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Abstract

Purpose: Insufficient image contrast associated with radiation therapy daily setup x-

ray images could negatively affect accurate patient treatment setup. We developed

a method to perform automatic and user-independent contrast enhancement on 2D

kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue

contrast optimized for each treatment site in order to support accurate patient daily

treatment setup and the subsequent offline review.

Methods: The proposed method processes the 2D x-ray images with an optimized

image processing filter chain, which consists of a noise reduction filter and a high-

pass filter followed by a contrast limited adaptive histogram equalization (CLAHE)

filter. The most important innovation is to optimize the image processing parameters

automatically to determine the required image contrast settings per disease site and

imaging modality. Three major parameters controlling the image processing chain,

i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size,

and the clip limiting parameter for the CLAHE filter, were determined automatically

using an interior-point constrained optimization algorithm.

Results: Fifty-two kV and MV x-ray images were included in this study. The results

were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (sig-

nificantly better than adequate and visually praise worthy) by physicians and physicists.

The average scores for the images processed by the proposed method, the CLAHE, and

the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percent-

age of the processed images received a score of 5 were 48, 29, and 18%, respectively.

Conclusion: The proposed method is able to outperform the standard image contrast

adjustment procedures that are currently used in the commercial clinical systems.When

the proposed method is implemented in the clinical systems as an automatic image pro-

cessing filter, it could be useful for allowing quicker and potentially more accurate treat-

ment setup and facilitating the subsequent offline review and verification.
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1 | INTRODUCTION

In image-guided radiation therapy (IGRT), 2D orthogonal x-ray

images, using either kV or MV, are commonly used to determine

the 3D shifts of the treatment couch to align the patient to the

correct treatment position in relation to machine isocenter.1,2–4

However, these images, as shown in Fig. 1, are often associated

with poor image contrast and nonuniform image intensity.5–9 The

onboard imaging system at the treatment console usually only

provides basic image processing tools, e.g., windows/level adjust-

ment. While the offline review systems used by the physician and

physicist during chart review, e.g., MOSAIQ (Elekta, Stockholm,

Sweden), provide additional image filtering options, e.g., AHE

(Adaptive Histogram Equalization) and CLAHE (Contrast Limited

AHE) to facilitate image reviews, the results are often not satis-

factory.

Histogram equalization10,11 (HE) with or without adaptive is a

relatively simple image processing method to stretch the histogram

of the image intensity evenly according to pixel intensity probabil-

ity.12,13 However, HE is not able to avoid high peaks (i.e., clusters of

image intensity) in the histogram; therefore cannot enhance the con-

trast between pixels with the peaks, i.e., within a small range of

image intensity. The contrast limited adaptive histogram equalization

(CLAHE) algorithm11,14 has been developed to overcome such limita-

tions by processing the image histogram in blocks, limiting the inten-

sity dynamic range,15 and then clipping and redistributing the gray

peaks.14,16 CLAHE has been applied to a variety of medical

images17–21 including mammogram,22 digital radiology,23 and

entropy.24 Although more advanced, to achieve optimal results,

CLAHE requires user to select several important parameters includ-

ing block size and contrast limit, which is not automated and thus a

time-consuming trial-and-error process. In fact, the CLAHE imple-

mentation in MOSAIQ is simple and uses fixed parameters for all

images. As such it does not perform well on many 2D x-ray images,

as shown in Fig. 1(c).

The goal of this work was to improve both automation and per-

formance of the use of CLAHE in RT image processing. We

hypothesize that, given additional information regarding image

acquisition and patient (including treatment site, x-ray energy, kVp,

mAs, and patient size), it is feasible to automate the imaging pro-

cessing process with significantly improved performance. We note

that the patient information can be obtained from the database of

the treatment management system while the image acquisition

information obtained from the image meta-data. Here we develop

an optimized image processing chain to enhance the image contrast

of 2D RT localization images automatically, which consists of a

noise reduction filter, a high-pass filter, and a CLAHE filter. The

innovations involved in this study are: (a) to determine the optimal

parameters automatically by iteratively maximizing image contrast

based on known treatment site and imaging modality and (b) to

apply a high-pass filter before CLAHE to reduce illumination

heterogeneity across the entire image and to equalize the regional

histogram.

2 | MATERIALS AND METHODS

2.A | Workflow

The image processing chain is shown in Fig. 2. The preprocessing

step consists of a median filter to reduce image noise, and, for MV

images, an additional intensity-thresholding to detect the beam por-

tal, i.e., only the image pixels inside the beam portal are considered

in the subsequent steps.

There are two compelling reasons to use high-pass filter prior to

applying the CLAHE filter: (a) to reduce the image intensity nonuni-

formity and (b) to enhance the edge of the bony structures. The

high-pass filter is accomplished by subtracting the weighted Gaus-

sian blurred image from the original image:

FH ¼ F1 � p1Gr � F1; (1)

where F1 is the input x-ray image, FH is the high-pass filtered image,

p1 � 0;1½ � is the weighting fact that determines the degree of con-

tour enhancement, Gr is the 2D Gaussian kernel, and r is the Gaus-

sian window width.

The CLAHE filter is then used to equalize the image histogram.

CLAHE can avoid gray level peaks associated with HE or AHE by

(a) (b) (c) (d)

F I G . 1 . A lateral chest RT image of a lung cancer patient. The spine and rib cage are intended to be used to guide patient setup. (a) Original
image in which the spine is invisible because spine’s pixel intensity is compressed to 0.14% of the entire pixel intensity dynamic range.
(b) Image processed using manually selected optimal windows/level settings. (c) Image processed using CLAHE in which the spine is still not
shown well. (d) Image processed using the proposed method showing significantly improved visualization of both the spine and lung.
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weighting between regional and global histogram equalization. In

CLAHE, p2 is the number of blocks in X or Y direction of the image,

which defines the block size, and p3 is the clip limiting parameter,

which limits the proportion of the truncated and the histogram

peaks which in the every block. FH is segmented into p22 blocks14,25

and the clipped histogram equalization function is computed per

block and then applied on the whole FH by interpolating between

neighboring blocks.

2.B | Optimization

The overall performance of the high-pass filter followed by the

CLAHE filter is significantly affected by the choices of the parame-

ters for the two filters, i.e., the weighting factor p1 in the high-pass

filter, the block size p2, and the clip limiting parameter p3 in the

CLAHE method. The optimal values of the three parameters are tra-

ditionally determined empirically based on visual assessment over

multiple trials. To determine them automatically and quantitatively,

we designed an iterative optimization process. The parameters were

initialized to a suitable value according to the information available

about the patient and the image acquisition, and were then opti-

mized iteratively according to disease site and treatment modality-

dependent objective.

The optimization, which is designed to obtain the maximal

entropy in the processed image, can be described as:

E p1; p2; p3ð Þ ¼ entropy FC FH F1 x; yð Þ; p1ð Þ; p2; p3ð Þð (2)

p̂1; p̂2; p̂3ð Þ ¼ argmaxp1 ;p2 ;p3 E p1; p2; p3ð Þð Þ (3)

where FH is the high-pass filter, FC is the CLAHE filter, entropyðÞ is

the function to compute the image entropy, and p̂1; p̂2; p̂3 are the

optimal parameter values. The image contrast is commonly referred

to as the intensity difference between the voxels with higher inten-

sity and lower intensity in a local region, while the image entropy is

often used to characterize the uncertainty at a system level. Many

studies have shown that the image entropy can represent the rich-

ness of global image contrast.23,24

Finally, the optimal parameters are applied to generate the final

contrast-enhanced image, i.e., the maximal entropy image, as:

F2 ¼ FC FH F1; p̂1ð Þ; p̂2; p̂3ð Þ (4)

2.C | Implementation

The beam portal in an MV image was automatically detected using a

simple thresholding method, with a fix threshold value of 50% of the

maximal image intensity value. The image pixels in the area outside

the MV beam portal were set to null and excluded in the

optimization.

Iterative optimization was implemented with an internal point

algorithm, which finds the optimum of a nonlinear convex optimiza-

tion objective by searching the interior of the possible region.26 To

improve computation speed, the parameters’ initial values and ranges

have been determined empirically as listed in Table 1 for each treat-

ment site. For example, the full range of p1 was [0, 1]; however, the

useful range was [0, 0.85] because the high-pass filtered image with

p1 [0:85 would be too noisy. Similarly, p2 was also limited as an

integer in the range of [2, 6]. We note that entropy is subject to

image noises and image boundaries, which will cause the value of

the entropy to tend to become extreme. However, if we limited the

range of the parameter values, the image noise level can be con-

trolled at an acceptable level.

The visualization of the bony structures was enhanced

with the entropy optimization method. Certain sites, e.g., breast

and lung, require the enhancement of the soft tissues, and the

pelvis, the implanted metal fiducials. For these sites, the initial val-

ues and ranges of the optimization parameters were empirically

selected to allow the best contrast of the implants or the soft

tissues.

High-pass filter and CLAHE 
with the ini�al p1 ,p2 ,p3

exclude the 
outside part of 

beam portal

High-pass and CLAHE  with 
op�miza�on parameter 

values

Image input

Output image processed 
by the op�mal parameters

Image with unexposed area?

No

Noise reduc�on filer

itera�ve op�miza�on 
process with fixed 

increment of p1 ,p2 ,p3

The image entropy is the 
maximum value in the 

interval

Yes

F I G . 2 . Workflow of the proposed automatic x-ray contrast
enhancement method.
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3 | RESULTS

Total 34 and 18 MV images of patients receiving radiation ther-

apy were included in this study after the images had been anon-

ymized. Anatomical sites included brain, head-neck, chest,

abdomen, and pelvis. Example images are shown in Fig. 3, where

the visualization of the bony structures, e.g., the vertebral column

and the pelvic bone, has been significantly improved, especially in

the areas with high image intensity values. Figure 4 shows two

cases for which the images are processed with parameters opti-

mized for visualization of both the soft tissue and the implanted

metal markers. The average computation time for each image is

0.78 s.

A blind subjective ranking test was performed to evaluate the

proposed method. Fifty-two original images and 156 images pro-

cessed using (a) manual windows/level adjustment, (b) standard

CLAHE, and (c) the proposed method were visually evaluated and

ranked by two physicists and two radiation oncologist with scores

of 1 to 5: 1 — worst, unacceptable, 2 — worse than acceptable,

barely adequate to support clinical decision, 3 — acceptable, ade-

quate to support clinical decision, 4 — better than adequate, and

5 — significantly better than adequate and visually praiseworthy.

The order of the images was randomized so that the observers

did not know the corresponding image processing methods. The

rank results are listed in Table 2. The mean score of the images

processed by the proposed method is 3.92, which is close to a

score of 4 (better than adequate) and clearly higher than the

mean scores of the other three methods, with P values less than

0.0011 based on a Student t-test statistical analysis. The number

of unacceptable images was reduced to 10%, less than the num-

ber of unacceptable images either unprocessed or processed by

other methods. Note that the unacceptable images were all MV

portal images. Mainly limited by the imaging modality, the contrast

enhancement results of these MV images were ranked worst, unac-

ceptable due to either excessive image noise or insufficient con-

trast between tissues of interests.

TAB L E 1 Empirically determined optimal parameter value range per
anatomical site.

Imaging position
Weighting
factor (p1)

Number of
blocks (p22) Clip limiting (p3)

Brain 0.60–0.70 4 0.20–0.30

Head-neck 0.65–0.70 16 0.45–0.55

Chest posterior–

anterior view

0.55–0.65 4 0.35–0.45

Chest lateral view 0.65–0.75 16 0.35–0.45

Spine lateral view 0.70–0.75 4 0.10–0.20

Pelvis lateral view 0.70–0.75 16 0.35–0.45

Spine posterior–

anterior view

0.60–0.65 4 0.35–0.45

Pelvis posterior–

anterior view

0.55–0.60 16 0.35–0.45

Extremities 0.50–0.55 4 0.20–0.30

Thorax and breast 0.50–0.55 4 0.10–0.20

Shoulder 0.70–0.75 16 0.35–0.45

Pelvis or prostate,

with implant marker

0.55–0.65 4 0.35–0.45

(a)

(b)

(c)

(d)

F I G . 3 . Examples of the processed images. Rows: (a) original images, (b) images processed using optimal windows/level adjustment,
(c) images processed using standard CLAHE algorithm, (d) images processed by the proposed method. Columns 1–4 are kV images, and
columns 5–7 are MV image. Note that the white borders caused by the treatment beam collimation were auto-detected and cut-off in the last
two images in row (d).
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4 | DISCUSSION

The proposed image contrast enhancement method is a fully auto-

matic method after the treatment site information is either manually

specified or automatically obtained from the clinical treatment com-

puter systems, e.g., MOSAIQ and ARIA. A machine learning

method,27 which automatically recognizes anatomical site and image

acquisition angle (i.e., view) in the 2D x-ray images, could also be

used as a preprocessing step to obtain the required treatment site

and view information. The proposed method combines the advan-

tages of high-pass edge enhancement and CLAHE to enhance the

image contrast automatically. The high-pass filter enhances structure

edges, e.g., edges of the bony structures, which are hidden in the

high-brightness regions, and the subsequent CLAHE filter adaptively

extends the range of the image intensity gray levels. The optimal val-

ues of the three parameters, p1;eep2 and p3 are automatically deter-

mined using an optimization process.

The x-ray image acquisition parameters, i.e., kVp, mA, and ms,

should be selected optimally by the therapist according to anatomi-

cal site, image acquisition angle, patient height and weight so that

the quality of the acquired x-ray images is optimal before the pro-

posed contrast enhancement method is applied. This should be

accomplished by training the machine therapists. It would be also

useful to define the standard clinical kV image acquisition parame-

ters for different anatomical site and patient size so that the

machine therapists can follow.

As we have learned in the preliminary studies, 2D x-ray images

need to be processed differently for different imaging beam orienta-

tions (e.g., anterior–posterior and right-lateral) and disease sites (e.g.,

brain and pelvis). To allow a quick convergence and optimal results

by the optimization process, the site-dependent initial parameter val-

ues and the allowed parameter value ranges have been determined

empirically and provided in Table 1. To be fully automated, the pro-

posed method therefore needs two additional pieces of information

— treatment site and imaging beam orientation. After the key infor-

mation is confirmed, the proposed method can be implemented in

the image processing workflow of clinical RT systems. In clinical

practice, the treatment site could be manually configured by users or

automatically obtained using SQL queries from the treatment man-

agement system (TMS), e.g., ARIA (Varian Medical, Palo Alto, CA,

USA). The imaging beam orientations are usually available in the

image DICOM file as imaging beam angles, and are available in the

TMS.

5 | CONCLUSION

We developed a method to automatically enhance the contrast for

the 2D x-ray images used in radiation therapy patient treatments.

Our results have shown that this method outperforms basic image

processing methods currently used in clinical systems. When the

proposed method is implemented in the clinical systems as an

(a) (b) (c) (d)

F I G . 4 . Examples of contrast enhancement of both soft tissue and implant markers. (a) Original images, (b) optimal windows/level setting,
(c) standard CLAHE algorithm, and (d) the proposed method.

TAB L E 2 Results of subjective ranking for the processed images.

Score = 1 (%) Score = 2 (%) Score = 3 (%) Score = 4 (%) Score = 5 (%) Score mean

Original images 72 14 6 4 4 1.54

Images processed by windows level adjustment 48 20 7 7 18 2.27

Images processed by basic CLAHE 39 13 7 13 29 2.83

Images processed by proposed method 10 8 10 24 48 3.92
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automatic image processing filter, it could be useful in many clinical

applications including patient treatment setup and subsequent offline

review of patient daily setup.
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