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Raman spectroscopy is a molecular vibrational spectroscopic technique that is capable of optically probing the biomolecular changes
associated with diseased transformation. The purpose of this study was to explore near-infrared (NIR) Raman spectroscopy for
identifying dysplasia from normal gastric mucosa tissue. A rapid-acquisition dispersive-type NIR Raman system was utilised for tissue
Raman spectroscopic measurements at 785 nm laser excitation. A total of 76 gastric tissue samples obtained from 44 patients who
underwent endoscopy investigation or gastrectomy operation were used in this study. The histopathological examinations showed
that 55 tissue specimens were normal and 21 were dysplasia. Both the empirical approach and multivariate statistical techniques,
including principal components analysis (PCA), and linear discriminant analysis (LDA), together with the leave-one-sample-out cross-
validation method, were employed to develop effective diagnostic algorithms for classification of Raman spectra between normal and
dysplastic gastric tissues. High-quality Raman spectra in the range of 800–1800 cm�1 can be acquired from gastric tissue within 5 s.
There are specific spectral differences in Raman spectra between normal and dysplasia tissue, particularly in the spectral ranges of
1200–1500 cm�1 and 1600–1800 cm�1, which contained signals related to amide III and amide I of proteins, CH3CH2 twisting of
proteins/nucleic acids, and the C¼C stretching mode of phospholipids, respectively. The empirical diagnostic algorithm based on
the ratio of the Raman peak intensity at 875 cm�1 to the peak intensity at 1450 cm�1 gave the diagnostic sensitivity of 85.7% and
specificity of 80.0%, whereas the diagnostic algorithms based on PCA-LDA yielded the diagnostic sensitivity of 95.2% and specificity
90.9% for separating dysplasia from normal gastric tissue. Receiver operating characteristic (ROC) curves further confirmed that the
most effective diagnostic algorithm can be derived from the PCA-LDA technique. Therefore, NIR Raman spectroscopy in
conjunction with multivariate statistical technique has potential for rapid diagnosis of dysplasia in the stomach based on the optical
evaluation of spectral features of biomolecules.
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Gastric cancer is currently the fourth most common malignancy,
and also the second leading cause of cancer deaths in humans
worldwide (Axon, 2006; Clark et al, 2006). In Singapore, despite a
falling incidence rate, gastric cancer still remains the fourth most
common cancer (Teh et al, 2002). Many of these patients will die
mainly because of nodal and metastatic disease present at the
time of initial diagnosis. Early detection and localisation with
immediate removal and treatment of premalignant lesions (e.g.,
dysplasia) (Clark et al, 2006) is crucial to improving patients’
survival. However, early identification of dysplasia in the stomach
can be very difficult to detect by conventional diagnostic methods
such as white-light endoscope, as the white-light endoscopy

heavily relies on the visual observation of gross morphological
changes of pathologic tissues, leading to a poor diagnostic
accuracy.

In the past decade, optical spectroscopic methods such as
Raman spectroscopy, which makes use of inelastic light scattering
process to capture ‘fingerprints’ of specific molecular structures
and conformations of a given tissue or disease state, have
been comprehensively investigated for cancer and precancer
diagnosis and evaluation in humans (Frank et al, 1995;
Mahadevan-Jansen and Richards-Kortum, 1996; Gniadecka et al,
1997; Mahadevan-Jansen et al, 1998a; Bakker Schut et al, 2000;
Shim et al, 2000; Stone et al, 2000; Caspers et al, 2003; Huang et al,
2003). Near-infrared (NIR) Raman spectroscopy has certain
advantages over Fourier transform IR spectroscopy in tissue
diagnosis, such as relative insensitivity to water, and a deeper
penetration in the tissue using NIR excitation light. As such,
NIR Raman spectroscopy has received great interest for in vitro
and in vivo diagnosis of malignancies in a variety of organs
(Mizuno et al, 1994; Frank et al, 1995; Gniadecka et al, 1997;
Mahadevan-Jansen et al, 1998a; Shim et al, 2000; Stone et al, 2000;
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Caspers et al, 2003; Huang et al, 2003). These investigations show
that specific spectral features of Raman spectra could be used to
correlate with the molecular and structural changes of tissue
associated with neoplastic transformation (Mahadevan-Jansen and
Richards-Kortum, 1996; Gniadecka et al, 1997; Mahadevan-Jansen
et al, 1998a; Stone et al, 2000; Huang et al, 2003). For instance,
using NIR Raman technique, the diagnostic sensitivity and
specificity of 82 and 92%, respectively, can be achieved for
differentiation between precancerous and benign cervical tissues
in vitro (Mahadevan-Jansen et al, 1998a). Near-infrared Raman
spectroscopy has also been applied for in vivo precancer and
cancer diagnosis and detection of organs such as cervix, skin,
colon, and oesophagus (Mahadevan-Jansen et al, 1998b; Shim et al,
2000; Huang et al, 2001; Utzinger et al, 2001). The Raman
spectroscopic characterisation and discrimination of malignancy
in the stomach have also been investigated (Ling et al, 2002;
Stone et al, 2002; Kumar et al, 2007). However, to date, application
of Raman spectroscopy on early diagnosis of gastric precancer
(dysplasia) has not yet been reported in detail in literature.

Despite the great advantages that NIR Raman spectroscopy
could offer, there are technical challenges to overcome. For
instance, achieving a high signal-to-noise (S/N) ratio, while
avoiding interference from silica Raman signals in a rapid manner
can be difficult for in vivo tissue Raman measurements (Bakker
Schut et al, 2000; Huang et al, 2001; Utzinger et al, 2001). This is
because tissue Raman scattering is inherently very weak, and
the fibre-optic probes used to collect in vivo signals exhibit
strong silica Raman scattering in the fingerprint region. Also, the
integration times and irradiance powers for in vivo Raman
measurements must be limited for practical and safety reasons.
Furthermore, Raman spectral differences are usually subtle with
apparent spectral overlappings and variations in intensity between
different tissue types, and thus developing effective diagnosis
algorithms are highly required for effective tissue classification
(Bakker Schut et al, 2000; Shim et al, 2000; Huang et al, 2003, 2004;
Molckovsky et al, 2003; Lau et al, 2005). The primary aims of this
study were to characterise Raman properties of gastric tissues and
to assess the feasibility of using a rapid fibre-optic NIR Raman
spectroscopy for precancer diagnosis of gastric tissue. Both the
empirical approach and the multivariate statistical techniques,
including principal components analysis (PCA) and linear
discriminant analysis (LDA), were employed to develop effective
diagnostic algorithms for differentiations between normal and
dysplasia tissue in the stomach.

MATERIALS AND METHODS

Raman instrumentation

The instrument used for tissue Raman spectroscopic studies
has been described in detail elsewhere (Huang et al, 2001). Briefly,
this system consists of a 785-nm diode laser, a transmissive
imaging spectrograph with a Kaiser holographic grating, an
NIR-optimised back-illuminated, deep-depletion charge-coupled
device (CCD) detector (Princeton Instruments, Trenton, NJ, USA),
and an in-house developed fibre optic Raman probe. The 785-nm
laser is coupled to a 100-mm core diameter fibre (NA¼ 0.22) and
the fibre is connected to the Raman probe via an SMA connector.
The Raman probe was designed to maximise the collection of
tissue Raman signals while reducing the interference of Rayleigh
scattered light, fibre fluorescence, and silica Raman signals. One
optical arm of the probe consists of a collimating lens, a bandpass
filter (785±2.5 nm, Chroma Technology Corp., Rockingham, VT,
USA), and a focusing lens to deliver the laser light onto the tissue.
The other arm of the probe equipped with collimating and
refocusing lenses and a holographic notch plus filter (optical
density 46.0 at 785 nm; Kaiser) is used for collecting tissue Raman

signals. The holographic notch filter was placed between the two
lenses to block the Rayleigh scattered excitation laser light while
passing the frequency-shifted tissue Raman signal. The refocusing
lens then focused the filtered beam onto the circular end of the
fibre bundle (58� 100mm core diameter fibres, NA¼ 0.22). Tissue
Raman photons collected by the fibre bundle in the Raman probe
are fed into the entrance of the transmissive spectrograph along
a parabolic curve, and the holographic grating disperses the
incoming light onto the liquid nitrogen-cooled CCD array detector
controlled by a principal component (PC) (Huang et al, 2001,
2003). The tissue Raman spectra associated with autofluorescence
background are displayed on the computer screen in real time and
can be saved for further analysis. The system acquired Raman
spectra over the wavenumber range of 800–1800 cm�1, and each
spectrum was acquired within 5 s with light irradiance of
1.56 W cm�2. The spectral resolution of the system is 4 cm�1. All
wavelength-calibrated spectra were also corrected for the wave-
length dependence of the system using a standard lamp (RS-10;
EG&G Gamma Scientific, San Diego, CA, USA).

Gastric tissue samples

A total of 76 gastric tissue samples were collected from 44 patients
(21 men and 23 women with a median age of 62 years) who
underwent gastrectomy or endoscopic biopsies with clinically
suspicious lesions. All patients preoperatively signed an informed
consent, permitting the investigative use of the tissues, and this
study was approved by the Ethics Committee of the National
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Figure 1 Photomicrographs of the haematoxylin and eosin (H&E)-
stained tissue sections of gastric tissues (A) normal and (B) dysplasia
(high-grade dysplasia of the antrum). Scale bar: 100 mm.
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Healthcare Group (NHG) of Singapore. After biopsies or surgical
resections, tissue samples were immediately sent to the laboratory
for Raman measurements. After spectral measurements, the tissue
samples were fixed in 10% formalin solution and then submitted
back to the hospital for histopathologic examination. The
histopathogical examinations were conducted by a specialist
gastrointestinal pathologist, and the results showed that among
the 76 homogenous gastric tissue samples with clearly defined
pathologies, 55 tissue specimens were normal, and 21 were dysplasia
(8 low-grade and 13 high-grade dysplasia). Figure 1 shows the
comparison of haematoxylin and eosin (H&E)-stained tissue sections
of normal and dysplastic gastric tissues, illustrating the crowding of
irregularly shaped glands with branching and prominent nuclear
abnormalities (including irregular and thickened nuclear membranes
and irregular chromatin) in dysplasia mucosa. Note that the gastric
tissue samples were approximately 3� 3� 2 mm in size, and the
785-nm laser light with a beam size of 1 mm was focused on
the tissue surface to mimic the in vivo clinical measurements. The
tissue surface measured was then marked and stained for tissue
pathology. After comparing with pathologic results, only those
Raman spectra that were correctly acquired from the surfaces of
gastric tissues were used for data analysis. To reduce the spectral
measurement errors in this study, the average spectrum of five
repeated Raman measurements on the same tissue site of each tissue
sample was used for tissue classification.

We have measured the thickness of various layers of typical
normal and dysplastic tissue sections and constructed a gastric
tissue model, which consisted of mucosa, submucosa, muscularis
propria, and serosa layers with a total thickness of 1.5 mm for
normal tissue, while the dysplasia tissue consisted of thickening
mucosa, submucosa, muscle propria, and serosa layers with a total
thickness of 2 mm (Sabet et al, 2003). Optical parameters
(absorption coefficient, scattering coefficient, scattering anisotropy,
and refractive index) from literature (Bashkatov et al, 2007) were
composed for these layers to set up a tissue optics model for Monte
Carlo simulation of light penetration into these model tissues. The
simulation results (data not shown) showed that the 785-nm light
penetrated down to about 750 mm beneath the surface of normal
tissue, which was within the muscularis propria layer. For
dysplasia tissue, the 785-nm light penetrated down to about
780mm beneath the surface, which was also well within the
muscularis propria. It is expected that most of the spectral signals
from normal tissue came from mucosa, submucosa layers with
some small contributions from the muscularis propria, and serosa
layer, because tissue layers closing to the surface encountered
stronger excitation light and the generated Raman scattered light
was also easier to escape out of the tissue. Similarly, most of the
spectral signals from dysplasia came from mucosa, submucosal
layers. The exact percentile contributions of various tissue
layers can be obtained by more detailed modelling of not
only the excitation light propagation but also the Raman scattered
light propagation in tissue.

Data preprocessing

The raw spectra acquired from gastric tissue in the 800–1800 cm�1

range represented a combination of prominent tissue autofluor-
escence, weak tissue Raman scattering signals, and noise. Thus, the
raw spectra were preprocessed by adjacent five-point smoothing to
reduce noise. A fifth-order polynomial (Huang et al, 2003) was
found to be optimal for fitting the broad autofluorescence
background in the noise-smoothed spectrum, and this polynomial
was then subtracted from the raw spectrum to yield the tissue
Raman spectrum alone. Each of background-subtracted Raman
spectrum was also normalised to the integrated area under the
curve from 800 to 1800 cm�1 to enable a better comparison of the
spectral shapes and relative peak intensities among the different
tissue samples.

Empirical approach

Nonparametric diagnostic algorithms based on peak intensities,
spectral bandwidths, and/or peak ratios have been widely
employed in literature to correlate the variations of tissue spectra
with tissue pathology in a simple and straightforward fashion
(Mahadevan-Jansen and Richards-Kortum, 1996; Mahadevan-
Jansen et al, 1998a; Huang et al, 2003). In this study, the empirical
diagnostic algorithm based on the ratio of the Raman peak
intensity at 875 cm�1 for hydroxyproline to the peak intensity at
1450 cm�1 for CH2 proteins/lipids (Stone et al, 2000; Huang et al,
2003) was selected for tissue classification. The unpaired Student’s
t-test was used to test the difference of Raman intensity ratio
(I875/I1450) between normal and dysplasia tissues. For the assess-
ment of diagnostic sensitivity and specificity, histopathological
results were regarded as the gold standard.

Multivariate analysis

The high dimension of Raman spectral space (each Raman
spectrum ranging from 800 to 1800 cm�1 with a set of 544
intensities) will result in computational complexity and ineffi-
ciency in optimisation and implementation of the LDA algorithms.
As such, PCA was first performed on tissue Raman data set to
reduce the dimension of Raman spectral space while retaining the
most diagnostically significant information for tissue classifica-
tion. To eliminate the influence of inter- and/or intra-subject
spectral variability on PCA, the entire spectra were standardised
so that the mean of the spectra was zero, and the standard
deviation (s.d.) of all the spectral intensities was one. Mean
centring ensures that the (PCs form an orthogonal basis
(Lachenbruch and Mickey, 1968; Devore, 1992). The standardised
Raman data sets were assembled into data matrices with
wavenumber columns and individual case rows. Thus, PCA was
performed on the standardised spectral data matrices to generate
PCs comprising a reduced number of orthogonal variables
that accounted for most of the total variance in original spectra.
Each loading vector is related to the original spectrum by a
variable called the PC score, which represents the weight of
that particular component against the basis spectrum. Principal
component scores reflect the differences between different classes.
Unpaired Student’s t-test (Devore, 1992) was used to identify the
most diagnostically significant PCs (Po0.05). These significant PC
scores are lastly selected as input for the development of LDA
algorithms for binary-class classification. Linear discriminant
analysis determines the discriminant function that maximises
the variances in the data between groups while minimising the
variances between members of the same group. The performance
of the diagnostic algorithms rendered by the LDA models for
correctly predicting the tissue groups (i.e., normal vs dysplasia)
was estimated in an unbiased manner using the leave-one-sample-
out, cross-validation method (Lachenbruch and Mickey, 1968;
Dillion and Goldstein, 1984) on all model spectra. In this method,
one sample (i.e., one spectrum) was held out from the data set,
and the entire algorithm including PCA and LDA was redeveloped
using the remaining tissue spectra. The algorithm was then used to
classify the withheld spectrum. This process was repeated until
all withheld spectra were classified.

To compare the performance of the empirical and multivariate
approaches for tissue classification using the same Raman data set,
receiver operating characteristic (ROC) curves were generated
by successively changing the thresholds to determine correct and
incorrect classifications for all tissue samples.

RESULTS

To assess intrasample variability, multiple Raman measurements
(n¼ 5) on each of normal and dysplasia gastric tissues were
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made at different locations of the same samples. Figure 2 shows an
example of the mean normalised Raman spectra ±1 s.d. measured
from a normal (A) and a dysplasia (B) gastric tissue, respectively.
The overall spectral intensities varied by 30% about the mean
for normal tissue, and by 20% for dysplasia tissue. However,
the relative Raman peak heights, shapes, and positions showed
little intrasample variability for either normal or dysplasia tissue,
indicating the relative homogeneity of tissue samples used in
this study.

The intersample variations of all Raman spectra from normal
or dysplasia tissues obtained from 44 patients were also studied.
Figure 3 shows the mean normalised Raman spectra ±1 s.d. from
normal (n¼ 55) and dysplasia (n¼ 21) gastric tissues. The overall
spectral intensities varied by 20–30% about the mean for normal
tissue, and by 30– 60% for dysplasia tissue. Although there are
only some small changes in spectral shapes and Raman peak
positions between normal and dysplasia tissue, there is a large
overlap in intensity throughout the entire spectral range of Raman
spectra between the two tissue types. This indicates a relatively
large variability of tissue constituents among different subjects.
Hence, there is a need to develop effective diagnostic algorithms
for accurate classification of Raman spectra between normal
and dysplastic tissues.

Figure 4A shows the comparison of mean normalised Raman
spectra between normal and dysplasia gastric tissue. The
prominent Raman peaks located at around 875, 1004, 1100, 1210,
1265, 1335, 1450, 1655, and 1745 cm�1 are observed in gastric
tissue, which can be attributed to the biochemical bonds
of hydroxyproline, the phenylalanine (an essential amino acid)
ring breathing mode, phospholipids (stretching C-C skeletal
vibrations in the gauche conformation), tryptophan (an essential
amino acid) and phenylalanine stretching (C-C6H5) mode,
amide III (C-N stretching mode of proteins, indicating mainly
a-helix conformation), CH3CH2 twisting mode of proteins and
nucleic acids, CH2 bending mode of proteins and lipids,
the protein amide I band (C¼O stretching mode of proteins,
indicating mainly a-helix conformation), and the C¼O

stretching mode of phospholipids, respectively (Dollish et al, 1974;
Mizuno et al, 1994; Frank et al, 1995; Mahadevan-Jansen and
Richards-Kortum, 1996; Gniadecka et al, 1997; Mahadevan-Jansen
et al, 1998a, b; Bakker Schut et al, 2000; Shim et al, 2000; Stone
et al, 2000, 2002; Huang et al, 2001, 2003; Utzinger et al, 2001;
Caspers et al, 2003). The intensity differences between the two
tissue types are remarkable (Figure 4B). For instance, dysplasia
tissues show lower intensities at 875, 1004, 1100, 1210, and
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Figure 2 Mean normalised gastric Raman spectra (solid line) ±1 s.d.
(grey area) obtained from a normal tissue (A) and a dysplasia tissue (B) by
multiple measurements (n¼ 5) at various locations for each sample. Each
spectrum was normalised to the integrated area under the curve to correct
for variations in absolute spectral intensity. All spectra were acquired in 5 s
with 785-nm excitation and corrected for spectral response of the system.
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1745 cm�1, while higher at 1265, 1305, 1450, and 1660 cm�1,
compared with normal tissue. This indicates that there is an
increase or decrease in the percentage of a certain type of
biomolecules relative to the total Raman-active constituents in
dysplasia tissue. There are also obvious changes of Raman peak
shifts and bandwidths in the spectral ranges of 1200–1500 cm�1

and 1600– 1800 cm�1, which are related to the amide III and amide
I of proteins, CH3CH2 twisting of proteins/nucleic acids, and C¼C
stretching of phospholipids for dysplasia. These spectral differ-
ences between normal and dysplasia tissues can be viewed more

clearly using the difference spectrum as shown in Figure 4B.
The difference spectrum reveals the changes of prominent Raman
peaks occurring in dysplasia gastric tissue, confirming a potential
role of Raman spectroscopy for precancer diagnosis in the
stomach.

The empirical analysis based on the intensity ratio of prominent
Raman bands is employed for tissue diagnosis. Figure 5 shows the
scatter plot of the ratio of Raman intensity at 875 cm�1 to that at
1450 cm�1 grouped according to tissue pathologic types. The mean
value (mean±s.d.) of this ratio for normal tissues (1.13±0.46,
n¼ 55) is significantly different from the mean value for dysplastic
tissues (0.52±0.33, n¼ 21) (unpaired two-sided Student’s t-test,
Po0.00001). The decision line (I875/I1450 ¼ 0.717) discriminates
dysplasia tissue from normal gastric tissue with a sensitivity of
85.7% and a specificity of 80.0%.

We also employ the multivariate statistical method (e.g., PCA
and LDA) by incorporating the entire Raman spectrum to
determine the most diagnostically significant Raman features for
improving tissue analysis and classification. Unpaired two-sided
Student’s t-test on the obtained PC scores showed that there were
four PCs (PC1, PC2, PC4, and PC5) that were diagnostically
significant (Po0.05) for discriminating dysplasia tissue from
normal tissue. Figure 6 displays the four significant PC scores
calculated from PCA on the Raman spectra. The first PC accounts
for the largest variance (e.g., 42.6% of the total variance), whereas
the successive PCs describe the spectral features that contribute
progressively smaller variances. Some PC features (Figures 6A–D),
such as peaks, troughs, and spectral shapes are similar to those of
tissue Raman spectra in Figure 4.

Figure 7 shows the correlations between the diagnostically
significant PC scores for normal and dysplastic gastric tissue,
illustrating the utility of PC scores for classification of Raman
spectra between different tissue types. Normal and dysplasia
tissues can be largely clustered into two separate groups
based on different combinations of significant PCs, and the
corresponding separation lines (i.e., diagnostic algorithms) in
Figures 7A– F classify dysplasia from normal tissue with
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histological results. The decision line (I875/I1450¼ 0.717) separates dysplasia
tissue from normal tissue with a sensitivity of 85.7% (18/21) and specificity
of 80.0% (44/55).
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the sensitivity of 90.5%, 76.2%, 71.4%, 81.0%, 71.4%, and
71.4%; specificity of 90.9%, 80.0%, 83.6%, 80.0%, 72.7%,
and 72.7%, respectively. These results show that selection of
different combinations of significant PCs will give different levels
of accuracy for tissue classification.

To further improve tissue diagnosis, all the four diagnos-
tically significant PCs were loaded into the LDA model for
generating effective diagnostic algorithms for tissue classification.
Figure 8 shows the classification results based on PCA-LDA
technique together with leave-one-spectrum-out, cross-
validation method. The PCA-LDA diagnostic algorithms yielded
the diagnostic sensitivity of 95.2% and specificity 90.9%
for separating dysplasia from normal gastric tissues.

To evaluate and compare the performance of the PCA-LDA-
based diagnostic algorithms derived from all the significant
PCs of tissue Raman data set against the empirical approach-based

diagnostic algorithm derived from the intensity ratio of
I875/I1450, the ROC curves (Figure 9) were generated from
the scatter plots in Figures 5 and 8 at different threshold
levels, displaying the discrimination results using both
diagnostic algorithms. A comparative evaluation of the ROC
curves indicates that PCA-LDA-based diagnostic algorithm gives
more effective diagnostic capability for detection of gastric
dysplasia from normal gastric tissues, as illustrated by the
improvement in the diagnostic sensitivity and specificity. The
integration areas under the ROC curves are 0.98 and 0.88,
respectively, for PCA-LDA-based diagnostic algorithms and
the nonparametric intensity ratio algorithm, respectively.
These results demonstrate that PCA-LDA-based diagnostic
algorithms that utilised the entire spectral features of Raman
spectra yield a better diagnostics accuracy than the empirical
approach.
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Figure 7 Scatter plots of the diagnostically significantly principal component (PC) scores for normal and dysplastic gastric tissue derived from
Raman spectra, (A) PC1 vs PC2; (B) PC1 vs PC4; (C) PC1 vs PC5; (D) PC2 vs PC4; (E) PC2 vs PC5; and (F) PC4 vs PC5. The dotted lines (PC2¼ 1.46
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diagnostic algorithms classify dysplasia from normal with sensitivity of 90.5% (19/21), 76.2% (16/21), 71.4% (15/21), 81.0% (17/21), 71.4% (15/21), and 71.4%
(15/21); specificity of 90.9% (50/55), 80.0% (44/55), 83.6% (46/55), 80.0% (44/55), 72.7% (40/55), and 72.7% (40/55), respectively. Circle (J): normal;
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DISCUSSION

The current gold standard for clinical diagnosis of gastric dysplasia
is through histological observation by the pathologist, on the
extent of cytological and architectural abnormalities of the
histologically prepared tissue samples (Lauwers and Riddell,
1999). These abnormalities involve much molecular alterations,
which could also be tapped upon for diagnosis, most importantly
during routine endoscopic inspection (Lauwers and Riddell, 1999).
Hence, Raman spectroscopy, which is capable of providing rich
biochemical and biomolecular information about tissue, may be

the promising diagnostic tool to be used for molecular discrimina-
tion of gastric dysplasia. However, as gastric dysplasia belongs
to part of a widely accepted multistep, continuum progression
cascade from normal gastric tissue to adenocarcinoma (Correa,
1988), it implies vague molecular distinction of gastric dysplasia
that may render characterisation and discrimination tougher for
Raman spectral analysis. As shown in Figure 3, the Raman spectral
pattern between normal and dysplastic gastric tissues could be
very similar, it is highly desirable to develop robust diagnostic
approaches to extract all possible diagnostic information
contained in tissue Raman spectra for well correlation with tissue
changes associated with neoplastic transformation. Consequently,
both empirical and statistical techniques were explored in this
study to attain the likelihood of good clinical discriminators of
Raman spectra for separation between normal and dysplastic
gastric tissues.

The results of this study confirm that there are specific spectral
differences in Raman spectra between dysplasia and normal tissue,
demonstrating the utility of NIR Raman spectroscopy in gastric
precancer detection. For instance, the relative peak intensities at
1450 cm�1 (CH2 proteins/lipids) and 1305 cm�1 (bending mode of
CH3CH2 twisting of protein) (Mahadevan-Jansen and Richards-
Kortum, 1996; Stone et al, 2000; Huang et al, 2003) were found to
be higher for dysplasia tissues, indicating the elevated concentra-
tion of biomolecules (e.g., histones) due to hyperchromatism in
tissue with dysplastic transformation (Lauwers and Riddell, 1999).
In addition, there is also a relative increase of amide III band
(1265 cm�1) and amide I band (1655 cm�1) in intensity, suggesting
that dysplasia tissue may be associated with an increase in the
relative amount of proteins in the a-helix conformation. This could
be another evidence that there is an increase concentration of
histones, the main protein component that makes up the
chromatin for dysplasia tissue (Thomas and Prescott, 1977; Huang
et al, 2005). A shoulder band at 1660 cm�1 (amide I, b-pleated
sheet, and/or random coil conformation) was also revealed in the
difference spectra (Figure 4B), suggesting that dysplastic transfor-
mation may also be associated with an increase in the relative
amount of protein in the b-pleated sheet (Huang et al, 2003; Stone
et al, 2004). The appearance of these proteins in the b-pleated sheet
conformation may signify more chemical interaction between the
proteins and the microenvironment occurring in the cells, which
could be related to increase of mitotic activity, one of the cellular
alteration characteristics of gastric dysplasia (Correa, 1988).
On top of all these, the Raman band at 1335 cm�1 due to the
mixture of biochemicals (nucleic acids and proteins due to
extracellular matrix) (Stone et al, 2000; Huang et al, 2003) showed
slightly higher percentage signals for dysplasia tissue, indicating
that the percentage of nucleic acid and protein contents relative
to the total Raman-active components is also increased in
dysplasia tissue. Raman peak intensity at 875 cm�1 (hydroxypro-
line of collagen) was found to be much reduced in dysplastic
tissue, and this was probably due to the cytoplasmic mucin
depletion and the elevated concentration of metalloproteinase,
which cleaved collagen in the stroma layer in gastric dysplasia
(Correa, 1988; Georgakoudi et al, 2002). On the other hand, the
thickening of the epithelium associated with dysplastic progression
may attenuate the excitation laser power and also obscure the
collagen Raman emission from the deep collagen basal membrane
(Badizadegan et al, 2004), thus resulting in a much decrease of
Raman signals (875 cm�1) from dysplasia tissue. In addition, the
Raman peaks at 1100 and 1745 cm�1 due to phospholipids, and
Raman bands for phenylalanine and tryptophan at 1004 and
1210 cm�1, respectively, also showed lower percentage signals for
dysplasia tissue compared with the normal tissue, suggesting a
decrease in the percentage of phospholipids, phenylalanine, and
tryptophan relative to the total Raman-active constituents in the
dysplasia (Stone et al, 2000; Huang et al, 2003). The decrease of
Raman peak at around 1745 cm�1 associated with dysplastic tissue
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has also been reported in epithelial tissue with malignancies
(Ling et al, 2002; Huang et al, 2003, 2005). Therefore, the
distinctive differences in Raman spectra between normal and
dysplasia tissue further reinforce that Raman spectroscopy can be
used to reveal molecular and cellular changes associated with
dysplastic transformation.

To develop simple but effective algorithms for identifying
abnormal tissue from normal tissue, the nonparametric empirical
approach utilising peak intensity or peak intensity ratio
measurements of Raman spectra has been widely applied in a
number of organ sites to evaluate variations in the tissue spectra
associated with malignant changes (Mahadevan-Jansen and
Richards-Kortum, 1996; Utzinger et al, 2001; Huang et al, 2003).
For example, the ratio of intensities at 1655 cm�1 (C¼O stretching
of collagen and elastin) to 1455 cm�1 (CH2 scissoring of proteins
and lipids) has been used to spectrally separate tumours from
normal tissues in the brain, breast, colon cervix, and the lung
(Utzinger et al, 2001; Huang et al, 2003), as both bands are
sensitive to histological abnormality (Mahadevan-Jansen and
Richards-Kortum, 1996). For differentiation of normal and
precancerous tissues, other different intensity bands and ratios
such as I1656, I1656/I1325, I1330/I1454 vs I1454/I1656, and I1336/I1250 had
also been reported to be of effective diagnostic algorithms for
tissue diagnosis and characterisation (Mahadevan-Jansen and
Richards-Kortum, 1996; Huang et al, 2003). In this work, selection
of different prominent Raman peaks (e.g., peak intensity,
bandwidth, and Raman shift) has also been comprehensively
explored for gastric tissue classification. On the basis of the
difference spectrum between normal and dysplasia tissue
(Figure 4B), we found that the nonparametric intensity ratio of
Raman peak intensity at 875 cm�1 for hydroxyproline to the peak
at 1450 cm�1 for CH2 mode of proteins/lipids was one of the best
diagnostic algorithms that yielded a diagnostic sensitivity of 85.7%
and a specificity of 80.0% for separating dysplasia from normal
tissue. The significant difference of the intensity ratio
(I875/I1450) between normal and dysplasia tissue may reflect the
relative changes in the concentration of potential biological
markers from cell surface antigens, cytoplasmic proteins and
mucin, collagen in the extracellular matrix, enzymes,
and hormones in dysplasia (Correa, 1988; Mahadevan-Jansen
and Richards-Kortum, 1996). Further investigation also shows that
other intensity ratios including the Raman peak intensity band at
1335 cm�1 (nucleic acids/proteins) with respect to the Raman
peak intensities at 1100 cm�1 (phospholipids) and 1745 cm�1

(phospholipids) are also statistically significantly different
(Po0.0001) between normal and dysplasia tissue (data not
shown). These ratio values are in agreement with histopathologic
studies of grading malignancy by the nucleic acid-to-cytoplasm
ratio (Lauwers and Riddell, 1999; Huang et al, 2003; Mourant et al,
2005). Hence, the above intensity ratios may also potentially
be used as diagnostic algorithms for detecting precancer in
the stomach.

The simplistic empirical analysis above only employs a limited
number of Raman peaks for tissue diagnosis; most of the
information contained in the Raman spectra has not been used
for spectral analysis. Since biological tissue is complex, it is likely
that there are many biochemical species influencing diseases
concurrently. Therefore, a multivariate statistical analysis (e.g.,
PCA and LDA) (Lachenbruch and Mickey, 1968; Deinum et al,
1999) that utilises the entire spectrum to determine the most
diagnostically significant spectral features may improve the
diagnostic efficiency of Raman technique for tissue analysis and
classification. As such, PCA-LDA together with cross-validation
technique was applied in this work to the NIR Raman spectra
acquired for dysplasia tissue identification. The unpaired,
two-sided Student’s t-test identified that only a few PCs (PC1,
PC2, PC4, and PC5) contained the most diagnostically significant
information (Po0.05) for tissue classification. We note that one of

the most statistically significant PCs (e.g., PC5) only describes
small amount (2.6%) of the total variance. This indicates that
some PCs with small variances can still contain the useful diagnostic
information for revealing molecular changes with dysplastic
transformation. However, since the noise present in weak tissue
Raman signals may affect the determination of significant PCs with
smaller variances for tissue diagnosis (Sasic, 2001), caution should
be taken when acquiring the weak tissue Raman signals. Hence, the
rapid fibre-optic Raman system with a high S/N ratio (3.3- to 16-fold
improvement) (Huang et al, 2001) was employed to obtain high-
quality Raman tissue spectra, and an appropriate data preprocessing
was also introduced for further reducing the noise interference in
PC analysis. The consistency in identifying similar, significant PC
scores from run to run during the leave-one-spectrum-out, cross-
validation testing suggested that the diagnostic algorithms devel-
oped were robust for Raman spectral analysis in this study. To
develop effective diagnostic algorithms for tissue classification, all
the four diagnostically significant PCs were utilised in the LDA
model. The diagnostic sensitivity and specificity of 95.2 and 90.9%,
respectively, for identifying dysplasia from normal gastric tissue can
be achieved using the PCA-LDA model, which had almost a 10%
improvement in diagnostic accuracy compared with the empirical
method. Receiver operating characteristic analysis (Figure 8) further
confirms that PCA-LDA-based diagnostic algorithms employing
the entire spectral features of Raman spectra are more robust and
powerful in distinguishing dysplasia from normal tissue.

It should be noted that PCA is primarily for data reduction
rather than for identification of biochemical or biomolecular
components of tissue. It is usually difficult to interpret the physical
meanings of the component spectra. However, with more powerful
diagnostic algorithms (e.g., genetic algorithms) (Mountford et al,
2001), distinctive spectral regions that are optimal for tissue
differentiation may be identified and related to particular
biochemical and biomolecular changes (e.g., proteins, lipids,
nucleic acids, and carbohydrates) associated with neoplastic
transformation. These techniques need a much larger Raman data
set for robust diagnostic algorithms development. On the other
hand, to further understand the relationships between the
dysplasia-related morphologic/biochemical changes and the Raman
spectra from tissue that is crucial in establishing confidence in
clinicians on the application of rapid fibre-optic Raman spectro-
scopy for precancer detection, confocal Raman microspectroscopy
should be explored on the tissue in vivo or in vitro, by measuring
the complete Raman spectra of specific tissue microstructures, or
alternatively by mapping the distribution of some specific Raman
peaks or principal components within a tissue, or even mapping
the biochemical distribution at different tissue depth for associa-
tion with tissue histopathology (Caspers et al, 2003; Shetty et al,
2006). The work in these areas warrants further investigation.

In conclusion, this work shows that significant differences exist
in Raman spectra between normal and dysplastic gastric tissue,
demonstrating that NIR Raman spectroscopy have the potential to
provide diagnostic information necessary for distinguishing
precancer from normal tissue. Furthermore, with the development
of micron-scale Raman probes for the collection of tissue Raman
signals in a few seconds via endoscopy (Shim et al, 2000; Hattori
et al, 2007), NIR Raman spectroscopy could be a potentially
clinically useful tool for the rapid and noninvasive early diagnosis
of gastric precancer in vivo at the molecular level.
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