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ABSTRACT

Gene expression profiling has gradually become a
routine procedure for disease diagnosis and classi-
fication. In the past decade, many computational
methods have been proposed, resulting in great im-
provements on various levels, including feature se-
lection and algorithms for classification and
clustering. In this study, we present iPcc, a novel
method from the feature extraction perspective to
further propel gene expression profiling techno-
logies from bench to bedside. We define ‘correlation
feature space’ for samples based on the gene
expression profiles by iterative employment of
Pearson’s correlation coefficient. Numerical experi-
ments on both simulated and real gene expression
data sets demonstrate that iPcc can greatly high-
light the latent patterns underlying noisy gene
expression data and thus greatly improve the
robustness and accuracy of the algorithms currently
available for disease diagnosis and classification
based on gene expression profiles.

INTRODUCTION

With the rapid development of high-throughput
technologies, gene expression profiling based on micro-
arrays or next-generation sequencing techniques have been
widely applied in clinical research (1–9). The big advantage
of simultaneously measuring the expression levels of thou-
sands of genes facilitates informative and accurate disease
diagnosis and classification. However, it also incorporates
many irrelevant genes, producing a feature vector with ex-
tremely high dimensionality (10,11). The situation is much
exacerbated by sample limitations for algorithmic training,
leading to the curse of dimensionality problems.

To surmount the difficulties caused by the curse of
dimensionality problem, various approaches have been
proposed and developed on different levels of the experi-
mental and analytical protocol. On the experimental level,
increasing the number of samples involved in the studies
to enhance the statistical power and measuring the expres-
sion levels of a set of selected genes involved in a certain
signaling pathway are two possible solutions. However,
increasing the number of samples is generally difficult
because of eligible sample limitations and the huge cost
of high-throughput measurements. Furthermore, meas-
uring genes involved in only selected pathways can intro-
duce artificial biases. In fact, the rapid development of
high-throughput technologies produces more and more
information about samples, allowing unbiased investiga-
tion of the molecular truth of various biomedical phe-
nomena. For example, RNA-Seq (deep sequencing the
transcriptomes of samples) can detect expression levels
of novel genes that are not annotated in the reference
genomes, compared with the traditional gene expression
profiling microarrays (8).
On the analytical level, adapting and developing algo-

rithms capable of handling high-dimension data sets, com-
putationally selecting a small set of relevant genes from
the huge gene list for subsequent diagnosis and prognosis
and extracting a small set of virtual genes that are certain
functions of the real genes, are representative computa-
tional schemes to bypass the curse of dimensionality. In
view of machine learning, these three schemes correspond
to developing new algorithms of clustering and classifica-
tion, feature selection and feature extraction. Until now,
many algorithms suitable for dealing with high-dimension
data sets [e.g. support vector machine (12–14), random
forest (15–17), naı̈ve Bayes classifier (18–20) and
k-means (21–24)] have been applied to disease sample clas-
sification and clustering based on gene expression profiles.
Various feature selection methods implemented by math-
ematical programming (25), Bayesian inference (26,27),
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ant colony algorithm (28) and mutual information (29,30)
have been proposed and developed, facilitating accurate
identification of relevant disease genes. The concept of
virtual genes or meta-genes based on principle component
analysis and nonnegative matrix factorization was
introduced from the feature extraction perspective to
reduce the number of dimensions of the data sets in the
meta-gene space (31–34). These methods, based on new
clustering/classification algorithms, gene selection and
virtual genes, greatly improve the accuracy of disease diag-
nosis and prognosis on gene expression measurement but
neglect an important feature space formed by sample
correlations.
In this study, we propose a novel method to negotiate

the dimensionality problem in clinical gene expression
studies. Similar to the available feature extraction
methods, we define a series of novel features for samples
based on the gene expression profiles by iterative use of
Pearson’s correlation coefficient. These features form a
feature space, referred to as ‘correlation feature space’.
We demonstrate that the latent structures between
samples can be easily highlighted based on the newly
defined features, even though many irrelevant genes are
included in the original data. Furthermore, we illustrate
that the newly defined features can greatly improve the
accuracy of the currently available clustering and classifi-
cation algorithms.
In current biomedical studies, two typical strategies are

widely used to analyze gene expression data for clinical
purposes: class discovery and class prediction (5). Class
discovery tries to discover new disease subtypes based
on gene expression patterns, while class prediction tends
to assign particular samples to well-defined disease classes.
Both strategies have significant potential to improve
cancer diagnosis, prognosis and therapies. On real
prostate cancer, leukemia and psoriasis data sets, we dem-
onstrate that the newly defined features greatly leverage
the power of the current class discovery and class predic-
tion methods. Therefore, we propose a novel type of noise-
resistant features based on iterative Pearson correlation
coefficients, which is substantially helpful to boost gene
expression profiles from bench to bedside.

MATERIALS AND METHODS

Sample correlation feature space defined by gene
expression profiles

Given a gene expression data set Xm�n, in which the ex-
pression of n genes is measured for m samples and xik
denotes the expression level of gene k in sample i, we
first calculate f

ð1Þ
ij , the correlation of the gene expression

profiles of samples i and j, by the Pearson correlation co-
efficient (35):

f
ð1Þ
ij ¼

Pn
k¼1

ðxik � xi�Þðxjk � xj�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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2
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where xik and xi� are the expression level of gene k and the
average gene expression level of sample i, respectively. The
variables xjk and xj� are the expression level of gene k and
the average gene expression level of sample j, respectively.
Finally, we obtain a symmetric matrix Fð1Þm�m in which f

ð1Þ
ij

is its element. Function f
ð1Þ
ij measures how the gene expres-

sion profiles of samples i and j correlate to each other.
However, here we interpret it as a feature of sample i
that is scored by sample j. Based on this interpretation,
Fð1Þm�m becomes a matrix of m samples and m features.
Thereafter, we can define f

ð2Þ
ij as follows:
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We name f
ð1Þ
ij , j 2 f1, � � � ,mg as the first-order correlation

features of sample i and f
ð2Þ
ij , j 2 f1, � � � ,mg as the second-

order correlation features of sample i. Generally, we can
define the t-order correlation features of sample i as follows:
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All the features f
ð1Þ
ij , f

ð2Þ
ij , . . . , f

ðtÞ
ij , . . . , form a correlation

feature space.
Because the correlation features are defined based on

Pearson correlation coefficients, we named the computa-
tional method iterative Pearson correlation coefficients
(iPcc). It can be seen that correlation features have
several obvious properties: (i) f tii ¼ 1 for any i and t; (ii)
f tij ¼ f tji for any i, j and t; and (iii) jf tijj � 1 for any i, j and t.
Below we compose three toy gene expression data sets of
six genes (for example) to demonstrate numerically other
properties of sample correlation features in an
oversimplified setting.

In toy Data set 1, three samples are composed in which
samples 1 and 2 (s1 and s2) represent two different classes,
whereas sample 3 (s3) is more similar to sample 1
(Figure 1). By calculating the first-order correlation
features of these three samples, we can observe that s3
has a correlation feature vector of (0.3, �0.3, 1) that is
similar to that of s1, which is (1, �1, 0.3). By calculating
the second-order correlation features, the feature vector of
s3 becomes (0.7, �0.7, 1) while the feature vector of s1 is
(1, �1, 0.7). When the fifth-order or higher correlation
features are calculated, the feature vectors of s3 and s1
become the same, whereas the feature vectors of s3 and
s2 become opposite. In other words, the similarity of s3
and s1 measured by Pearson correlation coefficients based
on their features converges from 0.3 to 1, while the simi-
larity of s3 and s2 converges from �0.3 to �1. Thus, in
this oversimplified setting, jf t+1

ij j � jf
t
ijj holds true.

In toy Data set 1, the initial feature profile of s3 is closer
to that of s1, and the high-order correlation feature profile
of s3 converges to the same as that of s1, suggesting that
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correlation features can enlarge weak pattern underlying the
raw data set. In toy Data set 2, we demonstrate that correl-
ation features can also preserve independent relationships
among samples. We compose an initial feature profile for s3
that has equal distance to those of s1 and s2. The first-order
correlation feature vector of s3 is (0, 0, 1), which is vertical
to both of the feature vectors of s1 and s2. The second-order
or higher correlation feature vectors of s3 are the same as
the first-order correlation feature vector of s3, suggesting
that the independence of s3 from s1 and s2 is conserved
during the iterative correlation feature extraction.

In toy Data set 3, we conceive two different classes of
unbalanced class sizes (s1 for Class 1, s2 and s3 for Class
2). We further conceive s4 that has equal distance from s1, s2
and s3. The first-order correlation feature vector of s4 is (0, 0,
0, 1), suggesting that s4 forms an independent class from s1,
s2 and s3. However, the second-order correlation feature
vector of s4 indicates weak similarity to that of s1. The
higher-order correlation feature vectors of s4 highlight the
similarity of s4 to s1 until their Pearson correlation coeffi-
cient converges to 1. Thus, correlation features not only can
enlarge the weak patterns underlying the raw data set and
preserve the balanced independent relationships, but also can
highlight those patterns hidden in the higher feature space.

Simulated and real gene expression data sets

We evaluated our method on both simulated and real gene
expression data sets. First, we simulated a series of

artificial gene expression data sets to show the properties
and performance of the correlation features against the
magnitude of uncertainty of gene expression measure-
ments and the ratio of irrelevant genes to relevant genes.
We designed three different sample classes. For each
sample class, we generated two relevant genes with expres-
sion levels randomly sampled from a normal distribution
with mean 1 and given a standard deviation � from 0.1 to
0.5. We simulated 0-, 10-, 50- and 100-fold irrelevant genes
according to a normal distribution with mean 0 and the
same standard deviation as those six (2� 3) relevant genes
and added into the data sets. For each simulated data set,
we applied our method and demonstrated the sample re-
lationship by visualizing the sample similarity matrices in
Figure 1. Clustering and classification algorithms were
used to show the benefits produced by correlation
features. We also evaluated iPcc on completely random
data sets. We simulated three types of completely
random data sets of 150 genes and 150 samples by
sampling from the standard normal distribution, the
uniform distribution on the interval [0, 1] and a discrete
uniform distribution on {�1, 0, 1}. These completely
random data sets provide negative examples to demon-
strate the behavior of iPcc in situations no relationships
exist.
To evaluate the advantage of correlation features to

real-world applications, we examined the clustering and
classification performance of a series of widely used
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Figure 1. Three toy examples demonstrate correlation features generated by iPcc. In the top line, three samples are depicted by six virtual genes in
which s1 and s2 have distinct gene expression profiles, and s3 has a gene expression profile similar to that of s1. Based on the original features (t=0),
the first- (t=1), second- (t=2), third- (t=3), fourth- (t=4) and fifth-order (t=5) correlation features were constructed by iPcc. The fifth-order
correlation features suggest that s3 belongs to the s1 class. In the middle line, s1 and s2 are the same as those in the top line, whereas s3 is similar to
neither s1 nor s2. Those constructed correlation features suggest that s3 is similar to neither s1 nor s2 even with higher orders. In the bottom line, s1
and s2 are still the same as in the top and middle lines, s3 is the same as s2, and s4 is the same as s3 in the middle line. Based on the first-order
correlation features, s4 is found to be similar to neither s1 nor s2 and s3. However, on the second-order correlation features, s4 is found to be weakly
similar to s1. Increasing the order to the fifth order, s4 is found to have the same fifth-order correlation features as s1, suggesting that iPcc can reveal
sample similarity hiding in high-order correlation features.
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algorithms on three real gene expression data sets. The
first real gene expression data set was the gene expression
data set of leukemia (5) in which 25 acute myeloid
leukemia (AML) samples, 38 B-cell acute lymphoblastic
leukemia (ALL) samples and 9 T-cell ALL samples were
profiled genome-wide by gene expression microarrays.
Among the 72 samples, 7129 probes were available.
After removing probes with missing values, three prepro-
cessing steps, including flooring/ceiling, filtering and
log10-transformation as described in (36), were applied
to select informative probes, resulting in 3571 informative
probes. Thus, it is a typical gene expression data set with
the curse of dimensionality.
The second data set was a prostate cancer gene expres-

sion data set (37) downloaded from the NCBI GEO
database (38) with accession number GDS3289, which
includes 104 samples and 9483 genes. Among the 104
samples, there are six types of samples: 22 normal
samples from benign epithelial cells, 5 prostate cancer
samples with atrophic lesions, 20 metastatic prostate
cancer samples, 32 localized prostate cancers, 13
prostate cancer samples with prostatic intraepithelial neo-
plasia and 12 normal samples from benign stromal cells.
Accurately revealing sample relationships by either clus-
tering or classification algorithms from the large number
of gene expression profiles is important for clinical diag-
nosis and even therapeutics.
The third data set contains two series of gene expression

profiles of normal and psoriasis samples, downloaded
from the NCBI database with accession numbers
GSE13355 and GSE14905 (39,40). There are 180
samples in GSE13355 (122 normal samples and 58 psor-
iasis samples) and 82 samples in GSE14905 (49 normal
samples and 33 psoriasis samples). In total 54 676 probes
were applied to measure the expression levels of human
genes. Because the two series of gene expression profiling
experiments were conducted in different laboratories,
batch effects exist. We used this data set to demonstrate
how correlation features reveal the existence of batch
effects and how batch effects are removed.

Computational methods for disease class discovery and
prediction used in this study

Besides the direct application of iPcc to the gene expres-
sion data sets to reveal the underlying patterns between
samples, we also illustrate the leverage impact of iPcc on
disease class discovery and prediction. For each data set,
we used k-means to implement disease class discovery.
k-means is a classic clustering algorithm that partition n
samples into k clusters in which each sample belongs to
the cluster with the nearest mean (24,41). k-means has
been applied widely to gene expression data analysis,
and various variants have been proposed. Because the
computation of k-means is NP-hard, efficient heuristic al-
gorithms are commonly used and generate local optima.
Due to the curse of dimensionality caused by the high
number of dimensions in gene expression data sets,
k-means can give out different local optima during differ-
ent runs in general. We demonstrate that iPcc can circum-
vent the curse of dimensionality and greatly enhance the

power and robustness of k-means on gene expression data
sets. This feature extraction method can also greatly
improve the performance of supervised algorithms for
disease class prediction. We take the naı̈ve Bayes classifier
(41) as an example to illustrate how iPcc boosts the
accuracy of disease class prediction based on gene expres-
sion profiling. Finally, we show the great power of iPcc to
remove batch effects in gene expression analysis.

RESULTS

iPcc highlights latent structures between samples with
noisy simulated gene expression profiles

We first tested the performance of iPcc on the simulated
data sets. For the first simulated data set, which has no
irrelevant genes, we observed that iPcc can reflect the true
sample relationship faithfully with any order of correl-
ation features, the same as the performance of the
original features (Figure 2). After adding 10-fold noisy
genes (the second simulated data set), we noted that the
sample relationship revealed by the original features
became more and more obscure when increasing the
standard deviation �. However, iPcc highlighted the
latent sample relationship through interrogating the cor-
relation features. When � was 0.1, 0.2 and 0.3, iPcc per-
fectly unraveled the predefined sample relationship. As the
order of correlation features increased, the patterns
between samples became clearer and clearer (Figure 2).
When � was 0.4 or 0.5, there was no obvious pattern to
be observed based on the original features. However, as
the order of correlation features increased, the patterns
underlying those samples were highlighted (Figure 2),
although the highlighted patterns deviated a bit from the
predefined sample similarity structure. This deviation was
caused by the big �, which redefined the sample similarity
structure.

The potential of iPcc to highlight latent sample relation-
ships beneath the high-dimension gene expression data
was further demonstrated by increasing the number of
noisy genes. In the third simulated data set, 50-fold
noisy genes were added. The original features only
revealed weak similarity between samples from the same
predefined class at �=0.1 and 0.2. When �=0.3, 0.4 or
0.5, the predefined sample classes could not be reflected by
the original features at all (Figure 2). However, as the
order of correlation features increased, the sample rela-
tionships at �=0.1 and �=0.2 were enlarged, and the
sample relationship at �=0.3 was unraveled almost per-
fectly. Although the predefined sample structure was not
precisely reproduced at �=0.4 or 0.5, it was dug out from
the vagueness.

When the number of noisy genes was 100-fold the
number of informative genes (the fourth simulated data
set), the original features could only reveal weak correl-
ations between samples from the same classes at �=0.1,
and the sample patterns were blurred at �=0.2, 0.3, 0.4
and 0.5. When �=0.3, 0.4 or 0.5, there were no obvious
similar samples observed (Figure 2). However, iPcc
reproduced the sample relationship almost completely at
�=0.1, 0.2 and 0.3 and unraveled the underlying sample
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patterns at �=0.4 and 0.5 with a slight deviation from the
predefined sample classes.

iPcc improves the accuracy of clustering and classification
algorithms on noisy simulated gene expression profiles

We tested the clustering and classification algorithms
k-means and the naı̈ve Bayes classifier on the simulated
data sets. For all four simulation data sets with 0-, 10-, 50-
and 100-fold noisy genes, k-means generated more
accurate clustering results (average accuracy in 1000
runs) in general based on the correlation features than
those based on the original features (Figure 3). When
�=0.1, the average accuracy of k-means on the original

four simulated data sets was �93%, whereas the highest
accuracy of k-means on the correlation features of the four
data sets reached �97%. When � increased, the trends still
existed and the accuracy increment could even reach 12%
(100-fold noisy genes).
We tested the performance of the naı̈ve Bayes classifier

by leave-one-out cross-validation evaluations on the four
simulated data sets. The naı̈ve Bayes classifier generated
more accurate classification results on the correlation
features (with order � 2) than those of the original
features. When �=0.1, 0.2 or 0.3, the prediction
accuracy approached 1 on both the original features and
correlation features for all four simulated data sets. When
�=0.4 or 0.5, the prediction accuracy increased from 86
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Figure 2. iPcc highlights patterns embedded in simulated samples with no, 10-, 50- and 100-fold noisy genes. Three sample classes were simulated, in
which samples 1–50 belong to one class, samples 51–100 belong to another class and samples 101–150 belong to the third class. N/I denoted the ratio
of the number of noisy genes to the number of informative genes. Sigma is the standard deviation of gene expression during simulation. ‘t’ is the
order of correlation features.
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to 90% when 10-fold noisy genes were added, from 88 to
90% when 50-fold noisy genes were added and from 71 to
80% when 100-fold noisy genes were added.
The performance of iPcc on the completely random

data sets suggested that the clustering and classification
accuracy based on those correlation features generated
by iPcc was similar to that on the original features. For
each type of statistical distributions, we generated 1000
completely random data sets. For each data set, we
calculated the clustering (by k-means) and classification
(by the naı̈ve Bayes classifier) accuracy on both the
original features and the correlation features. We
applied the Student’s t-test to those accuracy values and
found that no significant differences were observed
between the original features and the correlation features
for both clustering and classification.

iPcc leverages the power of algorithms for disease class
discovery and prediction on a real leukemia data set with
two classes

We further tested the performance of iPcc on real gene
expression data sets for three different types of diseases:
leukemia, prostate cancer and psoriasis. First, we
evaluated the sample relationship reflected in the whole
gene expression profiles of the leukemia data set (3571
probes in total after preprocessing) by iPcc. The sample
similarity matrix revealed by the original 3571 features
weakly suggest the existence of two big groups: the
AML group (samples 1–24) and the ALL group
(samples 25–72), in which sample 25 was wrongly

indicated and is in fact an AML sample (Figure 4). The
ALL group was further suggested weakly to be composed
of two small subgroups: the B-cell ALL group (samples
25–63) and the T-cell ALL group (samples 64–72). The
average intra-class sample similarity (AML–AML and
ALL–ALL similarities) was 0.7262, while the average
inter-class sample similarity (AML–ALL similarities)
was 0.6572.

However, the sample similarity matrix constructed
based on the first-order correlation features by iPcc
strongly indicated the existence of the AML and ALL
groups (Figure 4). In the sample similarity matrix con-
structed of the original features, the difference between
the average intra- and inter-class similarities was 0.0690.
However, this value in the similarity matrix constructed by
iPcc on the first-order correlation features became 0.5226,
with an average intra-class similarity of 0.4274 and an
average inter-class similarity of �0.0952. By increasing
the order of the correlation features (Figure 4), iPcc
further highlighted the sample similarity from the same
disease class and enlarges the sample distinctiveness
from different disease classes. When the order of the cor-
relation features was five, the average intra-class sample
similarity was 0.8385 and the average inter-class sample
similarity was �0.8413. The difference between the intra-
and inter-class sample similarities approached 2.

The great power of iPcc was further demonstrated by its
big leverage effect on the accuracy and robustness of clus-
tering algorithms, e.g. k-means. We ran k-means (imple-
mented in Matlab R2011b) 1000 times on the original
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features to cluster the samples into two groups. Compared
with the true disease classes, we found that 357 runs
produced accuracy of <60%, 70 runs produced accuracy
of between 60 and 90% and 573 runs produced accuracy
of >90%. However, 1000 runs of k-means on the first-
order correlation features constructed by iPcc produced
accuracy of >90% (Figure 5). Increasing the order of
the correlation features suggested that the accuracy of
k-means stabilized �96%.

Besides the clustering algorithm, iPcc also enhanced the
classification algorithms, e.g. the naı̈ve Bayes classifier. We
evaluated the prediction accuracy of the naı̈ve Bayes clas-
sifier on the original features by the leave-one-out cross-
evaluation, which yielded 80% accuracy. The accuracy
increased to 96% quickly on the first-order correlation
features. On the second-order correlation features, the
accuracy even approached 97%. Increasing the order
further, the accuracy stabilized at 96% (Figure 6).

iPcc improves the performance of algorithms for disease
class discovery and prediction on real prostate cancer
data set with multiple classes

Besides the good performance of iPcc on two-class situ-
ations, its great power on multi-class gene expression data
sets was also demonstrated. We extracted 22 normal
samples, 20 metastatic prostate cancer samples and 32
localized prostate cancer samples from the whole prostate
cancer data set, selected the top 1000 informative genes by
F-test and constructed a three-class gene expression data set.
We constructed the sample similarity matrices based on the
original features and the first-, second-, third-, fourth- and
fifth-order correlation features (Figure 7). We found that
the three-class pattern of samples was highlighted with the
order of the correlation features increasing. The difference
between the average intra- and inter-class sample similarities
on the original features was 0.4028 (intra: 0.2890, inter:

�0.1138). However, the difference between the first-order
correlation features was 0.8518 (intra: 0.5600, inter:
�0.2918). The difference on the second-order correlation
features was 0.9962 (intra: 0.6520, inter: �0.3442). The dif-
ference approached the maximum on the third-order correl-
ation features (1.006, with intra: 0.6592 and inter: �0.3465).
Increasing the order further, the difference decreased a bit
because the normal samples and the metastatic prostate
cancer samples began to show similar correlation features,
i.e. three classes begin to converge to two classes.
Furthermore, we examined the impact of iPcc on the

performance of k-means clustering. We ran k-means
1000 times on the original features, and found that 105
runs generated results with accuracy of <70%. However,
all 1000 runs on the first-order correlation features
generated results with accuracy of >90%. Runs of 998
and 1000 produced accuracy of >90% on the second-
and third-order correlation features, respectively. On the
fourth- and fifth-order correlation features, the accuracy
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original, first-, second-, third-, fourth- and fifth-order correlation
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of k-means oscillated between 60 and 95% because the
three classes began to converge into two classes. The
leave-one-out accuracy of the naı̈ve Bayes classifier on
the original features was 93%, and the accuracy values
on the first-, second-, third-, fourth- and fifth-order cor-
relation features were 93, 90, 90, 90 and 90%, respectively.
In fact, the performance of iPcc in multi-class situations

was also demonstrated in the leukemia data set in which
the ALL samples can be further divided into B-cell ALLs
and T-cell ALLs. The difference between the average
intra- (AML–AML, B-cell-ALL–B-cell-ALL and T-cell-
ALL–T-cell-ALL) and inter-class (AML–B-cell-ALL,
AML–T-cell-ALL and B-cell-ALL–T-cell-ALL) sample
similarity values based on the original features was
0.0702. However, the differences on the first-, second-,
third-, fourth- and fifth-order correlation features were
0.5002, 0.9755, 1.2217, 1.3316 and 1.3567, respectively.
In 1000 k-means runs on the original features, 130 runs
produced accuracy of >80%, while 247, 114, 276 and
1000 runs produced accuracy of >80% on the first-,
second-, third- and fourth-order correlation features. On
the fifth-order correlations features, k-means generated
two clusters although k was set as three. This is because
B-cell ALLs and T-cell ALLs were merged into one cluster
in the high-order correlation features. The prediction
accuracy of the naı̈ve Bayes classifier on the original
features, the first-, second-, third-, fourth- and fifth-
order correlation features for three classes was 79, 96,
96, 83, 82 and 85%, respectively.

iPcc provides a convenient means to deal with batch
effects in the real psoriasis data sets

We applied iPcc on the psoriasis data sets to show its
performance in situations with batch effects. First, we
applied iPcc to examine the sample relationships for

GSE13355 and GSE14905 individually. The results sug-
gested that those psoriasis samples were weakly
discriminated from the normal samples based on the
whole 54 676 original features for both of the two data
sets. On greatly reducing the size of the correlation
features, the distinctiveness between psoriasis from
normal samples was further underlined and confirmed.
Clustering by k-means on both the original and correl-
ation features of the GSE13355 data set obtained 99%
accuracy. For GSE14905, the clustering accuracy by
k-means was 98% on the original, the first-, second-,
fourth- and fifth-order correlation features and 99% on
the third-order correlation features. The leave-one-out
prediction accuracy of the naı̈ve Bayes classifier for the
GSE13355 data set was 96% on the original features,
99% on the first- and second-order correlation features
and 98% on the third-, fourth- and fifth-order correlation
features. The leave-one-out prediction accuracy of the
naı̈ve Bayes classifier for the GSE14905 data set was
96% on the original, first- and second-order correlation
features, and 98% on the third-, fourth- and fifth-order
correlation features.

However, we observed that the original features sug-
gested that the sample relationship of the combined data
set (concatenating after gene-wise normalization) was
dominated by three clusters: the normal samples in
GSE13355, the psoriasis samples in GSE13355 and all
the samples (both normal and psoriasis) in GSE14905.
Correlation features constructed by iPcc confirmed the
observation based on the original features, and further
suggested that the psoriasis samples in GSE13355 were
more similar to those samples in GSE14905 (Figure 8).
We clustered the samples by k-means on the original
features and performed 1000 runs. Five runs obtained
accuracy of >90%. One hundred forty-seven runs
obtained accuracy of <60%, and 848 runs produced
accuracy of between 80 and 90%. On the first-correlation
features, the clustering accuracy by k-means stabilized at
59%. On the second-, third-, fourth- and fifth-order cor-
relation features, the clustering accuracy by k-means
stabilized at 81%. The leave-one-out prediction accuracy
by the naı̈ve Bayes classifier on the original features was
80%, similar to the clustering accuracy. However, on the
first-order correlation features, the leave-one-out predic-
tion accuracy increased to 97%. On the second-order cor-
relation features, the accuracy further increased to 98%.
On the third-, fourth- and fifth-order correlation features,
the accuracy decreased to 96, 91 and 91%, respectively.

Although the gene-wise normalization step tried to
remove batch effects, the above observation suggested
that batch effects still influenced the global sample rela-
tionship. Here, we show how iPcc removes the batch
effects based on correlation features. Because we already
knew the experiments were done in two different
laboratories, we constructed a sample similarity matrix S
by setting sij ¼ 1 if the experiments of sample i and j were
done in the same laboratory, otherwise setting sij ¼ 0 if the
experiments of sample i and j were done in different
laboratories. We generated the first-order correlation
features C1 and updated C1 by C1 � �� S, where
� ¼ 0:3 in the real computation. Based on the updated
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Figure 7. Heatmaps of the prostate cancer sample relationships on the
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ation features. Samples 1–20 are normal samples. Samples 21–42 are
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C1, we further constructed the second-, third-, fourth-,
fifth-, sixth- and seventh-order correlation features ac-
cording to iPcc. The sample relationship revealed by the
batch-effect-removed features highlighted the similarity
among the normal samples and among those psoriasis
samples from different laboratories (Figure 9). One
thousand runs of k-means on the third-, fourth-, fifth-
and sixth-order updated correlation features obtained
stable 86, 94, 97 and 98% accuracy, significantly larger
than the clustering accuracy on the original features or
the un-updated correlation features. The leave-one-out
prediction accuracy by the naı̈ve Bayes classifier also
stabilized at 98% on the fourth-, fifth- and sixth-order
updated correlation features.

We compared the batch-effect-removal method by iPcc
with feature selection methods, which are frequently used
to improve the quality of clustering and prediction. We
selected the top 1000 informative genes by F-test and
evaluated sample relationship, clustering accuracy and
prediction accuracy. The average difference between the
intra- and inter-class sample similarities was 0.8592 on the
original features. One thousand runs of k-means on the
original features produced 490 runs with accuracy of 98%
and 510 runs with accuracy of 81%. The leave-one-out
prediction accuracy of the naı̈ve Bayes classifier on the
original features was 98%. Thus, our iPcc-based batch-
effect-removal method outperforms, or at least is compar-
able with, the performance of F-test-based feature selec-
tion methods.

By applying iPcc on the 1000 genes selected by F-test,
we obtained the intra-class versus inter-class difference
values on the first-, second-, third-, fourth- and fifth-
order correlation features of 1.2800, 1.3629, 1.4095,
1.4271 and 1.4251, respectively, larger than that on the
originally selected genes. One thousand runs of k-means

on the first-order correlation features yielded 598 runs
with an accuracy of 98% and 402 runs with an accuracy
of 84%. On the second-order correlation features, the
accuracy of 1000 runs of k-means stabilized at 97%. The
leave-one-out prediction accuracy of the naı̈ve Bayes clas-
sifier on the original features and all the correlation
features was 98%. Thus, iPcc can also enhance the
power of feature-selection methods.

DISCUSSIONS AND CONCLUSION

With the development of high-throughput technologies,
thousands of genes can be measured simultaneously by
microarrays or next-generation sequencing technologies.
This facilitates comprehensive characterization of the bio-
medical states of samples but also introduces much irrele-
vant information. In this study, we proposed a novel
feature extraction method, named iPcc, to extract the
underlying patterns from noisy data sets through
introducing the ‘correlation feature’ concept with iterative
Pearson correlation coefficients. Simulations and evalu-
ations on real data sets demonstrate that iPcc greatly
improves the disease class discovery and prediction
based on the gene expression profiles.
The effectiveness of iPcc may partially originate from

reduced dimensionality. In the high-throughput experi-
ments, the number of samples is generally much lower
than the number of measured genes, resulting in the
‘curse of dimensionality’. This feature extraction method
reduced the dimensionality from thousands of genes to
tens of samples. The reduced dimensionality allows rapid
and accurate computation of the global optimum of many
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clustering and classification algorithms and thus improves
accuracy. The effectiveness of iPcc may also originate par-
tially from the introduced ‘correlation features’. Without
rephrasing the gene expression levels of samples, correl-
ation features introduced by iPcc used the similarity
between samples, which is independent of the precise
gene expression levels but is related to the trends of the
profiles. These features are similar to clinicians’ clinical
experience, which is helpful in diagnosis and prognosis.
The effectiveness of iPcc is dependent on the measure of
Pearson correlation coefficients. We evaluated those ‘cor-
relation features’ computed by the Spearman correlation
coefficients, and found that ‘iScc’ does not have the same
effect. We will further investigate the differences between
Pearson correlation coefficients and Spearman correlation
coefficients in the iterative computation setting. The ef-
fectiveness of iPcc also relies on rapid convergence
(42,43). For the toy, simulation and real data sets, we
observed that those values of correlation features
quickly converge to 1 or �1 as the order increases.
Although the computation of iPcc is rather simple, we
have not found a proper mathematical tool to prove the
convergence of iPcc owing to the difficulties posed by the
specific features of iPcc, including: (i) the input and output
of iPcc are structured matrices; (ii) only a recursion
formula is available for iPcc now; (iii) the convergence
of iPcc occurs at each element, rather than a common
norm of the matrix; (iv) the formula is nonlinear; (v) no
constraint exists among the elements. We will continue to
seek the mathematical proof of the rapid convergence of
iPcc in the future.
Because the computation of iPcc does not require

sample class information, it is essentially unsupervised.
When confounding factors exist, iPcc can also enlarge
the biases embedded within the gene expression data set
instead of the subject information, just like the batch
effects in the psoriasis data set. Thus, it works best on
those data sets with irregular noise. However, if the con-
founding factors are known, iPcc provides an efficient
means to remove the effects of those factors. However,
iPcc is not an independent algorithm for disease class dis-
covery or prediction. It provides an effective means to
underpin the underlying patterns embedded within the
gene expression data sets from the feature extraction per-
spective. Therefore, it can be used in combination with
other clustering, classification, feature selection and
feature extraction algorithms, as demonstrated in the
results section.
We also observed that multiple sample classes could

converge to two classes in the high-order correlation
feature space. For example, the B-cell ALLs and T-cell
ALLs became undistinguishable in the high-order correl-
ation feature space. This is closely related to the class re-
lationship. Because T-cell ALLs are more similar to B-cell
ALLs than to AMLs, iPcc merges T-cell ALLs with B-cell
ALLs when the iteration number is adequately large.
Because iPcc is unsupervised, it would also enlarge noise
in high order of correlation features. Therefore, the
optimal iteration number of iPcc is dependent on the
specific noise level and the information users needed.
Because iPcc generates correlation features, a certain

order of features can also be jointly used with the
original and other-order correlation features.

In conclusion, we proposed a novel feature extraction
method that is noise-resistant, i.e. iPcc, based on iterative
Pearson correlation coefficients for disease class discovery
and prediction based on high-throughput gene expression
profiles. Evaluations on both simulated and real gene ex-
pression data sets suggest that iPcc not only can highlight
the patterns underlying high-dimension gene expression
files but also can greatly improve the accuracy of disease
class discovery and prediction based on clustering and
classification algorithms. This feature extraction method
is expected to be a useful tool to boost the development of
clinical diagnosis and prognosis.
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