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The Approximate Number System (ANS) allows individuals to assess nonsymbolic
numerical magnitudes (e.g., the number of apples on a tree) without counting. Several
prominent theories posit that human understanding of symbolic numbers is based –
at least in part – on mapping number symbols (e.g., 14) to their ANS-processed
nonsymbolic analogs. Number-line estimation – where participants place numerical
values on a bounded number-line – has become a key task used in research on this
mapping. However, some research suggests that such number-line estimation tasks
are actually proportion judgment tasks, as number-line estimation requires people to
estimate the magnitude of the to-be-placed value, relative to set upper and lower
endpoints, and thus do not so directly reflect magnitude representations. Here, we
extend this work, assessing performance on nonsymbolic tasks that should more
directly interface with the ANS. We compared adults’ (n = 31) performance when
placing nonsymbolic numerosities (dot arrays) on number-lines to their performance with
the same stimuli on two other tasks: Free estimation tasks where participants simply
estimate the cardinality of dot arrays, and ratio estimation tasks where participants
estimate the ratio instantiated by a pair of arrays. We found that performance on
these tasks was quite different, with number-line and ratio estimation tasks failing to
the show classic psychophysical error patterns of scalar variability seen in the free
estimation task. We conclude the constraints of tasks using stimuli that access the
ANS lead to considerably different mapping performance and that these differences
must be accounted for when evaluating theories of numerical cognition. Additionally,
participants showed typical underestimation patterns in the free estimation task, but
were quite accurate on the ratio task. We discuss potential implications of these findings
for theories regarding the mapping between ANS magnitudes and symbolic numbers.

Keywords: approximate number system, symbolic number mapping, number-lines, ratios, estimation

INTRODUCTION

Humans and many nonhuman animals are equipped with a phylogenetically ancient approximate
number system (ANS) that allows them to rapidly enumerate the items in a set without counting
(Kaufman et al., 1949; Mechner, 1958; Meck and Church, 1983; Feigenson et al., 2004; Izard and
Dehaene, 2008). These findings have led many to conclude that the meanings of symbolic numbers
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are grounded in part by mapping number symbols (e.g., 5) to
their nonsymbolic analogs (e.g., an array of 5 dots) (Nieder
and Dehaene, 2009). This obvious symbol-to-referent match is
a large part of the appeal of the analog portion of Dehaene’s
(1992) triple code model and of Piazza’s (2010) hypothesis
about the ANS’ role as a neurocognitive start-up tool for
number concepts. Although there is substantial disagreement
surrounding ANS-as-foundation arguments (e.g., Lyons et al.,
2012; De Smedt et al., 2013; Reynvoet and Sasanguie, 2016;
Leibovich et al., 2017; Núñez, 2017), this point of view remains
widespread.

Number-line estimation – in which participants place
numerical values on a bounded number-line – has become a
key task used in research on the link between symbolic numbers
and numerical magnitudes (Siegler and Opfer, 2003; Whyte
and Bull, 2008; Schley and Peters, 2014). Some consider the
spacing and precision of number-line placements to directly
reflect the spacing and precision of the magnitudes mapped to
symbolic numbers (Siegler and Opfer, 2003; Whyte and Bull,
2008). However, this interpretation of number-line performance
remains contested. Some researchers (e.g., Barth and Paladino,
2011) argue that number-line tasks are proportion judgment
tasks as they require people to estimate the magnitudes of the
stimuli relative to the endpoints. Prior research indicates such
anchored tasks are fundamentally different from tasks for which
participants are free to give any response (Banks and Coleman,
1981; Hollands and Dyre, 2000). As such, task demands may
influence participants’ mapping responses.

Moreover, there is reason to question the underlying
assumption that people can exploit a 1-to-1 map from symbols to
their analog numerosities. More than 75 years of research suggest
that the vast majority of educated humans cannot accurately
make such mappings (Taves, 1941; Kaufman et al., 1949; Indow
and Ida, 1977; Krueger, 1984; Izard and Dehaene, 2008; Crollen
et al., 2011). In study after study, ANS-based estimations yield
under-estimations, and performance varies considerably between
participants (Indow and Ida, 1977; Krueger, 1984; Izard and
Dehaene, 2008). Given that ANS-based estimation is both
inaccurate generally and inconsistent among individuals, it is
difficult to see how such a system can be used for grounding
symbolic numbers.

Here we seek to clarify principles governing the potential links
between ANS-perceived magnitudes and symbolic numbers and
how responses based on those links are affected by different task
constraints. We investigated how three separate tasks that employ
the same sorts of ANS stimuli lead to differences in mapping
performance: free estimation, number-line estimation, and ratio
estimation.

Predictions
Free Estimation
In free estimation tasks, participants are instructed to give
numerical estimates for a range of stimuli whose magnitudes
vary on a given dimension, with no given upper bound.
This sort of estimation with numerosities has often been
described as representing subjective numerical magnitudes in a

logarithmic fashion, such that the perceived distance between
stimuli is proportional to the logarithm of the ratio between
them (e.g., Moyer and Landauer, 1967; Dehaene, 1992). Hence,
the perceived difference between 10 and 20 dots is the same
as that between 22 and 44, or that between 32 and 64
dots. Izard and Dehaene (2008) offered a model whereby
idiosyncrasies in mapping between logarithmically encoded
perceived magnitude and actual symbolic numerical responses
results in performance that is typically fit by power functions
(e.g., Stevens, 1957; Crollen et al., 2011; but see Cordes et al.,
2001, for a linear interpretation). Indeed, performance patterns
on such unbounded estimations in general – whether involving
numerosities or other magnitudes like auditory volume or light
intensities – are typically fit by accelerating or decelerating
power functions [perceived stimulus intensity = C ∗ (Actual
stimulus intensity)B, where B is the Stevens’ exponent e.g.,
Stevens, 1957; Indow and Ida, 1977; Krueger, 1984; Crollen et al.,
2011].

In the ANS-based free estimation task we use here,
participants were asked to provide estimates of the numerosity
of nonsymbolic numerical stimuli (dot arrays). We expected
unbounded estimation with dot arrays to be characterized by
compressive power functions (i.e., Stevens’ exponent < 1), as is
consistent with established theory and prior empirical findings
(e.g., Stevens, 1957; Crollen et al., 2011). We also expected
estimates to exhibit scalar variability (Cordes et al., 2001; Izard
and Dehaene, 2008; Crollen et al., 2011). That is, we expected the
variability of estimates to increase in proportion to the size of the
stimulus, resulting in a constant coefficient of variation (Whalen
et al., 1999; Gallistel and Gelman, 2000; Izard and Dehaene,
2008).

Number-Line Estimation
Our predictions for number line estimation are based on
Barth and Paladino’s (2011) argument that these tasks cannot
properly be categorized as free numerical estimation tasks
and that they are actually a form of a proportion judgment
task. Number line estimation requires that people estimate the
magnitude of one stimulus, the to-be-placed value, relative to
two other stimuli, the upper and lower endpoints (Spence, 1990;
Hollands and Dyre, 2000; Hollands et al., 2002; but see Opfer
et al., 2011). For example, when placing 25 on a 0–100 line
(whether symbolic or nonsymbolic), it should be 25 units away
from 0, and 75 units away from 100. It should therefore be
placed at a point corresponding to the proportion between
the stimulus and the sum of the stimulus and its complement
(25/(25 + 75)), or one fourth of the total length of the line
away from 0. No matter what number is estimated, the line
must, similarly, be broken into two sections with a constant
sum, resulting in a proportion. Spence (1990) offered a cyclical
correction to the power model used to describe free estimation
that could account for the proportional nature of tasks like
number line estimation. This cyclical power model predicts
nearly linear performance on number line estimation tasks
even given compressive underlying subjective representations
of numerical magnitudes (see also Hollands and Dyre, 2000;
Hollands et al., 2002; Barth and Paladino, 2011). However,
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in approaching linearity, cyclical power models show specific
patterns of over- and under-estimation for estimates in different
segments of the range defined by specific cut points (see
Figure 1).

Here, we used an ANS-based number-line estimation
task. Participants were instructed to estimate the appropriate
placement of a nonsymbolic numerical stimulus (a dot array) on a
line segment bounded by nonsymbolic numerical anchors at each
end. To date, relatively few studies have attempted to use number-
line style tasks using nonsymbolic numerosity (dot arrays) in
place of symbolic numbers (Anobile et al., 2012; Sasanguie and
Reynvoet, 2013; Kim and Opfer, 2015). None of these investigated
whether line estimation with dot array stimuli bears signatures of
the cyclical power model as might be predicted following Spence
(1990) or Hollands and Dyre (2000). We predicted that these
tasks would be fit by a cyclical power model and its characteristics:
(a) median estimates should be close to the correct value of the
stimulus, (b) the standard deviations of the estimates would not
show scalar variability patterns, but rather would decrease at
both end-point anchors and at the midpoint of the line, and (c)
participant responses should exhibit a cyclical pattern of over and
then under estimation.

Ratio Estimation
Here, we used an ANS-based ratio estimation task, asking
participants to estimate the ratios instantiated by a pair
of nonsymbolic numerical stimuli. Recent research suggests
that humans and other animals possess a nonsymbolic ratio
processing system (RPS) that is tuned to the magnitudes of
nonsymbolically instantiated ratios (Jacob et al., 2012; Matthews
and Chesney, 2015; Matthews and Lewis, 2016; Matthews et al.,
2016; Bonn and Cantlon, 2017).

Unlike proportion judgment tasks, which are typically
conceived of as involving judgment of one portion of the whole
relative to the judgment of that portion and its complement
(Spence, 1990; Hollands and Dyre, 2000; Hollands et al.,
2002; Barth and Paladino, 2011), the part:part ratios used
in ratio estimation don’t have the same constraints. Because
the physical magnitudes instantiating the high and low
anchors vary considerably from trial to trial, the figure-
plus-complement logic of the cyclical power model no
longer applies. Accordingly, ratio estimation is posited to
proceed from a more direct perceptual mechanism (Jacob
and Nieder, 2009; Matthews and Chesney, 2015; Lewis et al.,
2016) as opposed to the strategy-bound method that results
in cyclical performance on line-based proportion judgment
tasks (Spence, 1990; Barth and Paladino, 2011; Cohen and
Blanc-Goldhammer, 2011). Indeed, single-cell recordings from
primates suggest that there are neurons that respond specifically
to visuospatially constructed ratios as opposed to the magnitude
of either component of a given ratio (Vallentin and Nieder,
2008).

RPS theories posit that humans can extract the magnitudes
of ratios made from a variety of different stimuli, and several
studies have directly investigated the human ability to process
ratios composed of dot arrays (McCrink and Wynn, 2007;
Fabbri et al., 2012; Matthews and Chesney, 2015). Past research

on direct estimation of nonsymbolic ratios made from dot
arrays guide our predictions. For instance, Varey et al. (1990),
found approximately linear responses in a task similar to our
ratio estimation task. Moreover, when Matthews and Chesney
(2015) had participants compare symbolic ratios to nonsymbolic
ratios, results indicated that participants mapped nonsymbolic
dot ratios to numerical ratios in a linear fashion, albeit with
a bias that somewhat inflated the size of the nonsymbolic
ratios by a constant factor. Finally, in an unpublished pilot
study we conducted, we also found that participants’ average
estimates were largely accurate. These behavioral findings have
been complemented by single-cell recordings from primates
suggesting that there are neurons that respond specifically to
visuospatially constructed ratios as opposed to the magnitude of
either component of a given ratio (Vallentin and Nieder, 2008).

Thus, we expected a linear relation between participant
estimates and actual stimulus values for ratio estimation tasks (as
opposed to the curvilinear relations predicted for free estimation
and line estimation tasks). Although we also expected the
number-line estimation task to yield roughly linear estimates,
we expected those results to diverge from ratio estimates. This
is because we expected ratio estimation to proceed from a more
direct perceptual mechanism (Jacob and Nieder, 2009; Matthews
and Chesney, 2015; Lewis et al., 2016) as opposed to the strategy-
bound method that results in cyclical performance on line-based
proportion judgment tasks (Spence, 1990; Barth and Paladino,
2011; Cohen and Blanc-Goldhammer, 2011). As result, we did
not expect to see such strategy-based cyclical bias patterns with
the ratio estimation task.

MATERIALS AND METHODS

Participants
Participants were 31 undergraduates (16 female, 26 white, mean
age 19.3 years (SD = 1.1 years) at a highly selective, private
university in the Midwestern United States who participated for
course credit in the Psychology Department.

Materials and Design
All training and testing stimuli were presented using Superlab
4 software (Cedrus Corporation, 2007) on Apple R© iMac 5.1
computers running OS10.6. Each computer had a 17” LCD
display with a resolution of 1,440 × 900 pixels and a refresh
rate of 60 Hz. These screen dimensions subtended approximately
34◦ × 22◦ of visual angle with participants seated ∼60 cm from
the screen. Degrees of visual angle are only approximate as no
restraints were used to restrict head motion.

Dot Array Stimuli
Arrays were composed of black dots on a white background.
For each array, dot sizes ranged from 1.3 mm to 9.9 mm in
diameter (0.1–0.9◦), and the minimum distance between dots was
1 mm (0.1◦). Dots were arranged randomly in a 76 × 76 mm
(7◦ × 7◦) area, such that all arrays had the same convex hull.
It was essential to our design that participants used the ANS
to estimate the cardinality of the dot arrays, rather than relying

Frontiers in Psychology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 1801

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01801 October 13, 2018 Time: 12:4 # 4

Chesney and Matthews Task Constraints Affect ANS Mapping

FIGURE 1 | Left: Perceived stimulus intensity as a function of true magnitude as predicted by a power model with exponents of 0.5, 1, or 2. Values are scaled such
that the perceived intensity of central magnitudes are equal. Right: Judged proportion as a function of true proportion as predicted by a cyclical power model with
exponents of 0.5, 1, or 2. The functions illustrated in these graphs are adapted from Hollands and Dyre (2000).

upon counting. Accordingly, the smallest numerosity displayed
in a given array was 20 to ensure that other fast enumeration
techniques, such as subitizing, could not be employed (see
Kaufman et al., 1949; Revkin et al., 2008). The dot arrays in
each task ranged in numerosity from 20 to 300 dots. The 17
magnitudes represented were: 20, 40, 60, 80, 100, 120, 140, 150,
160, 180, 200, 220, 240, 260, 280, 290, and 300. Stimuli were
presented only briefly (1,500 ms). Brief presentation times have
been used successfully to suppress counting in previous work
(e.g., Revkin et al., 2008).

To ensure that nonnumeric features of the arrays would not
be consistently related to numerosity, we created three different
stimuli for each numerosity, with different controls for individual
dot size and summed area (see Figure 2). In the area controlled,
dot sizes controlled (ACDC) arrays, the total surface area was
controlled such that all arrays had the same total surface area
regardless of dot numerosity, and all dots within any given
array were of the same size. As a result, the sizes of individual
dots in an array varied inversely and density varied directly
with the numerosity of the array. In the area controlled, dot
size varied arrays (ACDV), total surface area was controlled
so that all arrays had the same total surface area regardless
of dot numerosity. However, individual dot size varied both
within and between arrays, such that the size of a given dot
did not precisely correlate with array numerosity. As a result,
for these arrays, neither total area nor individual dot size was
correlated with numerosity (though the mean dot size of an array
was inversely correlated with numerosity). In the area varied,
dot size controlled (AVDC) arrays, all dots were the same size,
regardless of the numerosity. As a result, surface area and density
increased linearly with the total numerosity of dots presented.
These controls mirror those that have been used in previous
studies of numerosity perception (Xu et al., 2005; Hurewitz et al.,
2006).

FIGURE 2 | Arrays of 20 and 100 dots in the three continuous extent control
conditions: area controlled, dot size controlled (ACDC), area controlled, dot
size varied (ACDV), and area varied, dot size controlled (AVDC).

Procedure
Participants first completed the ratio estimation block, followed
by the number-line estimation block, and finally the free
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FIGURE 3 | Diagrams of trials in the three estimation conditions: (A) free estimation, (B) number-line estimation, (C) ratio estimation.

estimation block (see Figure 3). We placed blocks in this order to
minimize the likelihood that any block would affect estimation on
the subsequent block. Each block began with a set of instructions,
using example stimuli that were different from the experimental
stimuli. Participants were told that the dot arrays would be
presented too quickly for them to count, and that they should
“just try to feel out how many dots there are instead of applying
a formula.” In all trials, participants pressed a space bar to
initiate the trial, then stimuli were briefly presented (1,500 ms),
and finally participants were asked to make their responses.
If participants did not answer within 15,000 ms, the trial
ended automatically. Trial order was randomized within each
block. Participants also completed similar tasks involving circle
areas, a symbolic number line task, and several mathematics
assessments not discussed in this manuscript. We note that, due
to experimenter error, one participant completed nearly double
the number of trials for each task.

Free Estimation
For each trial, a stimulus array was presented for 1,500 ms
immediately after the participants initiated the trial. Once the
stimulus disappeared, a textbox appeared asking, “How many
dots were there?” Participants entered their answers into a text
box via keyboard. After responding, they were prompted to hit
return to move on to the next trial. Participants completed 51
trials, one for each of the 17 dot numerosities presented in each
of the 3 dot array types.

Number-Line Estimation
For each trial, participants were shown a “number-line” anchored
by one dot on the left and 300 dots on the right. Participants
were never told the number of dots on the high anchor. When
participants hit the space bar to initiate each trial, the line
and anchors appeared. After 1,000 ms elapsed, the stimulus
array was presented 25 mm above the center of the line for
1,500 ms. Once the stimulus disappeared, participants used a
mouse to indicate the position on the line corresponding to
the stimulus numerosity. The line and anchors remained on the
screen throughout the duration of each trial. After responding,
they were prompted to hit return to move on to the next trial.
Participants completed 51 trials, one for each of the 17 dot
numerosities presented in each of the 3 dot array types.

Ratio Estimation
In ratio estimation trials, participants were instructed to estimate
the ratio between the numbers of dots in the two arrays
composing each stimulus. Each stimulus was presented for
1,500 ms immediately after the participants initiated a trial. Once
the stimulus disappeared, a textbox appeared asking, “What was
the fraction?” Participants then typed their answers into a text
box via the keyboard. After responding, they were prompted to
hit return to move on to the next trial. Participants completed 51
trials, one for each of the 17 dot numerosities in each of the three
formats used in the free estimation and number-line estimation
blocks, with the 300 dot stimulus of the matching ACDC, ACDV,
or AVDC type in the denominator position (e.g., 20 dots/300
dots, 150 dots/300 dots). Additional trials using denominators
of other numerosities were also included, however, only the 300
denominator trials are presented in the results here, so as to
increase comparability between blocks.

RESULTS

Coding
On the free estimation trials, analyses used participants’
raw responses. One outlier (“9101”) was dropped from
consideration. Participants’ spatial position responses on the
number-line estimation trials were converted to numerical form
corresponding to each response’s relative location on a 1–300
linear number-line. For example, a click on the midpoint of the
line was coded as a response of 150. Responses on the ratio
estimation trials were first converted to decimal format (e.g., 1/2,
50/100, and 150/300 were all coded as 0.5). Decimal answers (e.g.,
0.8) were also accepted. Trials where participants failed to provide
a complete ratio (19 trials) or provided values greater than 5/2
(5 trials) were dropped from consideration. Coded values were
then multiple by 300 to place them on the same scale as the Free
estimation and number-line estimation tasks for the purposes of
analysis.

Analysis
For each of the 51 stimuli (the 17 magnitudes in the three format)
in each of the three blocks, we found the participants’ median

Frontiers in Psychology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1801

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01801 October 13, 2018 Time: 12:4 # 6

Chesney and Matthews Task Constraints Affect ANS Mapping

FIGURE 4 | Median responses and SDs in the free estimation (A,B), number-line estimation (C,D) and ratio estimation blocks (E,F).
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responses, and the standard deviation of those responses. Plots of
these data are presented in Figure 4. We fit the median responses
to four different models:

Linear : median = B∗stimulus + C

Logarithmic : median = B∗ln(stimulus) + C

Power : median = C∗stimulusB

One-cycle Cyclical Power Model : median = (stimulusB/

(stimulusB
+ (Range− stimulus)B))∗Range

For consistency, all models were fit by minimizing the sum
of squares distance to the predicted value, and all R2s were
calculated as 1 – (Residual Sum of Squares)/(Corrected Sum of
Squares). Parameters B and C were allowed to vary freely in
all models. The 1-cycle cyclical power model did not include
a C parameter, but rather included a Range parameter, which
indicates the range of values over which responses may be given.
The 1-cycle model was run both with Range fixed at 300, and
with Range allowed to vary, but constrained to be greater than
or equal to the maximum median value in the data set. We
utilized the nonlinear regression function of SPSS version 21
to conduct these analyses. A linear regression was also run
on the standard deviations. Regression results are presented in
Table 1.

Regressions
As predicted, only the free-estimation task showed scalar
variability (see Table 1 and Figure 4). Indeed, set size
accounted for over 86% of the variance in SD for the
free estimation task, but less than 22% of the variance
in SD for the number-line task, and less than 2% of the
variance in SD for the ratio estimation task. In the Number-
line estimation trials, SD had little relationship with the
stimulus, and in the ratio estimation trials, SDs appear
lowest for the extreme proportions of 0 and 1, and to peak
near 0.5.

Participants’ median responses appeared to increase linearly
with stimulus magnitudes in all three conditions (see Table 1
and Figure 4). Indeed, for all three blocks, the linear model
was a better a fit than the logarithmic model and as good a
fit as the standard power model. However, the ratio estimation
and number-line estimation tasks were also well fit by cyclical
power models, whereas a cyclical power model could not be
fit to the free estimation task. Free estimation was the least
accurate (Linear regression: slope = 0.327, intercept = 13.708),
with responses consistently ∼1/3 of the true value, and
ratio estimation was the most accurate (Linear regression:
slope = 1.020, intercept = 14.573), with responses quite near
the true values. Number-line estimation had intermediate
accuracy (Linear regression: slope = 0.683, intercept = 57.210).
As would be predicted by a cyclical power model, median
number-line estimates were overly high below the midpoint
of the range, relatively accurate near the midpoint, and too
low above the midpoint. We confirmed that this over- then
underestimation pattern was significant using binomial tests.

TABLE 1 | Various regressions on median estimates and linear regressions on
standard deviations for the free estimation, number-line estimation, and ratio
estimation tasks.

Model Free estimation Number-line
estimation

Ratio estimation

Linear

B (SE) 0.327 (0.009) 0.683 (0.026) 1.020 (0.042)

C (SE) 13.708 (1.784) 57.210 (4.983) 14.573 (7.845)

R2 0.961 0.933 0.926

Log

B (SE) 36.607 (2.113) 77.081 (4.613) 113.414 (7.637)

C (SE) −111.437 (10.497) −207.444 (22.915) −372.217 (37.937)

R2 0.862 0.853 0.821

Power

B (SE) 0.758 (0.030) 0.602 (0.030) 0.900 (0.051)

C (SE) 1.452 (0.231) 8.161 (1.289) 1.869 (0.512)

R2 0.960 0.930 0.926

1-cycle cyclical power model, variable Range

B (SE) N/A 0.603 (0.028) 1.125 (0.108)

Range (SE) N/A 368.188 (14.896) 300.000 (19.005)

R2 N/A 0.934 0.891

1-Cycle cyclical power model, range fixed at 300

B (SE) N/A 0.581 (0.041) 1.125 (0.107)

R2 N/A 0.879 0.891

Standard deviations

B (SE) 0.364 (0.020) 0.033 (0.009) 0.018 (0.021)

C (SE) 2.765 (3.803) 42.384 (1.705) 46.496 (4.006)

R2 0.869 0.212 0.015

For smaller arrays (i.e., 20, 40, 60, 80, and 100 dot arrays
in each of the three formats) 15 out of 15 median estimates
were greater than the stimulus values (p < 0.001). For larger
arrays (i.e., 200, 220, 240, 260, 280, 290, and 300 dot arrays
in each of the 3 formats) 20 out of 21 median estimates
were less than the stimulus values (p < 0.001). However,
the high and low endpoints failed to converge toward the
anchors as we had predicted based on the cyclical power
model.

DISCUSSION

Our results showed that task differences did in fact lead to vast
differences in participants’ abilities to make accurate estimates
from ANS-processed stimuli. We found that free estimation
yielded underestimates throughout the tested range. In contrast,
number-line estimations first over- and then underestimated the
size of the stimuli, though via a shallow linear slope as opposed
to the predicted cyclical power model. Finally, performance on
ratio estimation tasks was quite accurate. Indeed, ratio estimation
yielded an unbiased linear map to symbolic number, whereas
both the free and number-line estimation tasks yielded biased
maps. Further, only the free estimation task exhibited scalar
variability. These differences emerged even though all three
tasks featured stimuli that current theory would suggest are
processed by the ANS. Such results would not be expected
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given the assumption that understanding of symbolic numbers
is based on a direct mapping between number symbols and
ANS-processed numerosities. These findings have implications
for theories regarding the degree to which ANS-based estimation
might serve as a good foundation for grounding symbolic
number magnitudes.

Implications for Mapping
Free Underestimation
Free estimations of dot arrays – a prototypical ANS task – led
to considerable underestimates of the numerosities of the arrays,
yielding the least accurate mappings of the three task formats.
This is consistent with findings in prior literature (e.g., Indow
and Ida, 1977; Izard and Dehaene, 2008; Crollen et al., 2011).
Indeed, to our knowledge, free estimation of dot arrays has
only proven accurate in three specialized situations: The first
situation involves numbers in the subitizing range (up to ∼4–5
objects), which recruits the object tracking system (e.g., Chesney
and Haladjian, 2011). Second, free estimation for numerosities
between 4 and 8 dots are also accurate on average, although
estimates are less precise than in the subitizing range (e.g., Taves,
1941; Kaufman et al., 1949). In the third instance, some have
found that free estimation, although not precise, is accurate
on average, with larger arrays when feedback is given after
every single trial to allow calibration (Minturn and Reese, 1951).
However, Izard and Dehaene (2008) showed that this calibration
can easily be thrown off by a single instance of inaccurate
feedback.

This poses considerable difficulties for accounts that argue
that the ANS-based magnitude perception serves as a ground
for specific numbers. Given the failure of free estimation to
facilitate accurate maps between numbers and their nonsymbolic
analogs, it makes sense to question whether the ANS can be
used to ground number symbols in a direct 1-to-1 fashion. For
example, presuming that the ANS response to an array of 20
dots could serve as a stable referent for the symbol “20” seems
untenable given the demonstrated inaccuracy of free estimation.
This is not to say that we should abandon the ANS-as-ground
position entirely. Rather, we believe it necessary to re-examine
how ANS magnitudes and symbolic numbers might be linked.
The current data may offer some insight into how this might be
accomplished.

Performance on the free estimation task was very well fit
(R2 = 0.961) by a linear function with a slope of 0.327. Thus,
although inaccurate, participants were quite reliable in their
underestimation; they underestimated values at a consistent
proportion of about 1/3. Of note, this particular underestimation
yielded an estimate range with a maximum of approximately
100, even though the maximum array size was 300 dots. The
large discrepancy is quite interesting, and we speculate that
the value 100 may have a certain cultural status of being a
default “large number.” This would explain why participants
should happen to scale their responses so that the upper limit
would be approximately 100. Given that prior research clearly
demonstrates that adults can scale subsequent responses against a
standard value (Izard and Dehaene, 2008; Thompson and Siegler,

2010), it is plausible that the 1/3 slope observed here was the
result of “auto-scaling,” whereby participants assumed that the
largest dot-set had 100 dots and scaled the remaining responses
accordingly.

The Relational ANS
Although estimation patterns for all three tasks approximated
linearity, ratio tasks clearly yielded the most accurate estimates.
Median estimates were extremely well fit by a linear model
with a slope of one and an intercept that was statistically
equivalent to zero. Even the power model fit for ratio tasks
yielded a Stevens’ exponent of 0.9, indicating a curve that is very
close linear. Considering this result in light of prior research
showing that people can make proportion judgments cross-
modally with great accuracy (Matthews and Chesney, 2015), this
offers an intriguing possibility for grounding unfamiliar number
symbols: Perhaps one way to gain an intuitive understanding
for the magnitude of an unfamiliar number symbol is to
start with a known number symbol and to use a cross-format
proportion to convey how large the unfamiliar number is
compared to the familiar number (see also Leibovich et al.,
2016).

Chesney and Matthews (2013) found results consistent with
this using number lines. They had undergraduates perform a
number line estimation task using a line that extended from
0 to 0.999 × 104.5. Participants were unfamiliar with the
magnitude of 0.999 × 104.5 (i.e., 31,591) and performed poorly
until given the hint that 16,000 was roughly halfway along the
number line. This intervention greatly improved performance.
Participants used cross format proportion matching (Barth
and Paladino, 2011; Sidney et al., 2017) to map the source
ratio – the line segments’ lengths – to the target ratio –
the symbolic numbers. Thus they began to correctly treat
0.999 × 104.5 as roughly twice as large as 16,000, or about
32,000. The unfamiliar symbol gained meaning. A similar process
can be used to map symbolic to nonsymbolic ratios more
generally. For example, if a child watches her grandmother
mapping 8 grapes to a “handful” in a recipe, and later saw
16 grapes being mapped to a “cup,” she could determine
that the ratio of a “handful” to a “cup” was about 1:2,
and use this knowledge in deciphering quantities in future
recipes.

This process might be used by children learning symbolic
numbers. If they observe a set of 25 dots being referred to
as “20” and a set of 50 dots being referred to as “40” – such
dot arrays are often underestimated (Taves, 1941; Izard and
Dehaene, 2008; Crollen et al., 2011) and can even be purposefully
mapped to larger or smaller values with inducers (Izard and
Dehaene, 2008) – they can learn that the ratio of “20” to
“40” is 1:2. The observed symbolic number to nonsymbolic
numerosity map might be biased, but the nonsymbolic ratio is
maintained. Such enumeration biases would be immaterial if
relational mapping is the primary mechanism supporting the
link between symbolic and nonsymbolic quantities. Moreover,
if a system of ratios between symbols is known (e.g., “5” is
half “10,” “10,” is half “20,” “20” is half “40”), and at least
one of the symbols is accurately mapped (e.g., five dots is
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“5”) then a sense of scale for the other mapped symbols can
propagate forward. Thus, it may be an approximate sense
of proportion that drives the link between ANS estimation
and symbolic number, rather than a direct correspondence
between a symbolic number and a specific ANS magnitude.
This perceptually based ratio sense would have limited utility
compared to exact symbolic representations (e.g., one can
symbolically represent 300/500 and 301/500, but one is unlikely
to distinguish between their nonsymbolic instantiations) but all
such perceptually based processes are necessarily limited in this
sense.

Although this account is speculative, it is quite consistent
with psychophysical accounts of how ANS-based comparison
is processed. Indeed, as Sidney et al. (2017) observed, Weber’s
law is fundamentally parameterized in terms of ratios, which
means that existing conceptions of the ANS are largely
compatible with viewing the system as inherently relational
(cf., McCrink and Spelke, 2010; McCrink et al., 2013). This
viewpoint essentially recapitulates Birnbaum and Veit’s (1974)
observation that differences and ratios are in some sense
mathematically equivalent in the logarithmically transformed
space of perception, given that a log-transformed ratio yields
a subtraction (i.e., log(x/y) = log(x) – log(y). We do note that
work remains to be done to square this relational conception
with neuroscientific evidence of numerosity specific neurons
(e.g., Nieder et al., 2002; Diester and Nieder, 2007). That said,
the mathematics of the dominant model is incontrovertible,
so a relational conception of the ANS should not be easily
dismissed.

The relational view of the ANS may suggest that two
numerosities are better than one when it comes to facilitating
maps to number symbols. Using two numerosities when mapping
ANS magnitude to symbolic numbers solves a perennial problem
with free estimations – specifically the vast individual differences
in these estimates. Importantly, ratio perception establishes a
correspondence among multiple instantiations of the same ratio,
e.g., 10/15, 20/30, 50/75, etc. Thus, there is an inherent calibration
for ratio judgments that may largely circumvent idiosyncratic
scaling seen in single judgments. These observations converge
with emerging theories about how ratio might be used to establish
maps from perception of continuous magnitudes to specific
numbers – as argued, for instance by Sidney et al.’s (2017)
commentary on Leibovich et al.’s (2017) generalized magnitude
system theory. They also converge with theories positing that
ratio might be the preferred format for equating perceived
magnitudes across different modalities (Balci and Gallistel, 2006;
Bonn and Cantlon, 2017). All combined, we interpret the data as
suggesting that the ANS is perhaps best understood as a system
that perceives relations between numerosities, and as such may
be more accurate when used to assess ratios as opposed to whole
numbers. Future research should investigate this possibility.

Limitations and Future Directions
Memory Issues in Number-Line Estimation
As noted above, our prediction that performance in the number-
line estimation task would be characterized by a cyclical power

model was not fully supported: although median estimates
were overestimated below the midpoint of the range, relatively
accurate near the midpoint, and underestimated above the
midpoint, the high and low endpoints failed to converge toward
the anchors. This may have been due to the speeded presentation
protocol we used in order to ensure that participants could
not count individual dots. As soon as the stimuli disappeared
from view, they had to be maintained in memory and were
thus subject to decay. Although this applies to all three tasks,
this speed component may have specifically complicated the
number-line task. Free estimation and ratio estimation tasks like
those used here are typically conceived of as involving relatively
direct estimation. However, the proportion judgment model
conceived of by Spence (1990) and Hollands and Dyre (2000)
involves explicit strategies whereby the observer pegs landmark
values that result from segmenting the range (e.g., into halves
or fourths) and subsequently estimates the remaining distance
between the stimulus and the reference point. Memory decay may
thus have more substantially impacted the bounded-estimation
process than the other two tasks. In future work, we will compare
performance in speeded and unspeeded conditions. We will
also investigate potential differences in performance that might
be induced by instructions focusing on an explicit ratio match
versus instructions that focus on the landmark-based proportion
judgment of the Spence (1990) model.

Free Estimation, Linear Compression
One interesting result specific to the free estimation task was
that, although participants consistently underestimated the dot
array magnitudes, their estimates did not appear compressive in
the traditional sense that they were better fit by a logarithmic
or power function than a linear function, or that the proportion
of underestimation became greater as the set size increased.
Rather, the portion of underestimation remained constant. This
linear performance is more typical of sequentially presented
stimuli than the simultaneous presentation we used here (Taves,
1941; Meck and Church, 1983; Cordes et al., 2001; Izard and
Dehaene, 2008; Crollen et al., 2011). While this may have been
an idiosyncrasy of our data set, it is possible that this was due
to our choice of stimuli. Our smallest value, 20, was well above
the subitizing range (∼4, Taves, 1941; Chesney and Haladjian,
2011). Numerosity estimates are known to be quite accurate
when people subitize (Taves, 1941; Chesney and Haladjian, 2011).
There also appears to be a benefit to accuracy when estimating
values immediately above this range (e.g., 6, 7, 8; Taves, 1941;
Kaufman et al., 1949), possibly due to subitizing based strategies:
at the very least, these values would be known to be greater than
∼4. Our results show that people are linear with a slope less than
1 for larger values. Including both accurately assessed, subitizing-
influenced low number values and underestimated higher values
in a stimulus set would yield bi-linear performance. Regressions
comparing compressive power or log functions to (mono-)linear
functions for such bi-linear data would favor the compressive
functions. Further work is needed to assess if (mono-) linear
rather than compressive estimation patterns are typically seen
when values that may be aided by subitizing strategies are
excluded from consideration.
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CONCLUSION

There are three main takeaways from these results. First,
number-line estimation tasks appear to have limited utility in
investigating either the ANS or the mapping between the ANS
and symbolic numbers. These tasks do not yield the classic
error patterns (i.e., scalar variability) seen in ANS estimation,
and the functional form of performance on line-estimation tasks
does not necessarily parallel the functional form of individuals’
underlying magnitude representations. The use of nonsymbolic
stimuli does not overcome these limitations. Second, the
underestimation in the free-estimation task, particularly relative
to the accurate performance on the proportion judgments task, is
problematic for theories that propose a direct mapping between
symbolic numbers and ANS estimation of specific nonsymbolic
magnitudes. Third, we suggest that a system that uses a sense
of ratio to link symbolic numbers to ANS-perceived magnitudes
may overcome these difficulties. Future research is needed to
address these possibilities.
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