuracy (r2) of dairy proportion estimates (a–c) and accuracy versus bias (d–f) for different panel sizes. d–f large symbols show average lin‑
ear bias across all panel sizes. Standard errors of accuracy ranged on average from 0.008 for 100 SNPs to 0.003 for 1500 SNPs (Kenya/Uganda), 0.015 
to 0.005 (Ethiopia), and 0.02 to 0.008 (Tanzania)
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SNP panels in each of the three populations. The aver-
age absolute linear bias was smallest for the NelNdEU 
panel (0.026, SD = 0.009) followed by the NdEU (0.035, 
SD = 0.01), and the DE panel (0.036, SD = 0.009).

When regressing 735k SNP predictions on either the 
200 or 400 SNP predictions (see Additional file  5: Fig-
ure S5, Additional file  6: Figure S6) for the best panel 
(NelNd:EU), the slope was greater than 1.0, with the 
highest bias obtained for low dairy breed proportions. 
ADMIXTURE forces estimates of breed proportions to 
be between 0 and 1, which might lead to an inherent bias 
at either end of the range of breed proportion estimates. 
To assess whether the linear bias stemmed intrinsically 
from this constraint on the ADMIXTURE estimates and 
whether a correction factor could be introduced, for the 
200 and 400 NelNdEU SNP panels, we truncated the 
range of dairy proportion estimates from the 735k-SNP 
panel to between 0.1 and 0.9 or between 0.2 and 0.8. 
Absolute biases were not much affected by truncation of 
the data; they increased slightly at high dairy breed pro-
portions and decreased slightly at low proportions (see 
Additional file 5: Figure S5, Additional file 6: Figure S6).

The estimates of dairy proportions were slightly 
more accurate and less biased for the Kenyan cross-
bred animals (r2 =  0.972, SE =  0.005; average absolute 
bias =  0.028 SD =  0.022) than for the Ugandan cross-
bred animals (r2 =  0.963, SE =  0.008; average absolute 
bias =  0.04, SD =  0.03). Kenyan crossbred animals are 
the result of crosses between European dairy breeds and 
Zebu whereas Ugandan crossbreds are crosses between 
European dairy breeds and Ankole and Nganda, which 
have much higher proportions of African Bos taurus 
ancestry than Zebu. This suggests that the bias observed 
for the crossbreds in these two countries is predomi-
nantly due to a tendency to over-predict the African Bos 
taurus proportion and under-predict the European Bos 
taurus proportion.

Validation of SNP panels in the Ethiopian and Tan-
zanian crossbred animals resulted in a similar ranking 
with the NelNdEU panel performing best for all panel 
sizes, and resulting in r2 of 0.966, 0.980, and 0.993 in 
Ethiopian crossbreds, and 0.958, 0.974, and 0.994 in Tan-
zanian crossbreds for 100, 200, and 1500 SNPs, respec-
tively (Fig. 5b, c). The worse performance was observed 
for the random panel closely followed by the MAF 
panel with r2 of 0.745 and 0.699 (SE = 0.022 and 0.026) 
in Ethiopian and Tanzanian crossbreds for 100 SNPs, 
respectively, compared to an r2 of 0.783 (SE = 0.012) in 
the Kenyan/Ugandan population. Average absolute bias 
was smallest for the NelNdEU panel in both datasets 
(0.024, SD =  0.003 for the Ethiopian dataset and 0.026, 
SD =  0.002 for the Tanzanian dataset), followed by the 
NdEU panel (0.033, SD =  0.009 for the Ethiopian data-
set and 0.041, SD = 0.009 for the Tanzanian dataset). In 
both countries, panels under-predicted dairy proportions 
except for some NelEU panel sizes in Tanzania (Fig. 5e, 
f ).

The full ISAG panel of 200 SNPs predicted dairy pro-
portions with r2 of 0.831 (SE = 0.009), 0.830 (SE = 0.018), 
and 0.768 (SE =  0.022) in the Kenyan/Ugandan, Ethio-
pian, and Tanzanian datasets. Average absolute bias of 
the ISAG panel was among the highest values for the 
200-SNP panels, i.e. 0.069, 0.067, and 0.076 in the Ken-
yan/Ugandan, Ethiopian, and Tanzanian datasets, respec-
tively. This poor performance is not unexpected since the 
ISAG panel was selected for parentage assignment, pre-
dominantly in Bos taurus populations. SNPs on the 50k-
SNP v2 Illumina chip predicted dairy proportions with r2 
of 0.9987 (SE = 0.0008), 0.9989 (SE = 0.001), and 0.9985 
(SE  =  0.002) in the Kenyan/Ugandan, Ethiopian, and 
Tanzanian datasets, respectively. Absolute bias of pre-
dicted dairy proportions was equal to 0.006, 0.005, and 
0.009 for the Kenyan/Ugandan, Ethiopian, and Tanzanian 
datasets, respectively.

Table 2  Accuracies (r2) of  individual breed proportions in crossbred dairy cattle (Kenya/Uganda) for 200 SNPs selected 
by different methods

Standard errors of breed-wise accuracies ranged from 0.017 to 0.02
a  Excluding dairy

Dairy Ayrshire Friesian Guernsey Holstein Jersey N’Dama Nelore Mean ± SDa

MAF 0.870 0.486 0.312 0.375 0.483 0.165 0.397 0.874 0.442 ± 0.22

NelEU 0.898 0.120 0.140 0.056 0.198 0.034 0.484 0.944 0.282 ± 0.33

NdEU 0.934 0.373 0.263 0.265 0.437 0.141 0.538 0.867 0.412 ± 0.24

NelNdEU 0.974 0.075 0.132 0.013 0.007 0.004 0.511 0.190 0.133 ± 0.18

Random 0.845 0.405 0.243 0.276 0.414 0.133 0.373 0.874 0.388 ± 0.24

DE 0.922 0.421 0.049 0.281 0.402 0.141 0.427 0.925 0.378 ± 0.28

ISAG 0.831 0.452 0.197 0.270 0.306 0.127 0.482 0.759 0.378 ± 0.21

Mean ± SD 0.896 ± 0.05 0.333 ± 0.17 0.197 ± 0.09 0.219 ± 0.13 0.321 ± 0.17 0.107 ± 0.06 0.459 ± 0.06 0.776 ± 0.27
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When predicting the proportions of each of the seven 
ancestral breeds based on the various 200-SNP panels 
(Table  2), average accuracies across ancestral breeds were 
highest for selection of SNPs based on MAF (r2 =  0.442, 
SE = 0.017) followed by the NdEU SNP selection (r2 = 0.412, 
SE =  0.017). The panels based on maximizing indigenous 
versus dairy allele frequencies including the Nelore breed 
(NelNdEU, NelEU) gave very poor predictions of individual 
dairy breed proportions. This is due to the selection method 
that preferentially selects alleles at extreme frequencies 
between Bos taurus and Bos indicus breeds and hence results 
in low variance between dairy breeds.

With subsets of 200 SNPs, individual breed propor-
tions were on average best predicted for the Nelore breed 
(r2 =  0.776, SE =  0.009) followed by the N’Dama breed 
(r2 =  0.459, SE =  0.017). Jersey breed proportions were 
poorly predicted with on average an r2 of 0.107 (SE = 0.021, 
Table 2). The accuracy of individual breed proportion pre-
dictions is strongly influenced by two factors: (1) breeds 
that exhibit little variation in breed proportions in the 
crossbred animals (such as Jersey) will have their propor-
tions predicted with lower r2 since the residual errors 
account for a higher proportion of the total variation accu-
racy; and (2) breeds that are most genetically distant from 
the others (such as the Nelore breed) are more likely to dis-
play allele frequencies that differ from those of other breeds 
with most methods used to select SNP panels.

The NelEU panel performed well for the prediction 
of Nelore proportion, with an r2 of 0.944 (SE =  0.005), 
but gave poorer predictions of total dairy proportion 
(r2 = 0.484, SE = 0.016) because of its poor prediction of 
N’Dama (African Bos taurus) versus European Bos tau-
rus proportions. Although this panel was not as good at 
predicting total dairy proportion in these African cross-
bred populations, it should perform better in populations 
in which the indigenous population is pure Bos indicus, 
as is the case in much of India.

Separating the crossbred animals according to their 
country of origin (Kenya vs. Uganda) improved the pre-
diction of Nelore proportion in the Kenyan crossbred 
animals and of breed proportion for Holstein, Jersey, and 
N’Dama in the Ugandan crossbred animals with most 
panels. Ayrshire and Guernsey predictions were less 
accurate with most panels in both Kenyan and Ugandan 
crossbred animals.

Regression and SNP‑BLUP
The regression method using all 735k SNPs predicted 
dairy proportions from a 735  k ADMIXTURE analysis 
with an r2 of 0.9914 (SE = 0.002) and an absolute bias of 
0.014 (SD  =  0.018). However, the selected SNP panels 
gave poor predictions when using the regression method 
(Fig. 6a). Using 50k SNPs to predict breed proportions in 
sheep, Dodds et al. [31] reported accuracies of r2 = 0.941. 
Frkonja et al. [34] used different prediction methods and 
compared the results to pedigree-based admixture esti-
mates. All methods resulted in fairly low r2 values (0.872–
0.953) with 40,000 SNPs, with a partial least square 
regression approach performing best. Frkonja et  al. 
[34] also reported no substantial loss in accuracy when 
the number of SNPs dropped to 4000 (r2 =  0.949), but 
observed a significant loss in accuracy when it dropped 
to 400 (r2 = 0.912). Our results show that the regression 
approach performs much worse than ADMIXTURE even 
with 1500 SNPs (Fig. 6a).

We tested the NelNdEU and NdEU panels to deter-
mine whether the use of true allele frequencies improved 
prediction of breed proportions compared to that of 
ADMIXTURE estimates, and found that prediction accu-
racy (r2) decreased substantially (Fig. 6b).

When we applied the SNP-BLUP approach with each 
of the SNP panels and using all the data from each of the 
three populations, estimates of dairy proportions were 
more accurate than those obtained by ADMIXTURE 

Fig. 6  Accuracy (r2) of dairy proportion estimates for different panel sizes using a regression approach. a ADMIXTURE allele frequencies (P-file). b 
Observed allele frequencies. Standard errors of accuracy ranged on average from 0.02 for 100 SNPs to 0.01 for 1500 SNPs
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except for the NdEU panel, and even much more than 
those obtained by the regression approach, as shown by 
the comparison of Fig. 7a–c with Fig. 5a–c. For example, 
in the Kenyan/Ugandan dataset (Fig. 7a), the NelNdEU 
panel achieved on average 0.008 higher r2 values and 
the MAF panel 0.026 higher r2 values with SNP-BLUP 
estimates compared to ADMIXTURE estimates. Esti-
mates obtained by using ADMIXTURE are unbiased, 
because estimates for each SNP panel are obtained inde-
pendently of the estimates using the 735k SNPs, against 
which they are tested. In contrast, the accuracies of 

SNP-BLUP estimates are subject to ascertainment bias 
that leads to overestimated accuracies. When the predic-
tion equations obtained with SNP-BLUP for the Kenyan/
Ugandan dataset were validated by applying them to the 
Ethiopian and Tanzanian datasets (Fig. 7d, e), accuracies 
of all panels were substantially lower and always higher 
with ADMIXTURE. A cross-validation within the Ken-
yan/Ugandan dataset resulted in similarly lower accura-
cies, which indicates that dairy proportions are generally 
overestimated due to ascertainment bias with the SNP-
BLUP approach.

Fig. 7  Accuracy (r2) and validation of dairy proportion estimates using a SNP-BLUP approach. a–c Discovery of SNP effects in three independent 
populations. d, e Validation of SNP effects estimated in the Kenyan/Ugandan dataset for two independent populations. Standard errors of accuracy 
ranged on average from 0.006 for 100 SNPs to 0.001 for 1500 SNPs in the Kenyan/Ugandan dataset
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To assess whether this ascertainment bias results from 
random sampling or population structure, we used the 
NelNdEU panels and split the Kenyan/Ugandan dataset 
randomly into two equally-sized subsets. The numbers of 
animals from Kenya and Uganda were relatively evenly dis-
tributed between the two subsets. Accuracies of the pre-
dictions of dairy proportions obtained with SNP-BLUP 
on the first half of the dataset were very similar to those 
obtained using the full dataset. When SNP-BLUP equa-
tions were validated on the second half of the dataset, 
accuracies dropped and biases increased substantially. 
Using the effects of SNPs that were predicted with the 
first half of the Kenyan/Ugandan dataset to predict dairy 
proportions in the second half of the dataset (within-
population validation) led to decreased accuracy [aver-
age reduction in r2 = −0.012, SD = 0.004; (see Additional 
file  7: Figure S7a)] and increased bias. When these pre-
diction equations were used on the Ethiopian and Tanza-
nian datasets, accuracies were lower (average r2 =  0.417, 
SE = 0.02 for the Ethiopian dataset and average r2 = 0.485, 
SE  =  0.019 for the Tanzanian dataset) (see Additional 
file 7: Figure S7b). The reduction in accuracy in the within-
population validation reflects ascertainment bias due to 
random sampling. However, reduction in accuracy was 
even larger in the cross-population validation, which indi-
cates that population structure has a stronger impact on 
ascertainment bias. Since the SNP-BLUP approach incor-
porates the allele frequencies of the fitted dataset, predic-
tions of dairy proportions will be less accurate and more 
biased if the validation dataset includes populations with 
different allele frequencies (population structure). On 
average, absolute differences in allele frequency were equal 
to 0.048 (SD =  0.039) and 0.031 (SD =  0.025) between 
Kenyan/Ugandan and Ethiopian, and Kenyan/Ugandan 
and Tanzanian datasets, respectively.

The poor performance of the estimates obtained with 
the panels that were optimized by using the DE algorithm 
indicates that either it did not properly search the param-
eter space to find the optimum panel, or that the number 
of iterations was insufficient to evolve to the optimum. 
Figure S8 (see Additional file  8: Figure S8) shows that 
accuracy continued to increase slowly after 10,000 itera-
tions of the DE algorithm. The curve was too flat to make 
any prediction about what the asymptotic accuracy might 
be if a much larger number of iterations was run. How-
ever, given the substantial drops in accuracy seen in the 
validation datasets, there is no reason to believe that the 
DE algorithm would eventually produce more accurate 
estimates after validation than ADMIXTURE estimates.

Parentage assignment
The separation value (sv) provides a measure of the dif-
ference in opH in true parent–offspring relationships and 

other forms of relationships and in unrelated individuals. 
A sv lower than 0 indicates that the panel cannot reliably 
separate parent–offspring status from other relationships. 
SNPs with a high MAF have the highest probability of 
having opH between two unrelated individuals within a 
population under Hardy–Weinberg equilibrium. Thus, 
panels of SNPs that were selected for a high MAF in the 
crossbred population should perform best in assigning 
parentage using opH criteria. Our hypothesis was con-
firmed since SNP panels based on MAF achieved the high-
est sv in the Kenyan/Ugandan, Ethiopian, and Tanzanian 
datasets (Fig. 8a–c). However, none of the 100-SNP pan-
els had a sv higher than 0. With 200 SNPs, only the panel 
of MAF-based SNPs had a positive sv in all three popula-
tions. As the number of SNPs in the panel increased, all 
methods used to select SNPs eventually achieved positive 
sv. Although the panel of MAF-based SNPs was based on 
allele frequencies in the Kenyan/Ugandan population, it 
performed well in all three crossbred populations.

The panel derived by the DE algorithm performed 
erratically and did not achieve positive sv in all three 
populations with less than 400 SNPs. Gondro et al. [27] 
reported positive sv for a 100-SNP panel derived by the 
DE algorithm in a Hanwoo cattle population. However, 
the Hanwoo cattle population was relatively small and all 
animals were part of parent–offspring pairs, which will 
tend to lead to higher sv than the much larger popula-
tion of largely unrelated animals in which we tested the 
DE algorithm. For a larger crossbred sheep population, at 
least 400 SNPs were required to achieve a positive sv in 
both the discovery and validation dataset [27], which is 
consistent with our results.

Since sv is an integer variable it can be difficult for a DE 
algorithm to evolve to a higher sv once the panels of SNPs 
being evaluated by the algorithm all achieve the same sv 
and this may limit the ability of DE to find an optimum 
solution. The DE algorithm might perform better if it is 
initiated with prior knowledge on suitable SNP panels 
(e.g. panels of MAF-based SNPs, or SNP spacing restric-
tions) but it would still likely generate spuriously high sv 
values due to ascertainment bias.

The ISAG panel and the 50k-SNP chip yielded sv of 1 
and 170, respectively, in the Kenyan/Ugandan dataset, 3 
and 944, respectively, in the Ethiopian dataset, and 5 and 
796, respectively, in the Tanzanian dataset.

The average sv of the randomly selected panels indi-
cated that at least 300 SNPs are required to achieve a 
positive sv, which is in concordance with the findings 
of Strucken et al. [23], who reported that 340 randomly 
selected SNPs were needed for a positive sv in a compos-
ite cattle population.

We investigated whether the accuracy of the MAF-based 
panel was affected by breed composition. When using all 
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735k SNPs, dairy proportions of the animals in parent–off-
spring pairs ranged from 11 to 99%. Average opH counts 
for parent–offspring pairs with dairy proportions higher 
than 0.5 and those with dairy proportions lower than 0.5 
were equal to 293 (SD = 93) and 420 (SD = 84), respec-
tively. Although statistically highly significant (P < 0.0001), 
this difference is small since only a proportion of SNPs 
were tested with the SNP panels. MAF for animals with 
dairy proportions lower than 0.5 versus higher than 0.5 
were virtually identical (0.2738 vs. 0.2734), and when using 
the MAF-based panel with either 200 or 400 SNPs, there 
was no significant correlation between opH and dairy 

proportion. Therefore, parentage assignment of the MAF 
panel is not expected to be affected by dairy proportion.

Applications in the field
The NelNdEU panel was superior for the prediction of 
dairy proportions in all three populations: Kenyan/Ugan-
dan, Ethiopian and Tanzanian. This panel was chosen 
based on allele frequencies in reference samples of Nelore, 
N’Dama, and Bos taurus dairy breeds, and no informa-
tion from crossbred animals was used to select the SNPs. 
Thus, there is no ascertainment bias in the estimated 
accuracies with the NelNdEU panels using ADMIXTURE 

Fig. 8  Parentage assignment for different panel sizes in three independent crossbred cattle populations (a) Kenya/Uganda, (b) Ethiopia, (c) Tanza‑
nia

Fig. 9  Accuracy (r2) of dairy proportion estimates and parentage assignment (sv) for combined panels. The X-axis shows the total number of SNPs 
in the panel and in brackets the percentage of the best SNPs chosen from each 200-SNP panel (NelNdEU:MAF). Symbols for MAF and NelNdEU 
show r2 and separation value (sv) for panels in separate evaluations
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in our datasets. The 200-SNP panel provides a good com-
promise between a small number of SNPs while achiev-
ing high accuracy and the lowest absolute bias (r2 = 0.974 
SE =  0.004; absolute bias =  0.031 using ADMIXTURE). 
In practice, not all of the 200 SNPs are available due to 
genotyping errors or to failure of some SNPs to work on 
a given assay platform. Therefore, we randomly selected 
75 to 95% of the SNPs by simulating a genotyping failure 
of 5  to  25%. Accuracies of predicted dairy proportions 
remained high with an r2 of 0.965 and 0.975 when 75 and 
95% of the genotypes were available, respectively. Thus, 
the NelNdEU 200-SNP panel should perform well in the 
field for the prediction of dairy proportions.

The MAF-based panel performed best for parent-
age assignment and achieved a positive sv of 1 with 200 
SNPs. Similarly, we calculated the sv assuming a random 
genotyping failure of 5 to 25%. The sv was positive with 1 
opH between true and false parentages. Thus, the MAF-
based 200-SNP panel should perform well in the field for 
parentage assignment.

The NelNdEU panel performed poorly for parentage 
assignment whereas the MAF-based panel performed 
poorly for the prediction of breed composition. We 
explored the possibility of having a single, combined 
panel that performed well for both prediction of breed 
composition and parentage assignment. We tested 
panel sizes from 100 to 400 SNPs, and different com-
binations of SNPs from the NelNdEU and MAF-based 
panels. In each case, the best SNPs for each selection 
criterion (i.e. large allele frequency difference between 
NelNd and EU or highest MAF) were chosen from each 
panel. Using all 200 SNPs from each panel (i.e. 400 
SNPs) resulted in an r2 of 0.978 (SE =  0.003; absolute 
bias  =  0.027) for the prediction of breed proportion 
and a sv of −1. These results are slightly less good than 
those achieved by the NelNDEU and MAF-based 400-
SNP panels (Fig. 9).

The combined panels performed relatively well for 
prediction of breed proportions, especially if more than 
50% of SNPs were chosen from the NelNdEU panel. 
The combined panels did not achieve a positive sv, even 
if the majority of SNPs were chosen from the MAF 
panel. This is due to  the fact that the 200-SNP panel 
chosen for high MAF is not performing well enough, 
i.e. the positive sv is not sufficiently high, to counteract 
the negative sv value of the NelNdEU panel. The 300 or 
400 SNPs from the NelNdEU and MAF panels resulted 
in positive sv values. However, combining these to cre-
ate a panel of 600 or 800 SNPs means doubling the 
number of SNPs. Therefore, we recommend using the 
200 SNPs of the NelNdEU panel for prediction of breed 
proportions or the 200 SNPs of the MAF panel for par-
entage assignment.

The 1500 SNPs in the NelNdEU and MAF panels are 
provided in rank order of selection in Table S1 [see Addi-
tional file  9: Table S1], from which all the panels with 
smaller numbers of SNPs described in this paper can be 
reconstructed.

Conclusions
For East African crossbred dairy cattle populations, it is 
possible to create SNP panels with as few as 200 SNPs 
that will result in accurate estimates of dairy propor-
tions and panels of similar size but with different SNPs 
to assign parentage accurately. A single combined panel 
of 400 SNPs achieved sufficient accuracies for breed pro-
portion prediction but was not able to assign parentages 
correctly. Results of the 200-SNP panels chosen indepen-
dently for breed proportion prediction and parentage 
assignment indicate that these panels should be reliable 
for animals that are crossbred to a wide range of African 
indigenous breeds. However, they are not expected to 
perform well outside of Africa where indigenous breeds 
do not originate from ancient crosses between Afri-
can Bos taurus and Bos indicus populations. Alternative 
panels based on SNPs that differentiate Bos indicus from 
European Bos taurus should perform well in countries 
where the indigenous base population is Bos indicus, 
such as in south Asia, but this needs to be tested.
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