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Abstract
In the search for genetic determinants of complex disease, two approaches to association analysis are most often employed, testing

single loci or testing a small group of loci jointly via haplotypes for their relationship to disease status. It is still debatable which of

these approaches is more favourable, and under what conditions. The former has the advantage of simplicity but suffers severely when

alleles at the tested loci are not in linkage disequilibrium (LD) with liability alleles; the latter should capture more of the signal encoded in LD,

but is far from simple. The complexity of haplotype analysis could be especially troublesome for association scans over large genomic

regions, which, in fact, is becoming the standard design. For these reasons, the authors have been evaluating statistical methods that

bridge the gap between single-locus and haplotype-based tests. In this article, they present one such method, which uses non-parametric

regression techniques embodied by Bayesian adaptive regression splines (BARS). For a set of markers falling within a common genomic

region and a corresponding set of single-locus association statistics, the BARS procedure integrates these results into a single test by

examining the class of smooth curves consistent with the data. The non-parametric BARS procedure generally finds no signal when no

liability allele exists in the tested region (ie it achieves the specified size of the test) and it is sensitive enough to pick up signals when a

liability allele is present. The BARS procedure provides a robust and potentially powerful alternative to classical tests of association,

diminishes the multiple testing problem inherent in those tests and can be applied to a wide range of data types, including genotype

frequencies estimated from pooled samples.
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Introduction

The hunt is on for genetic variants that increase the risk for

complex diseases, such as type 2 diabetes and schizophrenia.

Methods to detect these liability alleles, however, are at a

crossroads. Most tests of association between disease status

and marker alleles have targeted one or a few markers within

a candidate gene. With the advent of large-scale single

nucleotide polymorphism (SNP) discovery and relatively

inexpensive genotyping, the trend is to target large genomic

regions surrounding selected genes, substantially larger

regions defined by linkage signals,1 or even the entire

genome.2 For human populations, linkage disequilibrium

(LD) typically extends only over a narrow region surrounding

a liability locus.3,4 Thus, it might require tens of markers to

evaluate the region around a gene for association, a much

larger number of markers to interrogate a linkage region

and orders of magnitude more markers to scan

the genome.5,6 As the cost of genotyping plummets, how-

ever, massive genotyping to accomplish fine-scale screening is

no longer unfathomable.

For the data analyst, the challenge presented by such

massive datasets should not be underestimated. Even the scale

of the problem remains nebulous.7 Any way you look at it,

however, the problem is large. Imagine performing a genome

scan with N ¼ 300; 000 SNPs. One could perform N single-

locus tests, and make appropriate correction for multiple

testing. The concern raised by this simple approach is that the

sample size is more than an order of magnitude smaller than

the number of SNPs in the genome, even ignoring other

genetic variation that could have an impact on liability to

disease. Moreover, while in expectation LD between liability

alleles and marker alleles declines smoothly with distance

under some simple models of evolution, in fact the pattern of

pairwise LD is known to be highly variable in the human

genome, so much so that it often appears erratic.3,4
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The nature of pairwise LD has inspired the investigation of

higher level LD structure, such as that embodied by haplo-

types. Results from the genomic analysis of haplotypes do

indeed look promising, in that LD at higher levels of depen-

dence is much more predictable.8–11 From this observation

sprang the HapMap project, which has as its goal to define

the haplotype structure of the human genome and to identify

the SNPs needed to ‘tag’ haplotypes. Whether higher-level

LD will turn out to be sufficiently predictable to streamline

the discovery process for liability alleles is unclear,12 and it is

expected that it will probably depend on the nature of

the population sampled. Even in the best of circumstances,

however, there remains an abyss between theory and practice:

different analytical methods lead to different fine-scale haplo-

type structure in the genome. This can be taken to mean that

higher-level LD is by no means absolute, and thus a multitude

of different analyses will be required to ensure adequate testing

for association. Adding to the complexity, it is not even clear if

haplotype-based tests of association are more powerful than a

series of single-locus tests. Not surprisingly, it appears that the

answer depends strongly on the local patterns of LD.13–16

Another wrinkle to the problem is the type of genotyping

performed on the sample. Obviously, molecular haplotyping

of some kind provides the maximum amount of information

about the LD in a region, per subject, but the molecular

methods can be expensive. When individuals within families

are genotyped at multiple loci, haplotype structure often can

be inferred without error, but collection of the sample can be

expensive. Usually less expensive are samples consisting of

unrelated individuals, but then some information about

haplotype structure is lost (albeit less than one might think:

cf. Schaid17 and Douglas et al.18) Pooled genotyping, however,

offers the most economical approach for obtaining genotypes

but the accuracy of haplotype reconstruction fades quickly as

the number of samples comprising the pool increases.

The situation for the gene hunter is therefore perplexing.

Single-locus tests suffer from correction for multiple testing,

and cannot be guaranteed to be effective, even as the sample

size tends to infinity, because the tested marker alleles might

not be in LD with critical liability alleles. Haplotype-based

tests capture more of the LD structure of a genomic region,

and thus could be more efficient than single-locus tests, but

the question of which haplotypes to test raises the spectre of

very large corrections for multiple testing when large genomic

regions are evaluated.

A single best recipe for hunting liability alleles is unlikely to

exist. In some circumstances, it may be best to combine

information over single markers in some computationally

efficient way, to discover target regions. Once identified in a

preliminary manner, those regions of the genome that appear

to harbour liability alleles would be ideal for more refined

fine-scale haplotype tests. In this paper, methods to combine

information over individual markers are explored. The

authors’ analyses exploit the fact that LD between a liability

allele and marker alleles is expected to decline with distance.

Thus, it might be reasonable to fit a smooth function to the

data, looking for regions with a consistent overall pattern of

LD supporting the existence of a liability allele in the region.

Smoothing the pattern of LD in a target region has been

successfully applied in the context of fine mapping.19–21

While the various approaches differ in the extent to which

they incorporate parametric modelling assumptions, most of

them constrain the problem substantially by assuming, a priori,

that a liability allele is present in the assessed interval. When

the primary objective is testing for the presence of a liability

allele, however, a more flexible approach is required. In

regions where no liability alleles are present, the pattern of

observed LD is expected to exhibit no signal; however, due to

sampling error, population substructure and evolutionary forces,

there will be random patterns in the observed LD signal.

To model such data, non-parametric curve fitting approaches

were investigated. Specifically, for a sample of m markers with

physical locations, x1; x2; . . .; xm and measured LD y1; y2; . . .;
ym; the observed LD were fitted to an arbitrary smooth curve

g(.), which allows for additional noise, e1; e2; . . .; em:

yi ¼ gðxiÞ þ ei

In particular, contrary to many fine-mapping methods, this

approach does not force the fitted function to be unimodal.

Next, the authors constructed a test based on an estimate of

g(.) that utilised all of the LD measures in the region, to

determine if there is evidence for one or more liability alleles

in the region.

Materials and methods

The authors’ objective was to develop a method for combining

single-marker measures of association across markers in a

chromosomal region to test for the presence of liability alleles.

Non-parametric regression methods, which do not require an

inferential model, seemed ideal for the task. In theory, any

summary statistic might be used in the non-parametric regres-

sion. For example, from a series of transmission disequilibrium

tests (TDTs) tests,22 one might use the 2 log10 (p-value)s

or the odds ratios. From a case-control sample, a statistic

measuring differentiation between cases and controls at

each marker can be used. It is important, however, that the

statistics exhibit a pattern of association that, on average, is

inflated in the vicinity of the liability allele.

The authors focussed on statistics of association for a case-

control sample, in particular measures of LD between liability

and marker alleles. Although some LD measures can be shown

to be superior to others for fine-mapping simple Mendelian

diseases,23 none of them routinely outperforms the others in

practice.20 In this article, the authors have chosen to use two

LD measures, d and Nei’s GST.24,25 d has proven to be useful

for mapping mutations inducing Mendelian diseases,26,27 and is

a simple function of the recombination fraction between a
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disease and marker locus.23,28 GST is a natural measure for

multiallelic loci and measures the probability that an allele

drawn from the case population differs in state from an allele

drawn from the control population (see Appendix A1 for

formulae for these measures).

Variance in LD measures is induced by two sources, the

process of evolutionary drift over generations (evolutionary

error) and the effect of taking a sample from the current

population (sampling error). While it is difficult to estimate

the evolutionary error, the sampling error can be easily

computed. Under certain evolutionary conditions, it can be

shown that the former quantity is approximately proportional

to the latter.28 This follows because both sampling and evol-

utionary error are primarily functions of the allele frequency

and the sample/population size, respectively; in particular, for

neutral alleles, evolutionary error is largely the result of

repeated sampling error over the generations. This assumption

is utilised here, in the BARS procedure.

In Appendix A1, formulae are provided for the sampling

errors of d and GST. In addition to sampling error, measures of

LD obtained from the same general vicinity on a chromosome

are likely to be correlated, even after one factors in the

expected exponential decay described previously. Unlike

evolutionary and sampling error, however, there is no direct

statistical model from which to estimate the correlation

between LDs sampled in a restricted region.

Non-parametric regression
There are many approaches to non-parametric regression such

as a simple running-mean, which was used to fine-map

hereditary haemochromatosis,29 and the more complex

splines.30 Although all non-parametric regression methods

assume a flexible form for the function g(.), methods vary in

how smoothly they interpolate the neighbouring observations

in a manner that avoids over-fitting; these approaches have

been reviewed by Green and Silverman.31

Spline methods are based on the same principle as

polynomial regression: a basis is chosen and then one proceeds

to fit the curve using least squares regression. Unlike

polynomial regression, however, the B-spline basis is chosen to

facilitate fitting the curve primarily using the neighbouring

observations. The interval of interest is divided into a set of

ordered points, called knots, from which to build the basis

function. Between each consecutive pair of knots, a cubic

polynomial is fitted to the observations. To produce a smooth

curve overall, the fitted cubic functions are forced by con-

straints to connect smoothly at each of the knots. Two extra

terms are included in the basis, to constrain the behaviour of

the fitted curve outside the range of the data. Consequently,

altogether a model with k free-knots has dimension k þ 2:
Recently, a promising non-parametric regression approach

known as Bayesian adaptive regression splines (BARS) was

developed.32 In contrast to smoothing splines, which place a

knot at every data point (xi), BARS uses a free-knot basis.

Specifically, this approach estimates the best locations for

placement of a minimum number of knots for the spline.

The fewer the number of knots locally, the smoother the fitted

curve. By estimating the optimal location of the knots, free-

knot spline methods can adapt to local changes in smoothness.

Consequently, BARS is highly flexible and has the capacity to

adjust the smoothness of the fitted curve automatically to the

local smoothness of the underlying function.

To illustrate various non-parametric regression approaches,

the authors display the hereditary haemochromatosis data from

Feder et al.29 LD is measured using GST and the pattern is

fitted using (i) a simple cubic polynomial, (ii) a smoothing

spline and (iii) the BARS method (Figure 1).

With BARS, to estimate g(.), a free-knot spline approach is

used, with k knots located at undetermined positions

j ¼ (j1,j2,. . .,jk) within the specified interval of interest.

The authors use bj(xi) to denote the (i, j )th element in the

matrix B. As with polynomial regression models, it is assumed

that the function g(.) can be expressed as a linear combination

of the terms in the basis, with a vector of regression co-

efficients b ¼ ðb1;b2; . . .;bkþ2Þ
T : gðxÞ ¼

Pkþ2
j¼1 bjðxÞbj:

Or, to express this concept in matrix terms, with

g ¼ ðgðx1Þ; gðx2Þ; . . .; gðxmÞÞ
T ; y ¼ ðy1; y2; . . .; ymÞ

T and

e ¼ ðe1; . . .; emÞ
T

g ¼ Bb and y ¼ Bbþ e

As in most regression models, with BARS it is assumed that

the residual errors are independent and identically distributed

(IID) normal random variables with unknown variance s 2. To

complete the BARS model specification, priors must be

chosen for the unspecified parameters (k,j,b,s). The priors

recommended in DiMatteo et al. were selected to be

Figure 1. Non-parametric regression curves fitted to the

hereditary haemochromatosis data from Feder et al.28 using GST

as a measure of LD. Lines are obtained by using cubic

polynomial regression (dashed), smoothing spline regression

(dotted) and the BARS method (solid).
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essentially non-informative and hence have little influence on

the resulting fitted curves.32

For the LD application, unequal variances are anticipated,

due to varying allele frequencies across the loci, as well as

correlated residuals due to the evolutionary process. (See, for

example, Devlin et al.28 or Lazzeroni.19) To apply the BARS

modelling approach to LD data, the authors incorporated a

more complex model for the error structure. First, they allow

the residual errors to have non-constant variance; let ei ¼ die i;
and assume that each e i is normally distributed with mean zero

and variance s 2. The constant terms, di, i ¼ 1; 2; . . .;m; are

taken to be proportional to the standard deviations of the yi.

Secondly, they model the correlation between error terms

using an exponential decay function. To differentiate the two

approaches they label them IID BARS and non-IID BARS.

To choose d2
i in practice, one could use a function of the

statistical variances (vi) computed for the LD measure being

utilised. The authors follow DiMatteo et al. in choice of

priors.32 For details, see Appendix A2. To fit the model, a

reversible-jump Markov chain Monte Carlo (MCMC)

algorithm can be used;33 see Zhang for details.34

The credible interval for a feature of the curve, say the mode,

M, is the Bayesian counterpart to a confidence interval. Let

Ca denote the ð1 2 aÞ credible interval. It has the property

PrðM [ CajyÞ ¼ 1 2 a: A principal advantage of taking a

Bayesian approach to inference is that a credible interval of any

feature of the curve can be computed directly without

requiring any approximations. (See Appendix A2 for details.)

Because the confidence and credible interval concepts are

essentially indistinguishable for this application, the credible

interval for M will hereafter be referred to as the confidence

interval.

The width of the confidence interval for the mode indicates

how strongly the data support the location of the peak in the

fitted curve. For instance, contrast results for GST and the

homozygosity measure used in Feder et al. to map the causal

variant (Figure 2).29 Both curves place the mode similarly, but

the associated confidence intervals show differing levels of

precision in the estimators.

The BARS procedure
Theory suggests that LD should be greatest in the immediate

vicinity of a liability allele. Consequently, the authors’ interest

lies in discovering the mode of g(.). M is considered to be a

reasonable estimator of the location of a liability locus, if any

are present in the region. If none are present, then no notable

signals are expected in the LD pattern. Specifically, there is

expected to be a lack of a definitive mode to the function —

this is the basis of the BARS test.

To formulate the BARS test, the authors further develop

the insight that if there are no signals from liability alleles in

the region, then the confidence interval should encompass the

entire region of interest. C is defined as an indicator variable

that takes the value 1 if there is a liability allele in the region of

interest (D) and 0 otherwise. The aim is to test H0 : C ¼ 0

versus Ha : C ¼ 1 and to control Pr(reject H0jC ¼ 0). The

test is based on the assumptions that, under the null hypoth-

esis, g(.) is essentially constant for all x in the interval under

investigation; ie the mode of the function is the entire interval,

hence the confidence interval for the mode should include

the entire interval. In practice, D is defined as the interval

defined by the sampled grid points, less a negligible factor(h)

to allow for edge effects in the spline fitting procedure:

D ¼ ½x1 þ h; xm 2 h�:
It is assumed that a confidence interval is generated for the

mode of g(.), as described previously, and H0 : C ¼ 0 is

rejected when Ca is a strict subset of D. Alternatively, if Ca

encompasses D, the null hypothesis C ¼ 0 is not rejected. For

illustration, see Figure 3, which shows a sample of five

realisations of curves obtained by the MCMC algorithm as it

moves through the parameter space selecting curves consistent

with the data. Because there is no clear mode in these data,

the modes of the five curves vary broadly across the interval.

Figure 2. GST and a homozygosity measure fitted to the heredi-

tary haemochromatosis data from Feder et al.29 The arrow

indicates the location of the mutation, and the corresponding

line segment indicates the confidence interval obtained for

the mode.
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The fitted regression curve for these data would be the average

of R curves like these.

Unlike the typical multiple testing problem, it seems that

the BARS test controls for the experiment-wide error rate

automatically. That is, PrðD , CajC ¼ 0Þ ¼ 1 2 a; ie the

curve-fitting approach controls the overall probability of a false

positive (designated ae) at a without requiring any corrections

for multiple testing.

Standard tests of association applied to individual markers

sequentially can only directly control the false-positive rate for

each marker, designated ai however. If the m tests were

independent, then ae ¼ 1 2 ð1 2 aiÞ
m; but obviously the test

statistics are positively correlated. It follows that ae #

1 2 ð1 2 aiÞ
m: If, using the Bonferroni criterion, one sets

ai ¼
a
m
; then it follows that ae # a; but the exact value of ae

will not be known. Because ae is less than the pre-selected a,

then the power of the overall test can be low. At the other

extreme, if ai ¼ a; a choice often made in practice, a high

false-positive rate is the likely result.

The advantages of the smoothing approach are two-fold:

first, ae can be directly controlled; secondly, this procedure is

less sensitive to errors in the data (see Mitchell et al.35). For

example, suppose the LD for one marker is extremely high,

but spurious. The LDs for the other markers in the neigh-

bourhood of this marker will be likely to be less impressive.

Curve-fitting methods combine the information of LDs along

all the markers in the neighbourhood. Hence, this high LD

will not have much effect in the authors’ non-parametric LD

method due to the smoothness of the fitted curve, while it

may result in a false-positive association using standard

multiple testing methods.

For comparison with the BARS procedure, the authors also

investigated an alternative procedure for computing a

confidence interval for the mode. A popular approach to

non-parametric regression is smoothing splines, with the

smoothing parameter chosen by generalised cross validation.36

A percentile bootstrap approach can be used to produce a

confidence interval.37

Results

As a preliminary proof of concept, the authors applied the

BARS procedure to three classic data sets often used to

illustrate the performance of fine mapping techniques: (1) 101

hereditary haemochromatosis patients and 64 controls

measured at 43 single tandem repeat (STR) markers spanning

a 6.5 Mb region;38 (2) 94 cystic fibrosis disease haplotypes and

92 normal haplotypes measured at 23 bi-allelic markers span-

ning a 1.77 Mb region;39 and (3) a sample of haplotypes

with and without the Huntington disease mutation measured

for 27 restriction fragment length polymorphisms

(RFLPs).40 Applying the GST measure to all three data sets

yielded excellent results. The resulting confidence interval for

the mode spanned the disease mutation in each data set. In

addition, because the resulting confidence intervals spanned a

fraction of the region of interest (0.66, 0.59 and 1.1 MB,

respectively), the BARS procedure definitively indicated the

presence of a disease mutation within the region. In addition,

the BARS procedure was applied using the homozygosity

measure for data set (1) and the d measure for data sets (2–3)

with similar results.

To explore the performance of the BARS procedure in

more depth, the authors used an evolutionary simulation

study to investigate the properties of the confidence interval

for the mode of the fitted curve. In particular, they examined

two features: (i) the false-positive rate when there was no

liability allele in the region; and (ii) the coverage of the

confidence interval obtained using GST for k-allelic markers

when there was a liability allele present. They examined

coverage because a procedure that has poor coverage

properties will be likely to have a high false-positive rate

in the proposed test. They also compared the coverage of the

confidence interval obtained by smoothing splines with

that of the BARS approach.

The case and control populations were simulated using an

evolutionary simulation program that mimics features of

natural populations by using direct simulation techniques; see

Lam et al. for details.41 Recombinations and mutations were

permitted in each generation. Diploid individuals paired at

random in their generation, mated and produced a random

number of children. Each population was founded by 1,000

individuals and remained at that size for 50 generations to

create random LD among alleles on normal chromosomes.

After 50 generations, a disease mutation was introduced on

one chromosome and the population grew exponentially for

200 generations, to a final size of 50,000 individuals.

Figure 3. Simulated linkage disequilibrium values measured

using GST when there is no liability allele in the region. The

curves depict five of the many obtained via the MCMC

algorithm.
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Sixteen STR markers were simulated, covering a 2 Mb

critical region, with spacings between markers of 0.25 Mb for

the outer two gaps flanking a core region with 11 gaps of

0.09 Mb. The disease mutation was located in the middle of

the region. The mutation rate was 0.001. The recombination

process was a no-interference Poisson model based on the

assumption that 1 cM ¼ 1 Mb:
From each population, samples of ‘disease’ and ‘normal’

chromosomes were chosen for analysis. The authors first

investigated the performance of the proposed BARS test under

the null hypothesis. To do so, they obtained 100 cases and 100

controls by randomly subsampling from the samples of normal

chromosomes just described. Six hundred such populations

were generated and the authors investigated the size of the test

with a ¼ 0:05 and 0.01. Using the IID BARS model, they

found that the false-positive rate was quite close to the

nominal rate: 0.045 and 0.010, respectively.

Next 200 data sets were sampled, with 100 cases and 100

controls each drawn from diseased and normal populations

generated as described above. With these data, the authors

evaluated the coverage of confidence intervals for the mode

using smoothing splines, IID BARS and non-IID BARS

methods. The results (Table 1) show that the coverage

obtained for both of the BARS methods were almost exactly

on target. The length of the intervals using non-IID BARS

were slightly longer, as expected. Nevertheless, modelling

correlated errors and non-constant variance had only a small

effect on the performance of the BARS procedure, at least for

these simulations.

From the size of the standard errors of the estimated modal

quantity (Table 1) it was also concluded that the authors’ test

statistic had good power to detect the presence of a liability

allele. The interval of interest was 2 Mb long, while the

average 95 per cent confidence interval was 1.4 Mb. From this,

it was concluded that most confidence intervals did not

include the entire interval and hence would have rejected the

null hypothesis.

In contrast to the BARS procedures, the coverage of the

95 per cent confidence interval obtained using smoothing

splines with the smoothing parameter selected using general-

ised cross validation was surprisingly low (Table 1). Clearly,

a test statistic based on this non-parametric regression

procedure would not have good properties.

Next, the authors investigated the behaviour of the BARS

procedure under conditions designed to mimic the type of

data likely to be encountered when studying a complex

disease. To generate an additive model, they set the penetrance

parameters fj, j ¼ 0; 1; 2 for j copies of the disease allele so that

f 2 ¼ 2f 1 2 f 0; where f0 is the probability that an affected

individual has zero copies of the liability allele at the locus of

interest. They set the prevalence K ¼ 0:005 to model a

relatively uncommon disorder, such as autism. To model a

liability allele with a moderate effect, they set the attributable

fraction, defined as 1 2 f 0=K ; at 0.2. Given the relative

frequency of the liability allele in the population, p, the genetic

model was then complete. Two distinct models were obtained

by choosing p ¼ 0:2 and 0.4. To generate cases and controls,

haplotypes were drawn from the simulated populations

described previously. To produce genotypes for affected

individuals, j haplotypes that bear liability alleles were drawn

at random (using the implied probability distribution

Pr( j jcase), and 2 2 j haplotypes that did not bear liability

alleles. Genotypes for control individuals were generated

similarly.

For these models, the authors assessed the power to detect

the presence of a liability allele using a sample size of 1,000

cases and controls and a ¼ 0:05: They found power of 62 per

cent and 61 per cent and average length of a confidence

interval of 1.61 and 1.62 for the models with p ¼ 0:2 or 0.4,

respectively. While only covering a minuscule portion of the

space of potential genetic models, it is worth noting that both

of these choices yielded a small genotype relative risk

( f1/f0): 1.75 and 1.25 respectively. Thus, the authors’ simu-

lations suggested that the BARS procedure has promise. For

these simulations, single-locus tests would require the

Bonferroni correction for 16 markers (ie a ¼ 0:0016), or

some other adjustment, and the power of the single-locus tests

would be further eroded because alleles at these multiallelic

markers are only in LD with the disease allele (the causal

variant was not recorded). In reality, even more markers

are likely to be tested, and if these do not include the

causal variant(s), the power of single-locus tests will surely

be low.

Discussion

In this paper, the authors have explored the use of non-

parametric regression methods to integrate information about

genetic association over multiple markers in a circumscribed

genomic region. Motivating this exploration was the expected

shift from association analysis targeting one or a few SNPs

within a candidate gene to large scale association analysis, in

which a dense set of SNPs distributed over substantial genomic

regions, or perhaps the entire genome, can be queried. The

analytical challenges in such data can be daunting and, for this

reason, the authors hoped to develop a quick and facile

Table 1. The coverage of a liability locus by the 95% confidence

interval using GST in 200 simulated datasets

Smoothing splines Bars

IID non-IID

Coverage 0.540 0.940 0.950

SD 0.123 0.338 0.363

Note: SD is the standard deviation of the location of the mode.
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screening tool to identify regions of the genome worthy of

deeper genetic analysis.

In this spirit, they explored a particular non-parametric

regression method called the BARS procedure, and contrasted

it with a related method, smoothing splines. Their results

suggested that BARS has promise as a quick screening tool.

It successfully combined information for markers across a

chromosomal region naturally by tracing the pattern of

association. Furthermore, unlike the approach using a

smoothing spline, the confidence intervals constructed with

the BARS procedure achieved the proper coverage level.

Incorporating correlated errors or non-constant variance for

the measures of LD in the BARS procedure improved the

coverage in some cases, but the amount of improvement was

not substantial. Therefore, a simple and computationally

efficient form of BARS could be applied to data in practice.

Despite these promising results, the BARS procedure

requires further validation. At the present time, there is little

agreement in the literature about whether single-locus or

haplotype-based tests of association are more powerful.

The authors believe that the diversity of opinions and results

stems from the fact that the space of alternative hypotheses is

huge, and that portions of this space favour single-locus tests

while other portions favour haplotype-based tests. They

conjecture that yet other portions of the space will favour the

BARS procedure, namely regions in which there are associ-

ation signals from multiple tested markers. It is also likely that

the BARS procedure will often perform well when haplotype-

based tests are most powerful. It is also worth noting that the

BARS procedure can be applied to data that are obtained at

considerably less cost (pooled genotypes) and hence it might

be the most cost-effective method of analysis, even when it is

not most powerful for a given sample size.

The principal assumption underlying the BARS approach

is that, if a liability allele exists in the region under study, then

the pattern of LD exhibited by the pairwise measures in the

immediate vicinity of the liability allele exhibit, on average,

higher LD than in the region overall. The complementary

assumption for the procedure concerns the pattern of LD when

no liability allele exists in the region under study. In this setting,

it is assumed that the pattern of LD does not exhibit a distinct

mode. Finally, for small samples, it is expected that the BARS

procedure may fail to detect a mode in the pattern of statistics,

even if one exists. The BARS method does not require the

stronger assumption, often made for fine mapping procedures,

that the pattern of LD is unimodal — declining smoothly as a

function of the distance from the causal variant.

For a simple Mendelian disorder, the assumptions of the

BARS procedure hold for most measures of LD.23 By contrast,

even for simple genetic disorders, the stronger assumption

made by most fine mapping methods is not met for many

measures of association. For instance, suppose the LD

measures are pairwise test statistics for association. It is well

known that the power of a test of association is a function of

the allele frequency distribution at the chosen marker. Thus,

two markers, both located in the immediate proximity of the

causal variant, are likely to have a different power to detect

the association. Consequently, even if the true pattern of LD is

declining smoothly as a function of distance, the pattern of the

test statistics will be somewhat irregular. For complex

disorders, the situation is even less predictable. Nevertheless,

the BARS procedure can handle a considerable amount of

irregularity in the pattern of the LD signals. Ultimately, all that

is required is that there exists a cluster of markers in the region

under investigation that exhibit higher LD, on average, than

the full set of markers.

Recently, the effect of haplotype blocks on measures of LD

has been a topic of keen interest. For instance, in an attempt to

fully incorporate the spatial effect of ancestral recombinant

events on the LD pattern, Conti and Witte developed a

hierarchical model for fine mapping that models both the

smooth decay of LD over distance, together with the plateaux

of constant LD predicted within a haplotype block.21 By

contrast, the BARS procedure does not seek to capture the

added information potentially available in haplotype blocks. In

this sense, the BARS procedure may be less powerful than one

that does model this feature; however, the BARS procedure is

valid whether the region under investigation possesses

haplotype blocks or not. Consequently, the BARS procedure

could be more robust, and even more powerful, than a method

that seeks to test for association using knowledge of haplotype

blocks when they are not present.

The other implicit assumptions of the model are that:

(i) the measurement error is normally distributed, (ii) the

variance of the LD measure is proportional to the sampling

error and (iii) the correlation between neighbouring measures

decays exponentially as a function of distance between the

measured markers. None of these assumptions is likely to

strictly hold in practice. Nevertheless, the authors’ investi-

gations suggest that these assumptions are not critical to the

performance of the procedure.34

Translating these results to the analysis of large genomic

regions also requires further exploration of how to divide

the region, or even the entire genome, into segments that

maximise the power of the BARS procedure. As the results

indicate, large gaps between denser sets of markers should be

treated as boundaries. The authors likewise suspect that one

might want to partition the region into functional units, such

as on the basis of plausible candidate genes or clusters of genes.

Quite possibly, one might want to employ more than one

tiling of BARS tests over a region.

All of these open questions can be answered by theoretical

and empirical analyses. These results suggest the non-para-

metric BARS procedure has much potential as a tool to screen

genomic regions for liability alleles because of its good statis-

tical properties. Over the next decade, it will be interesting to

see which methods prove most successful in the hunt for

liability alleles.
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Appendix A1: Measure of association

Assume that a sample of n1 cases and n2 controls has been

obtained ðn1 þ n2 ¼ nÞ: Let pi ¼
ni

n
and pij ¼

nij

n
(i ¼ 1; 2; . . .; k;

j ¼ 1; 2), where nij is the count of the ith allele in sample j and

n ¼
P2

j¼1

Pk
i¼1nij (Table 2). Consider the case (or control)

group alone as a population. The frequency of the i th allele in

the case (control) group is pij1ðpij2Þ; where pijj ¼
pij

pj
ð j ¼ 1; 2Þ

and pijj ¼
pij

pj
:

The measure d (or pexcess), is equivalent in some settings to

the population attributable risk:22

d ¼
paj1 2 paj2

1 2 paj2

;

where a is the allele most associated with the liability allele.

The approximate variance of d is

Var½d� ¼
1 2 paj1

ð1 2 paj2Þ
2

1

n1

·paj1 þ
1

n2

·
paj2ð1 2 paj1Þ

1 2 paj2

� �

Nei’s GST for cases and controls and a single locus with k

alleles is defined as follows. Define gene diversity, Hjl,

between groups j and l to be the probability that two alleles are

different in structure when they are randomly drawn,

respectively, from groups j and l ð j; l ¼ 1; 2Þ; namely, Hjl ¼

1 2
Pk

i¼1pijj·pijl: Define the net gene diversity, Djl, between

groups j and l to be the difference in gene diversity between

groups j and l and the average of gene diversities within cases

and within controls, namely Djl ¼ Hjl 2
HjjþHll

2
: Then, the

average gene diversity HS within cases and controls, the net

gene diversity D and GST is

HS ¼
1

2
ðH11 þ H22Þ ¼ 1 2

1

2

Xk

i¼1

p2
ij1 þ

Xk

i¼1

p2
ij2

 !
;

D ¼ D12 ¼ H12 2 HS ¼
1

2

Xk

i¼1

ðpij1 2 pij2Þ
2;

GST ¼
D

2Hs þ D
¼

1
2

Pk
i¼1 ðpij1 2 pij2Þ

2

2 2 1
2

Pk
i¼1 ðpij1 þ pij2Þ

2
:

For a bi-allelic locus,

GST ¼
ðp1j1 2 p1j2Þ

2

1 2 ðp1j2 2 p2j1Þ
2

Using the Delta Method, we obtain an approximate

estimate of the variance of GST.33 Let

D0
ij ¼ ð21Þj pij2 2 pij1 þ

Xk

r¼1

prjjð prj1 2 prj2Þ

 !
:

Hs0ij ¼ 2pijj þ
Xk

r¼1

p2
rjj;

and

vij ¼ D0
ij·Hs 2 Hs0ij·D:

It follows that

Var½GST � ¼

4

ð2Hs þ DÞ4

X2

j¼1

Xk

i¼1

pijj

nj

v2
ij 2

1

n

X2

j¼1

Xk

i¼1

pijjvij

 !2( )
:

Appendix A2: Technical details of
the model

A model is required for the variance-covariance matrix of

ðe1; e2; . . .; emÞ: It is assumed that ei has variance equal to d2
i s

2;
where di is prespecified. The information about the form of

the variances is recorded in a weight matrix W, which is

diagonal with Wii ¼ 1=d2
i : Secondly, the correlation between

error terms is modelled using an exponential decay function:

Corr(e i,e j) ¼ Sij ¼ exp{2gjxi 2 xjj
a}, in which the

parameters (g,a) are unspecified. Putting these two features

together, and expressing the resulting covariances in matrix

form, produces the following model, CovðeÞ ¼ F ¼

s 2W21=2SW21=2:
To choose d2

i in practice, one could use the statistical

variances (vi) computed for the LD measure being utilised,

or to obtain a more robust estimator one could use a linear

combination between this estimated quantity and the average

variance (v̄) of the set of measured LDs: ð1 2 qÞvi þ qv�. In

their simulations, the authors used the latter procedure with

q ¼ 0:5:

Table 2. Sample frequencies of alleles obtained at a particular

locus in a case-control study

Cases Controls Marginal

Allele 1 n11 n12

Allele 2 n21 n22

..

. ..
. ..

.

Allele k nk1 nk2

Marginal n1 n2 n

Note: k may differ across loci.
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Following DiMatteo et al.,31 priors were chosen in an

analogous manner: b , Normal with mean 0 and variance

ms 2(BTF21B)21; s has prior proportional to 1/s; the

spacings between knots were assumed to be uniformly

distributed; k , Poisson[5]; g has prior proportional to

g21
0 exp{g=g0}; with g0 ¼ 3; and a has prior proportional to

a21
0 exp{a=a0}; with a0 ¼ 0:6:

To fit the model, a reversible-jump Markov chain

Monte Carlo (MCMC) algorithm can be used.32 This

algorithm is suitable because the dimension of the model,

which is a function of the number of free knots, k, is a

free parameter. The reversible-jump algorithm allows the

Markov chain to move from one dimension to another,

and consequently the number of knots and the number of

associated coefficients in the regression equation can

change. The implementation of this algorithm for the non-

IID BARS model is similar to the algorithm presented in

DiMatteo et al.;31 see Zhang for details.33 It should be

noted, however, that the algorithm may encounter

numerical difficulty if most of the response variables (yi)

are near zero. For this reason, adding an arbitrary constant

(0.01) to each response value before analysing the

observations is suggested.

The credible interval of any features of the BARS curve

can be computed directly using the MCMC algorithm. To

compute the credible interval for the mode, one simply

records the mode for each of R cycles of the MCMC algorithm

recorded after the Markov chain has converged. Typically, for

a model as complex as this, R should be at least as large as

10,000, with an initial burn-in period of 5,000 iterations. These

outcomes are ordered from smallest to largest: Mð1Þ # Mð2Þ #

. . . # MðRÞ:The ð1 2 aÞ £ 100% credible interval is defined as

the interval spanning from the a=2 £ 100th to the ð1 2 a=2Þ £

100th percentiles of the sampled modes’s distribution, obtained

from the MCMC algorithm.

Electronic-database information

A program written in C, with an R wrapper to perform

the IID-BARS calculations, will soon be posted at

http://www.stat.cmu.edu/, roeder/

Zhang X (2002), will also be posted electronically at

http://www.stat.cmu.edu/
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