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Estimating single-trial evoked potentials (EPs) corrupted by the spontaneous electroencephalogram (EEG) can be regarded as signal
denoising problem. Sparse coding has significant success in signal denoising and EPs have been proven to have strong sparsity over
an appropriate dictionary. In sparse coding, the noise generally is considered to be a Gaussian random process. However, some
studies have shown that the background noise in EPsmay present an impulsive characteristic which is far fromGaussian but suitable
to be modeled by the 𝛼-stable distribution (1 < 𝛼 ≤ 2). Consequently, the performances of general sparse coding will degrade or
even fail. In view of this, we present a new sparse coding algorithm using 𝑝-norm optimization in single-trial EPs estimating. The
algorithm can track the underlying EPs corrupted by 𝛼-stable distribution noise, trial-by-trial, without the need to estimate the 𝛼
value. Simulations and experiments on human visual evoked potentials and event-related potentials are carried out to examine the
performance of the proposed approach. Experimental results show that the proposed method is effective in estimating single-trial
EPs under impulsive noise environment.

1. Introduction

Evoked potentials (EPs) are time-locked biological signals
recorded from the scalp in response to a variety of well-
defined external stimuli [1]. Depending on the modality
of stimulation, EPs are categorized into auditory (AEPs),
visual (VEPs), somatosensory (SEPs), and motor (MEPs)
evoked potentials. EPs contain several components that can
be distinguished according to their respective latencies and
amplitudes [2].The latency variations of specific components
can objectively reflect changes in the underlying state of
the neural pathways, which is very meaningful in cognitive
science research and clinical applications, such as brain-
computer interface, the diagnosis of possible brain injury,
and the intraoperativemonitoring [3, 4].Many single-trial EP
extracting methods have been proposed in order to enhance
the ability to track latency variations [5].

EP signals have time-locked (quasi-periodic) character-
istics and are always accompanied by nonstationary ongoing
electroencephalogram (EEG) signals. Moreover, the signal-
to-noise ratio (SNR) of EP records is usually low (0 to−30 dB). Estimating single-trial EPs corrupted by EEG can

be regarded as signal denoising problem. Sparse coding is a
powerful tool for the analysis of nonstationary signals [6, 7];
it has achieved significant success in signal denoising and
separation.Huang et al. [8] proposed themixed overcomplete
dictionary-based sparse component decomposition method
(MOSCA), which decomposes the EP and EEG signals in
the wavelet dictionary (WA) and discrete cosine transform
(DCT) dictionary, respectively. However, the WA and DCT
dictionaries cannot meet completely the characteristics of
EPs and EEG. Their partial components are represented by
the wrong dictionaries and their corresponding coefficients.
Therefore, MOSCA cannot separate the EP and EEG signals
sufficiently. To solve this problem, we proposed a dictionary
construction method for the EP signal and a double-trial
estimation method based on joint sparse representation [9].

Traditionally, for mathematical convenience, the noise in
EP signals is considered to be a Gaussian random process.
However, some studies have shown that the background
noise in clinical EP signals is often impulsive non-Gaussian
distributed [10]. Consequently, the EP estimation algorithms
developed under a Gaussian background noise assumption
may fail or be not optimal. That is, the impulsive feature in
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Figure 1: Stimulated EP.

the noise may cause the performance of algorithms based
on the second-order moment (SOM) to degrade or even fail.
The 𝛼-stable distribution is a widely used class of statistical
distributions for impulsive non-Gaussian random processes
[11]. In comparison with a Gaussian process, an 𝛼-stable
process often has many more sharp spikes in its realization
and a probability density function (PDF) with a heavy tail
[12, 13]. It has been shown that an𝛼-stable (1 < 𝛼 ≤ 2) process
is more suitable for modeling the background noise in EP
observations than is a Gaussian process because the noise is
often impulsive and its PDF has a heavy tail.This will degrade
the performance of the sparse coding algorithm.

In this paper, we present a novel approach to solving the
EP estimating problem under impulsive noise environment
based on sparse coding using least mean 𝑝-norm (SC-LMP)
optimization. It has been proven that least mean 𝑝-norm
algorithm always works if 𝑝 is set to 1 when 1 < 𝛼 ≤ 2
[14]. So in SC-LMP, in order to facilitate solving the sparse
coefficients, the 1-norm is used in place of the 𝑝-norm.
We then formulate the minimization of the cost function
into a linear programming (LP) problem. The EPs can be
reconstructed by the sparse coefficients and the dictionary.
Experimental results show that the SC-LMP algorithm can
work well when the 𝛼 value dynamically changes. It can track
latency variations even in situations of extremely low SNR.
The rest of this paper is organized as follows. Section 2 gives a
detailed description of our single-trial estimation algorithm.
Section 3 contains our experimental results obtained by using
the SC-LMP method and a comparison with traditional
sparse coding methods with least-mean-square (LMS) opti-
mization and MOSCA. Section 4 presents our conclusions.

2. Single-Trial Evoked Potential
Estimation with SC-LMP

Numerous studies have shown that in EPs the background
noise is found to be non-Gaussian and suitable to bemodeled
by the 𝛼-stable distribution. The main parts of our method
consist of removing the noise 𝑒(𝑡) from the measurement

𝑦(𝑡) and then reconstructing the single-trial EP 𝑠(𝑡). The
measurement 𝑦(𝑡) is

𝑦 (𝑡) = 𝑠 (𝑡) + 𝑒 (𝑡) , (1)
where 𝑠(𝑡) is a time-locked signal and 𝑒(𝑡) is a zero-mean 𝛼-
stable distribution process. A fractional lower-order 𝛼-stable
(FLOA) distribution is obtained if 0 < 𝛼 < 2 for an 𝛼-stable
distribution. One distinct feature of an FLOA process is that
there aremore samples far away from themean or themedian
than those of a Gaussian process. Thus, the wave forms of
FLOA observations have many more impulsive spikes.

2.1. 1-Norm Cost Function. Estimating single-trial evoked
potentials (EPs) corrupted by the spontaneous electroen-
cephalogram (EEG) can be regarded as signal denoising
problem. A least square (2-norm) approach is commonly
used. However, it has been shown that the background noise
in EPs may present an impulsive characteristic which is far
from Gaussian but suitable to be modeled by the 𝛼-stable
distribution (0 < 𝛼 < 2). Compared with 𝐿2-norm, 𝐿𝑃-norm
is a better option.

Sparse coding is a powerful tool in analysing nonstation-
ary signals, and it has shown significant success in signal
denoising and separation. And in our previous papers [9], we
have proved that EPs have strong sparsity over an appropriate
dictionary. The EPs can be represented as

𝑠 (𝑡) = 𝐷𝜃, (2)

where𝐷 ∈ 𝑅𝑀×𝑁 is the dictionary and 𝜃 ∈ 𝑅𝑁×1 is the sparse
coefficient.

The EP estimating problem can be solved using sparse
coding with least mean 𝑝-norm (SC-LMP) optimization.The
cost function is

𝐸 (𝜃) = 𝑦 (𝑡) − 𝐷𝜃𝑝 + 𝜆 ‖𝜃‖1 . (3)
It has been proven that the least mean 𝑝-norm algorithm

always works if 𝑝 is set to 1 when 1 < 𝛼 < 2. So in SC-LMP,
in order to facilitate solving the sparse coefficients, the 𝐿1-
norm is used in place of the 𝑝-norm. So the function can be
rewritten as

𝐸 (𝜃) = 𝑦 (𝑡) − 𝐷𝜃1 + 𝜆 ‖𝜃‖1 . (4)
The problem for the estimation of 𝜃 by minimizing (4) could
be formulated into

min
𝜃

‖𝑃𝜃 − 𝑌‖1
where 𝑃 = [ 𝐷

𝜆𝐼𝑁×𝑁] , 𝑌 = [
𝑦 (𝑡)
0𝑁×1] ,

(5)

where 0 denotes the vector of all zeros with appropriate size.

2.2. Optimization. In order to solve the optimization problem
in (5), we formulate the problem as a LP problem as follows.
Let 𝑥 = 𝑃𝜃 − 𝑌, 𝑥+ = max(𝑥, 0), and 𝑥− = max(−𝑥, 0). Then𝑥 can be expressed as 𝑥+−𝑥−.Theminimization problem can
now be rewritten as

min
𝜃,𝑥+,𝑥−

1𝑇𝑥+ + 1𝑇𝑥−
s.t. 𝑃𝜃 − 𝑌 = 𝑥+ − 𝑥−

𝑥+, 𝑥− ≥ 0,
(6)
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Figure 2: Continued.
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Figure 2: Single-trial EPs 𝑠(𝑡, 𝑚 = 15, 10, 5, −5) with MSNR = −7 dB estimated using our method.

where 1 denotes the vector of all ones with appropriate size.
The equation above can be written as a LP problem in a
standard form as follows:
min
𝑥

𝑞𝑇𝑥
s.t. 𝐴𝑥 = 𝑌

where 𝑞 = [[
[
0
1
1
]]
]
, 𝑥 = [[[

[

𝜃
𝑥+
𝑥−
]]]
]
, 𝐴 = [𝑃 −𝐼 𝐼] .

(7)

Then we can solve the LP problem using linear interior point
solver (LIPSOL), which is based on a primal-dual interior
point method.

𝑞 = [[
[
0
1
1
]]
]
,

𝑥 = [[[
[

𝜃
𝑥+
𝑥−
]]]
]
,

𝐴 = [𝑃 −𝐼 𝐼] .

(8)

2.3. Reconstructing. After solving (7), we can use the solution𝑥 to reconstruct the single-trial EP 𝑠(𝑡) as follows:
𝑠 (𝑡) = 𝐷𝜃. (9)

3. Experiment Results

Computer simulation was conducted to verify the perfor-
mance of the SC-LMP algorithm for EP signal estimation
under FLOA noise environments. The simulated EP data

is constructed by superimposing three Gauss distribution
functions [15] and the waveform is shown in Figure 1; thus,

𝑠 (𝑡, 𝑚) = −0.6 exp(−(𝑡 − (75 − 𝑚))2152 )
+ 0.7 exp(−(𝑡 − (100 + 𝑚))2202 )
− 0.8 exp(−(𝑡 − (145 − 𝑚))2252 ) .

(10)

FLOA noise with various 𝛼 values was generated to
simulate background noise. The observations were additive
mixtures of the noise-free signals and the simulated FLOA
background noise. The mixed signal-to-noise ratio (MSNR)
is defined as follows:

MSNR = 10 lg(𝜎2𝑠𝛾V ) , (11)

where 𝜎2𝑠 and 𝛾V are the variance of the noise-free signal and
the dispersion of the FLOA background noise, respectively.
Two estimation algorithms, namely, LMS-RBFNN [16] and
ARX [17], were compared in the following simulations. In
ARX, the 𝑠(𝑡, 0) is used as the exogenous input to the
estimated ARMA (autoregressive-moving-average) model;
the model order is estimated by FPE [18] and the parameters
are calculated by LMS [19]. To measure the performance of
the algorithms, the correlation coefficient 𝜌 is defined as

𝜌 = ∑𝑀−1𝑡=0 (𝑠 (𝑡, 𝑚) − 𝑠) (𝑠 (𝑡, 𝑚) − 𝑠)
√∑𝑀−1𝑡=0 (𝑠 (𝑡, 𝑚) − 𝑠)2√∑𝑀−1𝑡=0 (𝑠 (𝑡, 𝑚) − 𝑠)2

, (12)

where 𝑠 and 𝑠 are the time mean values with 𝑀 samples of𝑠(𝑡, 𝑚) and 𝑠(𝑡, 𝑚).
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Figure 3: Comparison of three methods in different alpha values.

3.1. Simulation Experiment. In this section, the proposed
method is compared with two other methods, namely, ARX
and LMS-RBFNN. ARX and LMS-RBFNN are one of the
commonly usedmethods to extract EP signal. ARXmodeling
for single-trial EP estimation was proposed by Cerutti et al.
[20]. This method can estimate single-trial EPs even when
the SNR is very low and has been applied to the monitoring
of the depth of anesthesia during surgery. RBENN is a
kind of supervised feedforward neural network based on
function approximation theory. Fung et al. [21] proposed
LMS-RBFNNmethod according to the strong approximation
ability and fast training speed of RBENN. Figure 2 shows

4 graphs of the estimated single-trial EP signals based on
our method. Figures 2(a1)–2(a4) include stimulated EP in
various latencies (𝑚 = 15, 10, 5, −5) which are indicated by
dotted line and the accordingly observed signals are mixed
byMSNR = −7 dB which are indicated by dashed-dotted line.
Figures 2(a1)–2(a4) show the accordingly estimated results by
SC-LMP. From Figure 2, we can see that, with the increase
of the value of the MSNR, our method has better dynamic
estimation ability of latency and amplitude in different 𝑚
value.

As shown in Figure 3, we changed 𝛼 value from 1 to 2
and calculated the improvement ofMSNRand the correlation
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Figure 4: Comparison of three methods in different MSNR values.
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Figure 5: The extracted result by using real data.

coefficient in the corresponding MSNR value (MSNR = −15,−10 dB) obtained with our method, ARX and LMS-RBFNN.
Comparedwith ARX and LMS-RBFNN, ourmethod exhibits
better performance, with slight decreasing of MSNR when
alpha varies from 2 to 1.

The improvement of MSNR and the correlation coef-
ficient of our method, ARX and LMS-RBFNN in three
alpha values (alpha = 1, 1.5, and 2), are shown in Figure 4.
From Figure 4, with the decrease of the value of MSNR, the
estimated value of MSNR and the correlation coefficient of
three methods decline. However, compared with the other 2
methods, our method has better performance.

3.2. Real Data. For further evaluation of the performance
of our method, real VEPs were used by [22]. We chose a
small piece of data for trial. The data was then rereferenced
to the average of channels O1, Oz, and O2, low-pass filtered
between 0 and 9Hz with a 7th-order Butterworth filter, and
downsampled to 128Hz.

Figure 5(a) shows the stimulated EP and the accordingly
observed signals which are the mixture of the stimulated
EP and 𝛼-stable distribution noise by MSNR = −7 dB. We
extract the EP with SC-LMP, and results are shown in
Figure 5(b). Clearly, the signal estimated using our method
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better resembles the stimulated EP. The component P300 of
VEPs extracts with our method is distinct.

4. Conclusion

To sum up, we proposed a novel single-trial EP estimated
method based on SC-LMP. This method uses sparse coding
to represent EPs and utilize a zero-mean 𝛼-stable distribution
process to express spontaneous EEG according to the char-
acteristics of background signal. In order to facilitate solving
the sparse coefficients, the 𝑝-norm is used in place of the 𝐿2-
norm. We conducted a series of experiments on simulated
and real data, and the results were evaluated using waveform
extractions and other metrics. As the experimental results
show, our method has better estimated capacity and per-
formance than other existing algorithms. Future works will
focus on improving the stability and practicability of the new
proposed method to obtain a better real-time monitoring of
the components. This could lead to the development of more
advanced applications for real-world signals.
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