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Abstract: Wearable robotic devices require sensors and algorithms that can recognize the user
state in real-time, in order to provide synergistic action with the body. For devices intended for
locomotion-related applications, shoe-embedded sensors are a common and convenient choice,
potentially advantageous for performing gait assessment in real-world environments. In this work,
we present the development of a pair of pressure-sensitive insoles based on optoelectronic sensors for
the real-time estimation of temporal gait parameters. The new design makes use of a simplified sensor
configuration that preserves the time accuracy of gait event detection relative to previous prototypes.
The system has been assessed relatively to a commercial force plate recording the vertical component
of the ground reaction force (vGRF) and the coordinate of the center of pressure along the so-called
progression or antero-posterior plane (CoPAP) in ten healthy participants during ground-level walking
at two speeds. The insoles showed overall median absolute errors (MAE) of 0.06 (0.02) s and 0.04 (0.02)
s for heel-strike and toe-off recognition, respectively. Moreover, they enabled reasonably accurate
estimations of the stance phase duration (2.02 (2.03) % error) and CoPAP profiles (Pearson correlation
coefficient with force platform ρCoP = 0.96 (0.02)), whereas the correlation with vGRF measured by
the force plate was lower than that obtained with the previous prototype (ρvGRF = 0.47 (0.20)). These
results confirm the suitability of the insoles for online sensing purposes such as timely gait phase
estimation and discrete event recognition.

Keywords: optoelectronic sensors; wearable sensors; sensorized insole; plantar pressure distribution;
real-time gait monitoring; robot control

1. Introduction

Portable plantar pressure measurement systems have gained popularity in recent years. Initially
developed for extending clinical gait assessments to community and real-world environments (beyond
clinical and laboratory settings), in-shoe sensor technologies for plantar pressure analysis have lately
found new applications outside the clinical domain. Specifically, the proliferation of consumer-grade
‘smart wearables’ has further propelled the development of commercial in-shoe devices to assess health
and wellness-related mobility parameters in activities of daily living [1–4]. In addition to stand-alone
sensing applications, portable sensing technologies for plantar pressure measurement have been
incorporated in the development of wearable robots.
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Robotic prostheses and orthoses require integrated or minimally-encumbering sensors to provide
reliable measurements of biomechanical variables, which, in turn, serve as inputs for the control
algorithms that run the platforms such as for real-time gait phase estimations or to detect the movement
intentions of the user. For example, to control lower-limb prostheses, a timely estimation of the
stance/swing gait phases is critical. In fact, the information on the current gait phase can trigger
different controllers and thus, a precise detection of foot contact with the ground is crucial for safe
and correct functioning of prostheses [5]. Similarly, biofeedback devices need real-time gait-phase
estimation in order to provide consistent functional electric stimulation (FES) or active sensory feedback
to the users [6–8]. Real-time information on plantar pressure distribution can also be exploited to
detect the movement intentions of the user and automatically adapt the control action of robotic
assistive devices such as prostheses and orthoses to different locomotion tasks (e.g., walking up or
down slopes or climbing stairs) [9,10]. Moreover, precise information on the gait phase allows for
the estimation of temporal gait indicators that are important for assessment and diagnosis. Gait
symmetry, for example, can be used to compare gait performance with different prostheses (and
thus rate different prostheses) in the case of amputees, or to evaluate the outcome of rehabilitation
programs in pathologies exhibiting gait asymmetries [5]. With diagnostics purposes, machine learning
techniques have exploited features extracted from temporal gait parameters to distinguish between
different neurodegenerative diseases [11].

The design requirements of in-shoe sensing devices whose primary intended use deals with the
real-time control of artificial limbs, orthoses, or biofeedback devices, reflect different priorities than
the ones demanded for gait analysis applications. In the latter case, the accuracy and precision of the
measured gait variables are the parameters of primary importance, whereas for online applications
with assistive robotics, sensor responsivity is the fundamental indicator to ensure a prompt real-time
detection of specific biomechanically-relevant gait events (i.e., typically the heel-strike and toe-off

events), hence a timely and synchronous action of the linked wearable device [12–14]. Sensory
apparatus designs should also consider the richness of the sensory information: multiple sensor
signals as well as information related to the interaction with the external environment are necessary
to develop sophisticated movement intention detection algorithms that are capable of classifying
and even predicting the upcoming locomotion mode. While simple foot switches make it easy to
detect specific gait-related events, their on–off response behavior does not allow the extraction of
quantitative information about the pressure distribution on the plantar area [6,15,16]. The same
limitation applies to foot-mounted inertial measurement units (IMUs), which can provide estimates
of ground contact time and other kinematic information (typically in concert with other units on
additional limb segments), but cannot sense plantar pressure [17–19]. Reliability of the measurements is
another essential performance indicator: any under-foot pressure-sensing technology must be robust
against environmental factors that change throughout the day or prolonged use. Indeed, changes of
in-shoe temperature and humidity can lead to measurement drift, which requires the user to execute
frequent system re-calibrations, thus making the use of wearable robots impractical [12,20–23]. Finally,
cost is a very important factor that may limit the adoption of insoles in applications with wearable
robots; hence, even though several emerging technologies are targeting this requirement [24–26], the
most established insoles on the market, to the author’s knowledge, have never been integrated or
tested within robotic devices [2,3,20].

In previous studies, our team demonstrated that pressure-sensitive insoles capitalizing on
optoelectronic transduction could estimate the real-time ground-reaction force with fair accuracy [27]
and could be effectively exploited for gait segmentation to provide contextual, phase-based sensory
feedback [28,29]. This sensing technology [30,31] has been shown to be suitably cost-effective and
exhibits further advantages for daily-base use such as immunity to temperature variations and
unnecessary calibration procedures [27].

In this study, we present a novel prototype of an in-shoe optical sensor technology for plantar
pressure monitoring, optimized for the real-time control of lower-limb wearable robots. The aim
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of the novel device was to obtain a simplified version of the one presented in [27], with the goal to
reduce the number of sensors, and in turn, the overall system complexity and manufacturing costs,
still providing a timely detection of the foot-contact events and preserving qualitative information
about the antero-posterior weight distribution over the feet. Time accuracy would deem our device
comparable—in terms of reliability—with the most commonly adopted solutions for real-time control
purposes, yet capable of providing richer online information on plantar pressure. Along with the
presentation of the device, the results of verification tests are reported. The primary objective of these
tests was to assess the performance of the new prototype for online gait cycle segmentation, given its
foreseen application as sensors for controlling lower-limb orthoses or prostheses. Furthermore, its
ability to accurately track the temporal evolution of the foot-ground interaction forces was evaluated
as richer information that the insoles could valuably provide for further gait assessment purposes.

2. Materials and Methods

2.1. System Architecture

The pressure-sensitive insoles are made of two main components: a matrix of pressure-sensitive
elements inserted in commercial shoes, and on-board electronics for signal conditioning and data
transmission that is encased in a lightweight plastic box that can be tied to the shoelaces (Figure 1a).
Sensor data are sampled and transmitted at 100 Hz through a wireless Ultra-Wide Band (UWB) protocol
(DWM1000, DecaWave 6.8 Mbps data rate) to a portable, remote receiving unit that computes the
foot–ground interaction variables through an integrated real-time processor (NI SOM SbRIO-9651,
National InstrumentsTM).
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The insoles are designed to provide an estimation of the vertical component of the ground reaction
force (vGRF) and of its instantaneous point of application along the foot longitudinal axis (i.e., the
anterior–posterior coordinate of the center of pressure (CoPAP)).

2.1.1. Sensor Technology

Force sensing along the vertical direction was achieved using an optoelectronic technology
originally developed to measure human–robot interaction forces [32] and re-engineered for plantar
pressure measurements [27]. The force was measured using an array of sensing elements named
tactels, each one made of a Light-Emitting Diode (LED)-photodiode pair (OSA Opto Light GmbH,
Berlin, Germany; Broadcom Ltd., formerly Avago Technologies Ltd., San Jose, CA, USA) coupled to
a deformable silicone cover (Figure 1b), which had the shape of a pyramidal frustum with a square
base and an internal central curtain. The sensor works as a force-to-voltage transducer: when a load is
applied on its top surface, the silicone cover deforms and the curtain gradually closes the light path
between the emitter and the receiver, causing a change in the output voltage [27]. The optoelectronic
components are soldered on a foot-shaped custom PCB fixed to a 1 mm-thickness carbon lamina that
sustains the load while reducing the bending of the insole at push-off.

The tactel’s characteristic force-to-voltage relation was extracted with the quasi-static load–unload
cycles (velocity of the indenter ~0.1 mm/s); the maximum force applied on each tactel was ~40 N,
corresponding to the saturation of the output voltage (Figure 2).
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Figure 2. Tactel force-to-voltage relation. Experimental data from 32 sensors (grey); mean load–unload
curves (dashed black) and overall mean curve (solid black); polynomial fit of the overall mean curve
(blue).

A 4th grade polynomial expression was fitted to the experimental mean curve that was obtained
by averaging the mean load–unload curves of 32 sensors (two insoles), resulting in relation (1) (Table 1):

F = p1V4 + p2V3 + p3V2 + p4V + p5 (1)

p1 = 186.1

p2 = 224.5

p3 = 64.76

p4 = −18.59

p5 = 0
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Table 1. Goodness of fit of Equation (1).

Fit Type SSE R-Square Adjusted R-Square RMSE

Polynomial, 4th grade 544 0.9898 0.9897 0.7391

Such an approximation of the actual force-to-voltage relation of each tactel (Figure 2) could lead
to significant errors in the force estimation, due to across-sensor variability and sensor viscoelasticity.
However, this limitation was not expected to significantly affect the performance for gait-event
detection, primarily related to the latency of sensor response.

2.1.2. Biomechanical Variables

The output voltage on each tactel, Vi, is converted into a force, Fi, by means of a piecewise
force-to-voltage function: if the output voltage is higher than a pre-determined threshold value
(Vthresh, corresponding to the noise voltage in unloaded conditions), the force is null; otherwise the
force-to-voltage calibration function is applied.

The vGRF is calculated as the sum of the forces applied to all tactels:

vGRF =
16∑

i=1

Fi Fi =

{
f (Vi) Vi ≤ Vthresh
0 Vi > Vthresh

(2)

Fi = tactel force [N]

Vi = tactel output voltage [V]

Vthresh = noise output voltage threshold [V]

A threshold-based algorithm was applied to the vGRF to segment the gait cycle into stance and
swing phases and to enable the calculation of the CoPAP only during stance. The CoPAP was computed
by weighting the response of each activated sensor by its longitudinal coordinate (APi) and by the
tactel spatial density at that coordinate (wAPi ) to account for the clustered sensor distribution over the
plantar surface:

CoPAP =


∑16

i=1(Fi·WAPi ·APi)∑16
i=1(Fi·WAPi)

vGRF ≥ vGRFthresh

NaN vGRF < vGRFthresh

(3)

Fi = tactel force [N]

APi = tactel antero− posterior coordinate [cm]

wAPi = tactel antero− posterior coordinate weight [#]

vGRFthresh = foot− contact threshold [N]

2.1.3. Sensor Placement

Insoles sensorized with 9–12 sensors have been proven to provide appropriate force
measurements [33,34]. In [4], 15 sensors covering the corresponding anatomical areas identified
in [35] have been proposed as an optimal sensor configuration. Based on this evidence and considering
the practical design requirements of the acquisition electronics, the novel insole was designed to
integrate 16 sensors distributed over the plantar surface in relevant locations for monitoring the
foot–ground interaction force.

To identify the optimal sensor locations, we collected gait data from six healthy subjects walking
with the previous prototype of pressure-sensitive insoles featuring 64 sensors distributed over the
whole plantar surface [27]. Subjects walked on a treadmill at self-selected speed for about 10 min.
Offline data processing was aimed at selecting three subsets of ten sensors for the recognition of the
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heel-strike (HS), foot-flat (FF), and toe-off (TO) gait events. Responsivity and amplitude of each sensor
signal were considered primary parameters to rank the sensors (Figure 3a). Then, the six different
sets of 30 sensors identified for each subject were used to define five different combinations of 16
sensors. This process was carried out by visual inspection, picking the most recurring locations across
subjects for each gait event. Finally, the optimal set of sensors was selected as the one displaying
the best performance (i.e., synchrony) in detecting the HS and TO events, compared to the 64-sensor
configuration (Figure 3b). Offline analysis showed that in 90% of the recorded strides, the selected
combination of sensors allowed the detection of the HS event and the TO event, respectively, without
delay and one sample (i.e., 10 ms) in advance with respect to the 64-sensor configuration (Figure 3b).
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The final sensor configuration covers the foot areas exhibiting the highest plantar pressure
concentrations during gait [36] and looks similar to other in-shoe prototypes with a limited number
of pressure sensors [33,35]. Naturally, the reduction in the number of sensors resulted in a lower
amplitude of the total measured vGRF, whereas the profiles of the CoP did not appear to be significantly
affected (Figure 3b).

2.2. Verification of the Biomechanical Variables

The insole’s capability to detect gait events and extract temporal parameters was assessed using a
commercial force platform. Experiments were carried out in a motion tracking laboratory equipped
with two force plates and six infrared cameras.

2.2.1. Experimental Protocol

Two reflective markers were positioned on the tip (toe) and the heel of the shoes equipped with
the sensorized insoles to identify the anterior–posterior foot axis. Marker trajectories were recorded
with an optical motion capture system (BTS Bioengineering, Italy) at 100 Hz. The same system acquired
synchronous data from two adjacent force platforms (BTS Bioengineering, Italy) at 200 Hz. An external
analog trigger was set for the temporal alignment of the recorded motion tracking data (including
markers and force plate outputs) with the insoles data.

Ten healthy subjects (eight males, 28.6 ± 5.1 years, 174.0 ± 3.8 cm, 66.2 ± 7.1 kg, 21.9 ± 2.40 Body
Mass Index (BMI)), without any reported gait disorder or awareness of specific gait deviations or
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cognitive disorders and with foot sizes in the range 41–43 EU, were recruited for the experiment.
All subjects gave their informed consent for inclusion before they participated in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the local Ethics Committee (Ethics Committee of Area Vasta Centro Toscana, approval number:
12739_spe). Subjects were asked to walk wearing the sensorized shoes along a 10-m walkway at two
different speeds—first at a self-selected, comfortable speed (self ) and then at a self-selected, slow pace
(slow)—and were instructed to step over two force plates along the way. The force plates were aligned
along the forward direction, one next to the other. Small step adjustments before hitting the force
plates were permitted, in order to take a clean step on each platform and thus record two consecutive
steps, i.e., one with each foot, for each walkway. Targeting was not considered as an issue, since the
main goal of the experiment was to compare the force profiles of two devices rather than to use those
profiles for assessing gait biomechanics. For each velocity, 20 walkway passes were recorded.

Prior to the start of each speed condition, the output voltage of the sensors was de-offset by the
“zero-load” value (i.e., the voltage value acquired when the subject had his/her foot lifted and thus
approximately no load was being applied on the sensors).

2.2.2. Data Analysis

Offline data analysis was carried out in MATLAB (MathWorks, Inc., Natick, MA, USA). For each
subject, the data collected from different instrumentation systems (insoles vs. motion capture + force
plates) were temporally aligned and segmented into single strides. Only the steps recorded on the
force platforms were included in the analysis.

For the considered steps, the vGRF and the CoPAP were computed, namely the vGRFIn and CoPIn

for the insoles and the vGRFFp, CoPAP_Fp for the force plates. Notably, the CoPAP_Fp was computed
along the foot’s anterior–posterior direction (i.e., the direction determined by the heel and toe markers)
to be comparable with the insole CoPAP.

To identify the HS and TO events for the force platform, the threshold of the vGRF (vGRFThresh)
was set to 20 N, as informally recommended by manufacturer’s representatives and previously adopted
with the same system [37]. For the insoles, the vGRFThresh was set to 3 N (i.e., the force corresponding
to all the sensors reading the estimated noise amplitude (Vthresh)):{

vGRFthresh = 16· f (Vthresh)

Vthresh = −0.01V
(4)

For one subject, the force threshold of the insoles was raised to 7 N during offline analysis to
ensure a more precise gait event detection. Several stride parameters were computed to estimate the
responsivity of the insoles as well as the quality and the repeatability of the vGRF and the CoPAP
profiles. The median values of all of these parameters were computed on all the collected strides as
well as separately for the strides collected at each speed. Non-parametric statistics was adopted, as
normality tests failed to prove normal distributions for the computed parameters (Lilliefors test, α =

0.05). Right and left insole data were aggregated after verifying that there were no objective differences
across the two sides, which were evaluated comparing the right and left stance durations measured by
the force plates (Wilcoxon rank sum, p = 0.91). Relevant differences across the slow and self-speeds
were tested with non-parametric t-tests (α = 0.01).

Insole accuracy for the detection of gait events was evaluated estimating the median absolute
error (MAE, [s]) for the recognition of the HS, TO, and stance duration with respect to the detection of
the same events by the force platform [27], according to Equation (5):

MAEX = median
(∣∣∣XFp −XIn

∣∣∣) (5)

X = HS, TO or stance duration
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XFp = X time measured by force platform

XIn = X time measured by insoles

The MAEs were also expressed as a percentage of the stance duration measured by the force
platform for a comparison across different speeds.

The vGRF peak amplitude (vGRFpeak) measured by each device was extracted as the maximum
value recorded for each step, normalized by the gravitational acceleration (g) and expressed as body
mass percentage (BM%), in order to make the values comparable across the subjects.

In order to evaluate the consistency of the insole signals with physiological vGRF and CoPAP

profiles, the Pearson correlation coefficient (ρCoP, ρvGRF) and the root mean square error (RMSECoP)
were computed between the insole and force platform trajectories of the stance phases [27,33,38] (for
the vGRF, the RMSE was not computed given the considerable difference in the amplitude of the
signals recorded by the two devices). For these calculations, the collected signals were first low-pass
filtered and then segmented and interpolated to align the HS and TO events.

The RMSE was also used to investigate measurement repeatability across different steps, computing
the error between the single stride and average vGRF and CoP profiles separately for each device
(RMSECoP_In, RMSECoP_Fp, RMSEvGRF_In, RMSEvGRF_Fp). For the vGRF, to account for the different
amplitude of the vGRF recorded by the insoles and the force platform, the RMSE was computed using
the vGRF normalized by the body mass and then normalized by the stride mean vGRF.

3. Results

The analysis included 744 steps, accounting for 91% of those recorded. The remaining trials—on
average, five for each subject—were discarded due to an incorrect foot placement on the force platforms
or an invalid recording procedure for the alignment of the datasets of the two devices.

Figure 4a displays the distribution of the temporal difference between the HS and TO detection
performed by the force platform and the insoles. Negative values indicate delayed event recognitions
by the insoles compared to the force platform. This result, combined with the higher absolute values
for the HS than the TO, resulted in an overall shorter stance duration recorded with the insoles.
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Figure 4. (a) Histogram distribution of the difference between the instants of force platform and insole
gait-event detection for all the analyzed strides. Blue bars refer to heel-strike (HS) events; orange ones
to toe-off (TO). Bar width was set equal to the sampling time. (b) Median Absolute Error (MAE) for the
HS and TO events and for stance duration, expressed as percentage of the stance duration. The MAE
was computed over (i) all the recorded strides (Overall), the strides at self-selected speed (self), and the
strides at slow speed (slow).

The overall insole MAE was 0.06 (0.02) s for the HS; 0.04 (0.02) s for the TO; and 0.02 (0.01) s for
stance duration, corresponding to 6.47 (1.79) %, 4.32 (1.89) % and 2.02 (2.03) % of the stance duration,
respectively (Figure 4b).
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Considering the slow and self data separately, significant differences existed in the percent MAE of
the HS, TO, and stance duration, with faster event recognition at slower speeds.

Concerning the temporal profiles of the biomechanical signals, Figure 5 compares a participant’s
average (right) vGRF and CoPAP curves measured by the two devices during the corresponding
stance phase. The amplitude of the vGRF measured by the insoles was smaller than the physiological
(force-platform) one, with maximum peaks of 19.92 (8.60) BM%, that is 19% of the corresponding force
platform measure (Table 2). The Pearson correlation coefficient between the average vGRF profiles of
the two devices was 0.47(0.20) (Table 2). For CoPAP profiles, the consistency between the trajectories of
the two devices was higher, with a ρCoP of 0.96 (0.02), while the RMSECoP was 2.29 (0.58) cm (Table 3).
The effect of the speed was visible on vGRF profiles, which exhibited less pronounced “M” shapes
with both devices at lower speeds. At slower speeds, the correlation between the force platform and
insole profiles was lower for the vGRF, but not for the CoPAP, whose RMSE also decreased.
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Figure 5. Average (right) vGRF and CoPAP stance curves measured by the force platform (black) and
insole (green) for one participant during the self-selected (a) and slow (b) speed trials.

Table 2. Median (iqr) values for the vertical Ground-Reaction Force (vGRF) parameters.

Insole Force Platform Comparison

vGRFpeak_In
[% BM]

RMSEvGRF_In
[%]

vGRFpeak_Fp
[% BM]

RMSEvGRF_Fp
[%]

ρvGRF
[#]

Overall 19.92 (8.60) 13.25 (8.07) 106.58 (8.40) 4.04 (2.59) 0.47 (0.20)
self 21.80 (8.77) 12.26 (7.55) 110.27 (9.27) 3.99 (2.58) 0.48 (0.19)

slow 18.56 (7.55) 14.40 (8.82) 103.79 (4.3) 4.08 (2.61) 0.45 (0.22)
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Table 3. Median (iqr) values for the antero-posterior coordinate of the Center of Pressure
(CoPAP) parameters.

Insole Force Platform Comparison

RMSECoP_In
[cm]

RMSECoP_Fp
[cm]

ρCoP
[#]

RMSECoP
[cm]

Overall 0.98 (0.87) 0.90 (0.59) 0.96 (0.02) 2.29 (0.58)
self 0.82 (0.79) 0.90 (0.62) 0.96 (0.02) 2.39 (0.64)

slow 1.16 (0.86) 0.90 (0.56) 0.97 (0.01) 2.22 (0.53)

For measurement repeatability, the insole-based measures were less repeatable than the force
platform for the estimation of the vGRF, as demonstrated by the higher standard deviation bands in
the profiles of Figure 5 and the higher values of the RMSEvGRF_In than that of the RMSEvGRF_Fp, which
were equal to 13.25 (8.07) % and 4.04 (2.59) % of their mean values, respectively (Table 2). For the
CoPAP, the measurement repeatability of the devices was similar and in both cases lower than 1 cm,
with RMSECoP_In equal to 0.98 (0.87) cm and RMSECoP_Fp equal to 0.90 (0.59) cm (Table 3). Slower
speeds also decreased the repeatability of insole measurements, as visible when comparing the profiles
of Figure 5a,b and indicated by higher RMSEvGRF_In and RMSECoP_In, while the same parameters were
not significantly different for the force platform.

4. Discussion

4.1. Gait Event Recognition

HS and TO event detection occurred later with the insoles than with the force platform. The most
pronounced delay was reported for the HS, with a temporal value corresponding to six samples at a
sampling rate of 100 Hz. Considering an average stance phase duration of approximately 60% of the
stride time [39], the delays for HS and TO recognitions corresponded to 3.9% and 2.6% of the stride
period, and the stance duration measurement error was 1.3% of the whole gait cycle.

Compared to the values reported in literature—where only a few systems based on force-sensitive
resistors have been characterized for timing performance—our system accurately estimated the stance
duration, with good responsiveness in HS and TO recognition, in line with the results reported in
previous studies. In the first case, previous studies demonstrated that the Medilogic® insoles could
estimate the stance duration with less than 10% error [40], while a system based on two footswitches
performed the estimation with a ± 3% error [41]. Regarding gait-events recognition, the reported
errors for in-shoe systems compared to force plates fell within 30 ms. In particular, the aforementioned
system based on two footswitches had a latency of ± 10 ms for the HS and ± 22 ms for the TO [41], even
though the system was tethered—and thus exhibited no latency due to wireless communication—and
furthermore could not provide any information on the gait dynamics based on plantar pressure
variables. The “GaitShoe” system, relying on force-sensitive resistors for the estimation of gait events
and foot-pressure, was found to have −6.7 ± 22.9 ms error for HS recognition and −2.9 ± 16.9 ms for the
TO, with respect to a force plate [42]. Though the system was wireless, the impact of the communication
latency was not quantified, as the trials with more than 10 missing packets were discarded from the
analysis. Finally, the Tekscan F-scan insoles showed delays in the range of 20–30 ms in the time instants
of the vGRF local peaks of the data collected by the insoles compared to the data of a force platform.
The two datasets had been aligned offline at the instant of detected ground contact [43,44], possibly
indicating a similar delay for HS recognition. Thus, considering the results reported for the other
insole-based devices, our insoles seemed to be slower in the recognition of foot-contact events, but
still timely for online control purposes. In fact, studies validating gait-segmentation algorithms based
on inertial sensors have deemed latencies of up to 150 ms acceptable for online functional electrical
stimulation [45,46]. According to [10], delays in the range of a few tenths of milliseconds would also
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be acceptable for assisting locomotion with active exoskeletons as they are lower than reaction time of
voluntary muscles (180 ms).

Several factors may have contributed to the delayed HS detection by our system: wireless
communication, given the implementation of a UWB (Ultra-Wide Band) protocol within a real-time
loop operating at 100 Hz, can account for a lag of 10 ms (i.e., one sample). Then, the recognition
delays observed with our system may be further ascribable to the suboptimal conversion of the raw
voltage signals of the sensors into force. In fact, the adopted force–voltage relation was obtained with
mathematical approximations that did not fully account for the mechanical behavior of the sensor
under dynamic operating conditions. Indeed, the silicone membrane confers the sensor with typical
polymeric properties such as viscoelasticity, damping, and hysteresis, the latter also being visible
from the characterization curves of Figure 2. At the same time, as a result of having been extracted
via a polynomial fit to the quasi-static loading profile over the operational force range, the adopted
force–voltage equation could have underestimated the actual force when the output signals are low
and when the load is applied very fast such as at the HS. The tendency toward lower errors for slower
speeds would support viscoelasticity as an explanation for a part of the delay in instances of fast
loading/unloading. Silicone hysteresis on the other hand, could explain different delays between the
HS and the TO.

4.2. Profiles of Biomechanical Signals

Considering the vGRF temporal profiles, the signals recorded by the insoles had considerably
smaller amplitude than recordings from the force platform, a direct consequence of the limited
sensorized plantar area that resulted from reducing the number of sensors of the insole. This choice
also affected the quality of the estimated temporal profile: correlation indices indicated only a “low”
degree of association [47] in contrast to the “high” grade achieved by the former prototype [27], and
below the average results for most of the available in-shoe devices, which rank from “high” to “very
high” [20,33,38].

Insole performance in estimating the vGRF profile is directly related to sensor distribution: though
the sensor locations visually match the areas subject to the highest plantar pressures during gait, the
limited number and non-uniform distribution of sensors significantly altered the final vGRF profile.
In [1], Park et al., who developed another opto-electronic system with four discrete sensors, improved
the consistency with force plate measurements by assigning specific weights to the contribution of
each sensor to fit the overall vGRF, instead of simply adding up the signals. However, this scaling
calculation requires subject- and task-specific calibration procedures that are impractical to repeat in
the desired clinical and community use scenarios.

In our case, the configuration was not optimized for vGRF measurement accuracy but for gait
event recognition accuracy. From this perspective, the clustered sensor distribution allowed the
placement of multiple redundant sensors in the most functionally relevant positions for maintaining
reliable performance in the case of sensor failure, in accordance with the primary intended utilization
of the insoles as accurate gait phase estimators rather than precise gait analysis tools.

Nevertheless, the insoles were able to provide consistent CoPAP estimates with successful
compensation for the non-uniform sensor distribution via weighting each sensor’s contribution by the
number of sensors located at the same coordinate. The CoPAP profiles showed “very high” correlation
and only moderate error relative to the force plate at both tested speeds, with outcomes comparable
with the other existing devices [20,33,38]. This result was especially relevant considering the limited
accuracy of the experimental setup for this calculation and the 2D approximation in referring the CoP
estimated by the force platform to the insole local coordinate system.

Regarding measurement repeatability, the variability of the vGRF profiles was markedly higher
for those recorded by the insoles than by the force-plate, while their respective performances were
similar for the estimation of the CoPAP. The higher insole variability for the vGRF profiles was probably
another consequence of the partially sensorized plantar area. Indeed, the insoles may overestimate the
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actual variability of the vGRF because relatively small variations in pressure distribution between the
sensitive and non-sensitive areas across strides may result in markedly different vGRF profiles.

5. Conclusions

In this paper, we presented a simplified prototype of the pressure-sensitive insoles described
in [27], optimized for gait-events recognition with a reduced number of sensors, with the objective of
enabling real-time applications such as with active orthoses, prostheses, and sensory feedback.

The results of the experimental verification against a commercial force platform showed that the
new system was capable of recognizing the HS and TO events with approximately 60 ms and 40 ms of
delay (respectively), and of estimating the stance duration with an error of 1.3% of the stride period.
The insoles proved accurate for the estimation of the duration of the stance/swing phases compared to
the other existing, benchmark portable devices. The estimated delays in the recognition of the HS and
TO events may be suitable for the intended use case of this device (i.e., gait phase estimation in the
context of wearable robotics). Moreover, the observed trend toward smaller errors for slower walking
speeds could work favorably for the insoles, which were primarily intended for users with limited
ambulation abilities.

Nonetheless, additional approaches for gait-event recognition shall be investigated to improve
temporal accuracy such as the application of threshold-based algorithms directly to the raw voltage
signals of the heel sensors, or the modification of the force-to-voltage relation to increase the sensitivity
at low voltages. Notably, such an approach could further bias the estimation of the vGRF. Another
solution could consist of introducing different force thresholds for the HS and TO events to account for
hysteresis and viscoelasticity in the sensor response.

In any case, optoelectronic transduction seemed less responsive than force resistors, but it could
not be ranked in relation to other sensing technologies as, to the authors’ knowledge, no reference
data are available for most of the existing systems. Moreover, other design aspects related to sensor
technology limit the adaptability of the current prototype to the foot sizes and gait patterns of different
users. In the first case, though the sensor configuration could be easily scaled, tactel dimensions would
remain unvaried, thus determining a relatively larger/smaller sensitive area for smaller/larger foot
sizes. Regarding adaptability to different gait patterns, in case of users with pathological gait, insole
performance could further vary on a subject basis, as the optimized sensor configuration was obtained
elaborating the data of subjects without known abnormal gait patterns. Depending on the impact of
these deviations on the estimation of insole signals, more advanced data processing could be required
to maintain reliable gait-events recognition and estimation of vGRF and CoP profiles.

Reducing the pressure-sensitive area of the current insole design with respect to the previous
prototype has reduced the insole performance for the estimation of the vGRF. Given the low degree
of correlation with the profiles recorded by the force platform, the vGRF estimated by the insoles
would not constitute an appropriate variable for quantitative gait analysis. On the other hand, the
estimation of the CoPAP was demonstrated to be reliable and on par with the accuracy of the other
existing in-shoe devices. Therefore, besides the primary intended use case as sensors for the control of
robotic devices, the insoles could be contextually exploited for gait assessments based on monitoring
the CoPAP and the main temporal parameters, given the fair accuracy in the quantification of the stance
phase duration. Furthermore, it may still be possible to improve the insole-based estimate of vGRF by
introducing subject-specific calibration procedures similarly to [1], though the quality of the vGRF
signals is bound to remain limited by the partial sensitive area. Finally, a complimentary consideration
on the comparison of the two versions relates to the costs of the two prototypes. The novel insole has a
significantly lower number of sensory components (75%) and in turn, a significantly simpler electronics
for sensor readings and communication. Such practical advantages may influence the potential use
of the technology in non-medical applications, where reliable temporal information is sufficient to
provide relevant gait information and cost represents a limiting factor for the adoption. Still, given the
easily scalable sensing technology, a different sensing configuration featuring a completely sensorized
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plantar area would be preferable for gait assessment scenarios in which vGRF is a variable of interest
and cost does not represent a limiting factor for its adoption.
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