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ABSTRACT

The past decades have brought a steady growth of
pathway databases and enrichment methods. How-
ever, the advent of pathway data has not been ac-
companied by an improvement in interoperability
across databases, hampering the use of pathway
knowledge from multiple databases for enrichment
analysis. While integrative databases have attempted
to address this issue, they often do not account
for redundant information across resources. Further-
more, the majority of studies that employ pathway
enrichment analysis still rely upon a single database
or enrichment method, though the use of another
could yield differing results. These shortcomings call
for approaches that investigate the differences and
agreements across databases and methods as their
selection in the design of a pathway analysis can
be a crucial step in ensuring the results of such
an analysis are meaningful. Here we present Deco-
Path, a web application to assist in the interpreta-
tion of the results of pathway enrichment analysis.
DecoPath provides an ecosystem to run enrichment
analysis or directly upload results and facilitate the
interpretation of results with custom visualizations
that highlight the consensus and/or discrepancies at
the pathway- and gene-levels. DecoPath is available
at https://decopath.scai.fraunhofer.de, and its source
code and documentation can be found on GitHub at
https://github.com/DecoPath/DecoPath.

INTRODUCTION

In recent years, high-throughput (HT) technologies have
given rise to a perpetual influx of -omics data, requiring
pragmatic approaches to sift out meaning. One of the most

common applications of HT technologies is gene expression
profiling to simultaneously determine the expression pat-
terns of thousands of genes at the transcription level under
certain conditions (1). While a host of statistical techniques
are available to identify genes that differ in expression de-
pending on a particular condition, gene set or pathway en-
richment analysis methods represent a major class of tools
researchers employ to group lists of genes into defined path-
ways and understand the functional roles of genes for any
given set of conditions (2). To date, almost a hundred dif-
ferent pathway enrichment methods have been proposed,
including the popular over-representation analysis (ORA)
and gene set enrichment analysis (GSEA) (3). Though these
methods may vary based on the overarching categories they
fall into (e.g. topology versus non-topology-based) or the
statistical techniques used, they have widely shown their
ability to deconvolute biological pathways dysregulated in
a given state (4).

Numerous pathway databases have been developed which
aim at representing biological pathways from various van-
tage points (e.g. differing scopes, contexts, boundaries or
pathway types). The existence of several hundreds of these
databases reflects the inherent complexity and variability
of biological processes that occur in living organisms (5).
Further compounding this complexity is the fact that bio-
logical pathways housed in these databases are human con-
structs, delimited based on abstract boundaries defined by
a researcher or the consensus of the community. This im-
plies that a well-studied pathway could contain different bi-
ological entities depending on the boundaries defined by the
databases that store it. These differences across databases
can manifest in variability in the results of pathway enrich-
ment analysis (6,7), in a similar way as methods can impact
results (4,8–10).

Recent approaches to pathway enrichment analysis have
focused on the integration of multiple datasets across differ-
ent platforms to ensure a broader coverage of significantly
enriched pathways (11–13). Other techniques attempt to
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account for potential differences that may arise in the re-
sults of pathway enrichment analysis by combining gene
sets from several pathway databases. For instance, (14) pre-
sented an approach that leverages GSEA to calculate a com-
bined enrichment score for multiple -omics layers using sev-
eral databases. However, performing pathway enrichment
analysis using multiple databases to increase the number of
pathways covered can only partially address the challenges
associated with variability in results. This is because such an
approach falls short of leveraging the substantial overlap
of pathway knowledge across databases which could pro-
vide more comprehensive results (15–17) or shed light on in-
consistencies across pathway databases (18). Furthermore,
combining several databases can result in redundant path-
ways, an issue tackled by the SetRank algorithm which dis-
counts significant gene sets if their significance can be ex-
plained by their overlap with another gene set (19). Finally,
a possible, natural solution to better connect and struc-
ture redundant information across databases lies in lever-
aging pathway ontologies (20) or pathway mappings with
database cross-references (17). By connecting related path-
ways across databases, we can, in turn, investigate the con-
sensus, or lack thereof, of the results of pathway enrichment
analysis between databases or methods as demonstrated by
several recent benchmarks (4,8–10).

Here, we present DecoPath, a web application that pro-
vides a user-friendly and interactive application to com-
pare and interpret the results of pathway enrichment analy-
sis yielded by different pathway databases. To facilitate the
comparison of results across databases and bring to light
possible contradictory results, we present several interac-
tive visualization tools designed to better interpret the re-
sults of pathway enrichment at both the pathway and gene-
level. While these visualizations can generally be used for
any pathway enrichment method, DecoPath also integrates
standard pathway enrichment methods in its pipeline, thus,
enabling users to conduct an entire enrichment analysis
on the web application (from data submission to interpre-
tation). Finally, although DecoPath provides four default
databases, it also allows users to upload gene sets and map-
pings such that analyses can be run on their independently
curated gene sets.

MATERIALS AND METHODS

Implementation

The server-side was implemented in the Python program-
ming language using the Django framework (https://www.
djangoproject.com/). This framework operates using a
Model-View-Controller (MVC) architecture and was inte-
grated with Celery (http://www.celeryproject.org) and Rab-
bitMQ (https://www.rabbitmq.com) for asynchronous task
execution. The front-end of DecoPath comprises several
interactive visualizations implemented using a collection
of powerful Javascript libraries, including jQuery (https://
jquery.com), D3.js (https://d3js.org/) and DataTables (https:
//datatables.net/). Furthermore, DecoPath relies on Boot-
strap 4 (https://getbootstrap.com/) for the main design of
the website. The web application is containerized using
Docker for reproducibility purposes and easy deployment.
We strongly recommend the use of DecoPath on Chrome,

Firefox or Safari browsers and on Mac or Linux operating
systems.

Pathway resources

DecoPath enables users to compare the results of enrich-
ment analysis yielded using various pathway databases.
As mentioned in the Introduction, pathways in different
databases can substantially overlap, such that a pathway in
one database can have counterparts in several others. Lever-
aging equivalent pathway mappings across several widely-
used databases, DecoPath aims at highlighting the consen-
sus, or lack thereof, of enrichment analysis results for each
equivalent pathway. Expanding upon our previous work
(17), we added novel equivalent pathway mappings as well
as mappings for an additional database (i.e. PathBank (21))
(Supplementary Text). Thus, the released version of Deco-
Path provides users with the following pathway databases:
KEGG (22), Reactome (23), WikiPathways (24) and Path-
Bank (Retrieved 3 August 2020). Additionally, as integra-
tive resources can lead to more biologically consistent re-
sults in enrichment analysis (6), a DecoPath-specific gene
set database containing merged gene sets of equivalent path-
ways across the aforementioned databases is also provided,
as described in the following section. Finally, in order to en-
sure that regular updates to these pathway resources are re-
flected in DecoPath, the software is updated with the latest
gene sets annually.

Generating a pathway hierarchy

The consolidation of each of the pathway databases into a
pathway meta-database was conducted in order to generate
a pathway hierarchy. In doing so, equivalent representa-
tions of pathways across KEGG, PathBank, Reactome
and WikiPathways were combined. The pathway hierarchy
contains a total of 644 pathways from these four databases
and can be found at https://github.com/ComPath/compath-
resources/blob/master/mappings/decopath ontology.xlsx
(dated 13 January 2021). The hierarchy comprises eight
major categories: metabolism, immune, signaling, commu-
nication and transport, cell death, disease, DNA repair
and replication, and others. All pathways in the hierar-
chy retained their original identifiers except equivalent
pathways which were merged and given unique names
and identifiers. The pathway hierarchy is a directed acyclic
graph with a maximum depth of 4, in which relation types
between pathways can be either is-part-of or equivalent-to
relations. The curation process to generate the hierarchy is
described in the Supplementary Text. Periodic updates to
the pathway hierarchy are made on an annual basis.

Pathway enrichment methods

DecoPath comprises two of the most widely used path-
way enrichment methods (25–27): over representation anal-
ysis (ORA) and gene set enrichment analysis (GSEA) (3).
ORA aims at identifying pathways (i.e. gene sets) that
are over-represented within a list of genes of interest. A
pathway is considered enriched (over-represented) if the
P-value arising from a one-sided Fisher’s exact test (28)
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is lower than a specified threshold, typically 0.05. As this
test is conducted for each pathway in the database, De-
coPath’s implementation of ORA corrects the P-value by
applying multiple hypothesis testing correction with the
Benjamini–Yekutieli method under dependency (29). The
second method, GSEA, determines whether a pathway or
a gene set significantly differs between two groups. A path-
way is considered significantly regulated in that condition
if genes of that pathway appear in the top or bottom rank-
ing of a list of differentially expressed genes (DEGs) more
than expected by chance. An alternative version of GSEA,
namely GSEA Pre-Ranked (3), is also available if users
wish to run GSEA on a pre-ranked list of genes. DecoPath
uses implementations of GSEA and GSEA Pre-Ranked
from gseapy (https://gseapy.readthedocs.io/en/latest). Addi-
tionally, DecoPath enables conducting differential gene ex-
pression (DGE) analysis between groups through DESeq2
(version 1.22.2). Apart from these methods, DecoPath also
provides the option to include additional pathway enrich-
ment methods into the web application.

Installation

Although we provide a freely available instance of Deco-
Path at https://decopath.scai.fraunhofer.de/, in the case of
large datasets or cases where the compute capacity of the
server may be insufficient depending on the type of anal-
ysis, users can install and use DecoPath in their own sys-
tem. We offer two options to install DecoPath depending
on the needs of the user. The first and easiest method for
those unfamiliar with Django-based web applications is
to install Docker and deploy the Docker container which
will install required components and run the web applica-
tion. Detailed instructions are provided on GitHub (https:
//github.com/decopath/decopath). Alternatively, DecoPath
can be directly deployed following the instructions in the
GitHub repository.

Runtime considerations

Computation time is dependent on the type of analysis, size
of the datasets as well as the device specifications. ORA can
be run on a gene list on a timescale of seconds and requires
the relatively lowest usage of memory. A DGE analysis task
has a timescale of several minutes, while GSEA on a typical
expression dataset with two experimental groups and four
databases can also be done within minutes with a dual-core
Intel Core i5 CPU and 16 GB RAM.

Case scenario

Using each of the available enrichment methods, we demon-
strate a typical workflow in DecoPath with the The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-
LIHC) dataset (30). Gene expression data from this dataset
was retrieved from the Genomic Data Commons (GDC;
https://gdc.cancer.gov) portal through the R/Bioconductor
package, TCGAbiolinks (version 2.16.3; (31)) on 4 August
2020. To run GSEA, we employed RNA-Seq expression
data normalized using Fragments Per Kilobase of tran-
script per Million mapped reads upper quartile (FPKM-

Figure 1. DecoPath workflow. Users can upload datasets to run pathway
enrichment analysis or directly upload enrichment results from their own
experiments. Once results have been loaded, DecoPath offers users several
visualizations designed to evaluate pathway consensus at the database, hi-
erarchy and gene set level. Users can also opt to directly upload results
generated from varying enrichment methods across to visualize variations
from these against a set of pathway databases.

UQ). DGE analysis using read counts from the TCGA-
LIHC dataset (retrieved from the GDC; https://gdc.cancer.
gov) was performed between normal and tumor samples to
derive a gene list to conduct ORA. This final list of genes
was restricted to genes that exhibited an adjusted P-value
< 0.05. Specifications of the parameter settings for ORA
and GSEA are listed in Supplementary Table S1.

RESULTS

Here, we describe the DecoPath web application. A typical
workflow of the web application involves the submission of
an experiment, generation of results, and the subsequent ex-
ploration and visualization of these results (Figure 1). In the
following, we provide a detailed description for each of the
steps in the workflow.

Submission form

Once a user has logged into DecoPath, on the Homepage,
the input form allows them to upload their files and select
parameters to run different analyses or upload results from
them (Figure 2). For users opting to run analyses using De-
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Figure 2. DecoPath homepage. Once a user has logged in, on the home-
page, they are provided with the option to either run or submit the results
of a pathway analysis. If a user opts to submit the results of an analysis, they
can upload their data, select the databases they wish to include, choose the
parameter settings for each experiment and optionally perform a concur-
rent DGE analysis. Once the form has been submitted, users are directed
to the Experiments page where they can find visualizations and function-
alities to compare and explore the consensus around different pathway
databases.

coPath, the workflow depends on the analysis they select.
Briefly, GSEA requires the submission of datasets, such as
from RNA-Seq, microarray or ChIP-Seq, accompanied by
a design matrix denoting the class labels (e.g. normal and
tumor) for samples in the dataset. To run ORA, users need
only submit a list of genes of interest. For either method,
users can select which of the four pathway databases they
would like to include in the analysis. By default, genesets
from DecoPath which contain merged equivalent pathways
are also included in the analysis.

These pathway enrichment methods can also be supple-
mented by DGE analysis to generate visualizations and
identify genes that are differentially expressed according to
a fold change cutoff. In order to run DGE analysis, un-
normalized read counts in the form of a matrix of integer
values is required, as is a design matrix, analogous to the
one required for GSEA. For each of these analyses, gene
identifiers should be in the form of HUGO Gene Nomen-
clature Committee (HGNC) symbols. Alternatively, users
can opt to download gene set files for pathway databases in-
cluded in DecoPath, run GSEA, ORA and/or DGE anal-
ysis, and upload the results of the analysis to the website.
By directly uploading the results, users can also analyze the
results of alternative enrichment methods such as Enrich-
Net (32) and Signaling Pathway Impact Analysis (SPIA)
(33) using DecoPath. Detailed descriptions of the input files
can be found in the User Guide and FAQs sections on our
website.

Visualizations and analyses

Once users have submitted their query, they are directed
to the Experiments page where they can view the status
as well as details of their experiments, and explore and vi-
sualize their results (Figure 3). To interpret the results of
enrichment analysis, we implemented multiple, customized
tools intended to provide insights on the consensus across
databases, each of which we detail below.

Exploring the consensus across pathway databases

The first visualization summarizes the consensus results of
pathway enrichment analysis on multiple databases. For
each pathway (row), the table shows the concordance across
databases, reflected in terms of the significance value, specif-
ically for ORA, and both the significance value and di-
rectionality of the normalized enrichment score (NES) for
GSEA (Figure 4). Using this visualization, users can rapidly
identify concordant (i.e. a given pathway is reported as sig-
nificantly enriched in a gene list across all databases) and
contradictory (i.e. a given pathway is reported as signifi-
cantly enriched in a gene list in one or more databases, but
not in the others [or vice versa]) pathways and directly com-
pare their results.

We conducted a case scenario to investigate the results
for ORA and GSEA using four pathway databases on the
TCGA-LIHC dataset. Among the pathways enriched in
ORA which could be found in more than one pathway
database, we found 88 concordant pathways and 41 contra-
dictory ones. Similarly, the results of GSEA revealed 70 con-
cordant and 45 contradictory pathways. Among the con-
tradictory pathways we observed in GSEA, the majority
of contradictions pertained to whether or not the pathway
was significantly enriched, while 12 pathways also differed
in the sign of the NES (i.e. the same pathway was reported
as enriched at the top of a ranked gene list for one database
and at the bottom for another). Additionally, 53 concordant
pathways were common between the results of GSEA and
ORA; however, as expected, differences based on the path-
way enrichment method were observed. Overall, the results
of the LIHC-TCGA dataset for both methods showed that
approximately one-third of equivalent pathways were con-
tradictory across the two methods. Thus, the selection of
databases, as well as the enrichment method, are important
aspects in the experimental design of pathway enrichment
analysis. We have observed that the use of one over another
can yield discordant results, leading to different interpre-
tations of results depending on the database choice. In the
following sections, we illustrate why these results may be dis-
crepant by analyzing the gene sets of a given pathway.

Visualizing consensus through the pathway hierarchy

In the second visualization, users can explore the results of
their analysis within the context of a pathway hierarchy (see
Materials and Methods section). This user-friendly and in-
teractive visualization represents the different levels of the
pathway hierarchy as circles, each of which represent a child
or a parent pathway. In the case of GSEA, pathways that do
not show statistically significant (adjusted P-value <0.05)
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Figure 3. Experiments page. The Experiments page lists details of each of the experiments that were run or uploaded. The status of the experiment is given
in the ‘Status’ column, indicating whether the experiment was successfully run, if it is pending or has failed. Through this page, users can then navigate to
each of the different visualizations to explore the results of their analysis.

Figure 4. Consensus page. The Consensus page visualization shows the consensus of the results of enrichment analysis across databases at the pathway
level. In the case of GSEA, the table displays the NES for a given pathway across each database as well as the NES of the merged gene sets of all equivalent
pathways, the latter of which is indicated in the column ‘DecoPath’.
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differences between groups are colored gray, while statisti-
cally significant ones are colored red or blue based on the
sign of the NES, and shaded by a gradient based on the
magnitude of the NES. In the case of ORA, pathways are
colored gray if they are not significant with an adjusted P-
value < 0.05 and red otherwise. Additionally, the size of the
gene sets for each of the pathways is proportional to the
size of the circles. Furthermore, interactive visualizations
also offer zoom and search functionalities to easily identify
pathways of interest. In summary, with this tool, users can
not only explore the enrichment results through the entire
pathway hierarchy but also intuitively evaluate equivalent
pathways and the size of the pathways, both of which are
known to affect results (6,34).

Continuing the case scenario on the LIHC datasets, this
visualization was used to identify major pathways that were
enriched in both ORA and GSEA (Figure 5). The organiza-
tion of pathways into eight major categories allows users to
intuitively navigate through the hierarchy and identify path-
way groups in which several pathways are enriched. For in-
stance, among all pathways pertaining to metabolism, we
observed that lipid and purine metabolism pathways were
significantly enriched in both GSEA and ORA, indicat-
ing that there was a consensus across both methods and
databases. Among other examples of consensus, we found
cytokine signaling within the immune system pathways as
well as MAP kinase signaling within the signaling path-
ways significantly enriched in all methods and databases.
Finally, contrasting colors of this hierarchical view allow
for the rapid identification of contradictory pathways which
can then be further analyzed at the gene-level, aided by the
following visualization.

Analyzing equivalent pathways at the gene level

The third visualization is an interactive Venn diagram that
shows the overlap for equivalent pathways at the gene-level.
In this visualization, we provide a means to analyze exactly
which genes may explicate the findings of the pathway anal-
ysis. By clicking on the subsets of the Venn diagram, users
can display the genes in each of the gene sets. Thus, users can
pinpoint the specific genes of the pathway that might con-
tribute to the contradictions observed in the results of the
enrichment analysis. If fold changes have additionally been
uploaded of DEGs or DGE analysis has been performed,
users can also view the distribution of fold changes of genes
in the dataset in an accompanying histogram.

To demonstrate this visualization, we explored both a
pathway showing concordant results (i.e. DNA replication
pathway) and another showing contradictory results (pyru-
vate metabolism) from the results of pathway enrichment on
the TCGA-LIHC dataset. In the case of the DNA replica-
tion pathway, the results showed that the KEGG, Reactome
and WikiPathways equivalent representations consistently
reported NES over 2.0, suggesting that the pathway is regu-
lated in the liver cancer dataset. We then explored the over-
lap of the gene sets of the DNA replication pathway from
the three databases, observing that the log2 fold change val-
ues for the vast majority of genes in the pathway were pos-
itive. As GSEA finds the pathways which are nearest to the
top (or bottom) of the ranked list of DEGs, this can account

for the observance of the high NES (Figure 6A). Similarly,
we explored a pathway (i.e. pyruvate metabolism), which
had contradictory results in KEGG, Reactome and Path-
Bank. In this case, these pathway databases disagreed in the
direction of regulation of the NES; while the NES of pyru-
vate metabolism was positive in KEGG and PathBank, the
sign of the NES was negative in Reactome. The consensus
between KEGG and PathBank is not surprising as the gene
sets of the pathway largely overlap (Figure 6B), while only
13 of the 31 genes in the Reactome pathway overlap with the
other two gene sets. By plotting the distribution of the other
18 genes that are uniquely present in the Reactome pathway,
we found that these genes were largely over-expressed, ex-
plaining the observed differences in the NES between them.
Thus, this example illustrates how this tool can be used to
assist in the interpretation of the discrepant results of path-
way enrichment analysis.

DISCUSSION

While the popularity of pathway enrichment analysis for
the interpretation of -omics data has grown over the past
two decades and led to the development of over a hundred
different methods, recent benchmarks have shown that the
selected method can influence results (4,8,9,27). Further-
more, the majority of pathway enrichment analyses tend
to be conducted on a single pathway database, the choice
of which can also impact results of an analysis (6). While
several tools have been implemented to run enrichment
analysis on multiple platforms and methods (see Introduc-
tion), tools that facilitate the direct comparison of results
yielded using different databases or enrichment methods at
the pathway- and gene-levels are lacking. To address this is-
sue, we have presented DecoPath, the first web application
designed to assist in the interpretation of the results of path-
way enrichment methods. DecoPath provides users with a
broad range of built-in tools and visualization to conduct
enrichment analyses and guide them in the interpretation
of the results using multiple pathway databases.

Nonetheless, the presented web application is not without
its limitations. First, while multiple enrichment methods ex-
ist, DecoPath only enables running two of the most popular
pathway enrichment analyses. Similarly, DecoPath exclu-
sively contains four pathway databases given the substan-
tial curation effort required to map and harmonize path-
way databases. To address these limitations, we enable users
to directly upload results from other enrichment methods
or pathway mappings from additional databases. Another
limitation is the computational power of the server required
to run experiments on datasets with a large sample size, or
depending on the type of analysis conducted, may not be
enough. However, since the source code of the web applica-
tion is available (https://github.com/DecoPath/DecoPath)
and DecoPath can be containerized in Docker, users can
deploy the web application as per their needs to run more
computationally demanding analyses.

In the future, we plan to map and integrate additional
databases into DecoPath, as well as more enrichment meth-
ods. Furthermore, we envision the implementation of a con-
sensus algorithm to combine the results obtained across
multiple databases into a single score, in line with ap-
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Figure 5. Circle pack visualization of the pathway hierarchy using different pathway enrichment methods. The figure corresponds to the interactive visual-
izations displaying the results of running ORA (A) and GSEA (B) on the LIHC dataset. In this visualization, results are customized based on the pathway
enrichment method. In the case of Functional Class Scoring (FCS) and Pathway Topology (PT) based methods, the visualization highlights the direction
of the dysregulation for each significantly dysregulated pathway as well as for the adjusted P-value (B). On the other hand, for ORA, the visualization
highlights pathways that are significantly enriched based on an adjusted P-value (A).

Figure 6. Overlap of gene sets for a given pathway. Venn diagrams display the overlap of gene sets for equivalent pathways across user selected databases.
By running DGE analysis, users can also view a histogram of the distribution of log2 fold changes for DEGs in their dataset to identify which genes
are leading to either consistent or contradictory results for their pathway analysis. (A) Venn diagram of the overlap of gene sets for the DNA replication
pathway from KEGG, Reactome and WikiPathways is shown above, while a histogram of log2 fold changes for DEGs from this pathway is shown below (in
this example, the pathway representation from Reactome). (B) Venn diagram of the pyruvate metabolism pathway from KEGG, Reactome and PathBank
and a histogram of log2 fold changes for DEGs for the pyruvate metabolism pathway Reactome are displayed.
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proaches which integrate results obtained by an ensemble of
enrichment methods, such as CGPS (35) and EGSEA (36),
whilst taking into account variables such as gene set size
and the magnitude of the enrichment score and/or P-value.
Finally, we hope that our curation effort lays the ground-
work for a future overarching pathway ontology with cross-
references to databases that could be leveraged and ex-
tended by the pathway community.
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A freely available instance of DecoPath can be found at
https://decopath.scai.fraunhofer.de/.
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