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Spatiotemporal Analysis of 
Influenza in China, 2005–2018
Yewu Zhang   , Xiaofeng Wang, Yanfei Li & Jiaqi Ma*

Influenza is a major cause of morbidity and mortality worldwide, as well as in China. Knowledge of the 
spatial and temporal characteristics of influenza is important in evaluating and developing disease 
control programs. This study aims to describe an accurate spatiotemporal pattern of influenza at 
the prefecture level and explore the risk factors associated with influenza incidence risk in mainland 
China from 2005 to 2018. The incidence data of influenza were obtained from the Chinese Notifiable 
Infectious Disease Reporting System (CNIDRS). The Besag York Mollié (BYM) model was extended 
to include temporal and space-time interaction terms. The parameters for this extended Bayesian 
spatiotemporal model were estimated through integrated nested Laplace approximations (INLA) 
using the package R-INLA in R. A total of 702,226 influenza cases were reported in mainland China in 
CNIDRS from 2005–2018. The yearly reported incidence rate of influenza increased 15.6 times over the 
study period, from 3.51 in 2005 to 55.09 in 2008 per 100,000 populations. The temporal term in the 
spatiotemporal model showed that much of the increase occurred during the last 3 years of the study 
period. The risk factor analysis showed that the decreased number of influenza vaccines for sale, the 
new update of the influenza surveillance protocol, the increase in the rate of influenza A (H1N1)pdm09 
among all processed specimens from influenza-like illness (ILI) patients, and the increase in the latitude 
and longitude of geographic location were associated with an increase in the influenza incidence risk. 
After the adjusting for fixed covariate effects and time random effects, the map of the spatial structured 
term shows that high-risk areas clustered in the central part of China and the lowest-risk areas in the 
east and west. Large space-time variations in influenza have been found since 2009. In conclusion, an 
increasing trend of influenza was observed from 2005 to 2018. The insufficient flu vaccine supplements, 
the newly emerging influenza A (H1N1)pdm09 and expansion of influenza surveillance efforts might be 
the major causes of the dramatic changes in outbreak and spatio-temporal epidemic patterns. Clusters 
of prefectures with high relative risks of influenza were identified in the central part of China. Future 
research with more risk factors at both national and local levels is necessary to explain the changing 
spatiotemporal patterns of influenza in China.

Influenza is associated with notable mortality and morbidity worldwide, as well as in China1–3. The behaviours of 
major epidemics and pandemics of influenza were complicated due to dramatic genetic changes, subtype circula-
tion, wave patterning and virus replacement4.

Influenza vaccination is the most effective means to prevent infection, severe disease and mortality5. The 
World Health Assembly recommends vaccinating 75% of key risk groups against influenza6. Although sea-
sonal influenza vaccination was introduced in 1998, influenza vaccination is not yet included on the National 
Immunization Program (NIP) in China7. The average national vaccination coverage was reported to be just 1.5–
2.2% between 2004 and 20147,8. The overall number of flu vaccines approved for sale by China’s National Institute 
for Food and Drug Control (NIFDC) has decreased in recent years9,10. The low coverage rate and reduction in 
flu vaccine supplementation have raised much concern about the increased risk of influenza incidence in China.

Although new emerging influenza virus types and subtypes, such as avian influenza A H5N111–14, influenza 
A (H1N1)pdm0915–17, and influenza A H7N918,19, have been reported continuously in China, the disease burden 
of influenza has been dominated by A(H3N2), A(H1N1)pdm2009 influenza viruses, pre-pandemic A(H1N1) or 
influenza B in recent years, which account for the majority of cases20. The influenza A(H1N1)pdm2009 virus was 
first introduced to mainland China on May 9, 200921, and has been one of the dominant viruses in the seasonal 
influenza epidemics since then20. The effect of newly emerging influenza A(H1N1)pdm2009 viruses on the geo-
graphic patterns and temporal trends of influenza across the whole country is still unknown.
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Spatial and spatiotemporal disease mapping are widespread approaches in the data analysis of disease sur-
veillance data. The most popular model of spatial disease mapping was proposed by Besag et al.22 and developed 
further by several other researchers23,24. By adding terms for a linear25–27 or nonparametric trend in time and 
time-space interactions25,28,29, the baseline model was extended to use in the spatiotemporal case25.

The influenza surveillance system is a major data source for monitoring and evaluating the transmission and 
evolution of influenza30–32. Two major surveillance systems, the Sentinel Influenza-Like Illness (ILI) Surveillance 
System and the Chinese Notifiable Infectious Diseases Reporting System (CNIDRS), have been widely used for 
influenza surveillance and research in China16,30,33,34.

In this study, we aimed to describe an accurate spatiotemporal pattern of influenza at the prefecture level in 
mainland China from 2005 to 2018 and explore the risk factors using Bayesian spatiotemporal disease mapping 
tools and data from CNIDRS.

Results
Descriptive analysis.  Of the 2,702,226 influenza cases that were reported in mainland China via CNIDRS 
between January 1st, 2005, and December 31st, 2018, 55.8% were male and 44.2% were female. The proportions of 
cases in age groups 0 to 9 years, 10 to 19 years, 20 to 59 years and 60+ years were 46.9%, 14.8%, 20.8%, and 8.8%, 
respectively. The yearly incidence rates were 0.35, 0.44, 0.28, 0.32, 1.49, 0.48, 0.49, 0.91, 0.96, 1.59, 1.44, 2.24, 3.31, 
and 5.51 per 10,000 population from 2005 to 2018 (Fig. 1).

The overall incidence rates of influenza from 2005 to 2018 by prefecture are displayed in Fig. 2.

Model selection for spatiotemporal models.  Table 1 presents the DIC components for the four models. 
Model 4 offered the best trade-off between model fit and complexity. For this reason, we focus on the results from 
Models 4 and 5 in the following analysis.

Covariates associated with the reported incidence cases of influenza.  The fixed effects of covari-
ates in the univariate Poisson models, multivariate adjusted Poisson model, and multivariate adjusted spatiotem-
poral model are shown in Table 2. The crude odds ratios (ORs) and adjusted ORs in both the univariate Poisson 
models and multivariate adjusted Poisson model are statistically significant. After adjusting for other covariates, 
a spatially unstructured random effect term (vi), a spatially structured conditional autoregression term (υi), a 
first-order random walk-correlated time variable (γ1j), and an interaction term for time and place (δij) in the 
multivariate adjusted spatiotemporal model, the flu vaccines (per million doses), flu surveillance protocols, rate 

Figure 1.  The incidence rate of influenza per 10,000 population with an overlying loess smoothing line from 
2005–2018.

Figure 2.  The incidence rate of influenza of prefectures from 2005 to 2018 in China.
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of influenza A (H1N1)pdm09, latitude and longitude still remain statistically significant. Holding all other covar-
iates to zero and adjusting for spatiotemporal variation, every one million increase in the number of influenza 
vaccines for sale approved by the China Food and Drug Administration was associated with a 12.7% decrease 
in the influenza incidence risk (95% CI = 0.825–0.923). Similarly, the new update of the influenza surveillance 
protocol in 2017 was related to a 65.6% increase in the influenza incidence risk (95% CI = 1.097–2.496) com-
pared to the protocol used in 2005 to 2008. For every 10% increase in the rate of influenza A (H1N1)pdm09 
among all processed specimens from ILI patients, there was a 19.5% increase in the influenza incidence risk 
(95% CI = 1.005–1.413). Every one degree increase in the latitude and longitude was associated with a 1.5% (95% 
CI = 0.980~0.991) and 0.2% (95% CI = 0.997~0.999) increase in the influenza incidence risk, respectively.

The spatial and temporal effects in spatiotemporal models with covariates.  The spatial 
effects.  The map of the spatially structured conditional autoregression term demonstrated areas of spatial pat-
terning and similarity among prefectures. The spatially structured relative risk and posterior probabilities of spa-
tially structured relative risk greater than 1.0 are presented in Figs. 3 and 4, respectively.

Model D pD DIC

Model 1* 1129876.4 363.9 1130240.2

Model 2** 1129876.6 363.9 1130240.5

Model 3† 1129876.5 363.9 1130240.4

Model 4‡ 35202.0 4467.3 39669.2

Model 5# 34664.3 4522.7 39187.0

Table 1.  Deviance information criterion (DIC) for five spatiotemporal models. Abbreviations: D, posterior 
mean of the deviance; pD, the number of effective parameters; DIC, the deviance information criterion, as a 
measure of the trade-off between model fit and complexity. Note: Model terms used in four models include an 
intercept (α); a spatially unstructured random effect term (νi); a spatially structured conditional autoregression 
term (υi); uncorrelated time (γj); a first-order random walk-correlated time variable (γ1j); and an interaction 
term for time and place (δ1j). θij represents the relative risk of area i at time j. *Model 1, 
convolution + uncorrelated time (time IID), e.g., θ α ν υ γ= + + +( )log ij i i j1 , where. **Model 2, 
convolution + 1st order random walk correlated time (time RW1), e.g., θ α ν υ γ= + + +( )log ij i i j1 . †Model 3, 
convolution + 1st order random walk correlated time (time RW1) + uncorrelated time (time IID), e.g., 

θ α ν υ γ γ= + + + +( )log ij i i j j1 . ‡Model 4, convolution + 1st order random walk correlated time (time 
RW1) + space-time interaction term with uncorrelated prior for the interaction term, e.g., 
log( )ij i i j ij1θ α ν υ γ δ= + + + + . #Model 5, model 4 + covariates, e.g., 

θ β ν υ γ δ= α + ∑ + + + +=( ) xlog ij k
n

k k i i j ij1 1 .

Covariates Crude OR (95% CI)* Adjusted OR (95% CI)** Adjusted OR (95% CI)†

Flu vaccines (per million doses)‡ 0.528(0.527~0.529) 0.645(0.644~0.647) 0.873(0.825~0.923)

Flu surveillance protocols#

Version 1 (2005–2008) 1 [Reference] 1 [Reference] 1 [Reference]

Version 2 (2009–2016) 3.366(3.349~3.383) 4.614(4.588~4.640) 1.045(0.819~1.331)

Version 3 (2017–2018) 11.79(11.73~11.85) 8.381(8.332~8.431) 1.656(1.097~2.496)

Rate of influenza A (H1N1)pdm09¶ 1.149(1.148~1.151) 1.117(1.114~1.120) 1.195(1.005~1.413)

Percentage of influenza A (H1N1)pdm09†† 1.206(1.205~1.207) 0.969(0.968~0.970) 1.015(0.958~1.076)

Population density (/km2) 18.29(18.13~18.46) 5.597(5.546~5.649) 2.475(0.642~9.543)

Latitude (degree) 0.940(0.940~0.940) 0.953(0.952~0.953) 0.985(0.980~0.991)

Longitude (degree) 0.998(0.997~0.998) 0.998(0.998~0.998) 0.998(0.997~0.999)

Table 2.  Risk analysis of covariates associated with reported cases of influenza. Abbreviations: OR, odds ratio; 
CI, confidence interval. *Univariate Poisson analysis models. **Multivariate adjusted Poisson analysis model, 
which included all variables in the univariate analysis models. †Multivariate adjusted spatiotemporal models, 
which included all variables in the univariate analysis models; an intercept (α); a spatially unstructured random 
effect term (νi); a spatially structured conditional autoregression term (υi); a first-order random walk-correlated 
time variable (γ1j); and an interaction term for time and place (δij). ‡Total number of flu vaccines approved for 
sale by China’s National Institute for Food and Drug Control (NIFDC), which were rescaled to one million 
doses as one unit. Data were collected from NIFDC. #The influenza surveillance protocols used included three 
versions: Version 1 for 2005 to 2008, Version 2 for 2009 to 2016, and Version 3 for 2017 to 2018. ¶The rate of 
influenza A (H1N1)pdm09 was calculated by dividing the number of specimens of positive influenza A (H1N1)
pdm09 viruses by the number of specimens processed from the influenza likely illness (ILI) cases. The rate was 
rescaled to 10% changes as one unit. Data were collected from FluNet (www.who.int/flunet), Global Influenza 
Surveillance and Response System (GISRS). †††The percentage of influenza A (H1N1)pdm09 was calculated 
by dividing the number of specimens of positive influenza A (H1N1)pdm09 viruses by the total number of 
specimens of influenza-positive viruses. One unit change equals a 10% change in influenza A (H1N1)pdm09.
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The convolutional spatial risk term, which includes both the spatially structured conditional autoregres-
sion term (υi) and the spatially unstructured random effect term (νi) at the prefecture level, identified areas at 
increased risk of influenza throughout the 14-year study period (Fig. 5). Posterior probabilities for an area’s spatial 
risk estimate exceeding 1.0 are presented in Fig. 6.

The proportion of the total spatial heterogeneity explained by the spatially structured conditional autoregres-
sion term was 73.51%.

After adjusting for fixed covariate effects and time random effects, both the map of the spatial structured 
term and the convolutional spatial term show that high-risk areas clustered in the central part of China and the 
lowest-risk areas in the east, northwest and southwest. The higher-risk prefectures were mostly distributed in 
Guangdong, Guangxi, Guizhou, Hunan, Jiangxi, Zhejiang, Hubei, Anhui, Henan, Hebei, Beijing, Tianjin, Gansu, 
Ningxia, and Inner Mongolia. The lower-risk areas in the east included some prefectures in the Shandong pen-
insula and the prefectures of Heilongjiang, Liaoning, and Jilin provinces in the northeast. The northwest areas 
are composed of prefectures in Tibet, Qinghai and Xinjiang, while the southwest areas include Chongqing and 
prefectures in Sichuan and Yunnan provinces.

The temporal trend.  The relative risks of the 14-year study period, holding the covariates and spatial risk con-
stant, were calculated by exponentiating the marginal first-order random walk-correlated time term (γ1j) in the 
spatiotemporal models of influenza risk with and without covariates. For the spatiotemporal model without 

Year Adjusted OR (95% CI)* Adjusted OR (95% CI)**

2005 0.245(0.217~0.272) 0.284(0.227~0.337)

2006 0.328(0.291~0.363) 0.369(0.296~0.437)

2007 0.216(0.191~0.239) 0.250(0.199~0.296)

2008 0.210(0.186~0.233) 0.263(0.209~0.313)

2009 2.221(1.980~2.452) 1.469(0.789~2.013)

2010 0.607(0.540~0.671) 0.993(0.780~1.187)

2011 0.566(0.503~0.626) 0.637(0.509~0.755)

2012 1.316(1.172~1.453) 1.703(1.369~2.009)

2013 1.312(1.168~1.449) 1.410(1.142~1.657)

2014 2.151(1.917~2.375) 2.430(2.054~2.782)

2015 1.795(1.599~1.982) 2.101(1.698~2.473)

2016 2.665(2.375~2.942) 2.457(2.021~2.861)

2017 3.790(3.379~4.183) 2.530(1.602~3.325)

2018 5.763(5.137~6.361) 3.083(1.849~4.123)

Table 3.  Temporal trend term effects, spatiotemporal models of influenza risk with and without covariates, 
China prefectures, 2005–2018. *Adjusted by convolutional spatial term, space-time interaction term, e.g., 

θ α ν υ γ δ= + + + +( )log ij i i j ij1 . **Adjusted by convolutional spatial term, space-time interaction term, and 
covariates, e.g., θ β ν υ γ δ= α + ∑ + + + +=( ) xlog ij k

n
k k i i j ij1 1 .

Figure 3.  Map of the spatially structured relative risk ( υe i), spatiotemporal model of influenza incidence risk 
with covariates, China Prefectures, 2005–2018. Note: The linear terms in the model of spatiotemporal model of 
influenza incidence risk with covariates were θ β ν υ γ δ= α + ∑ + + + +=( ) xlog ij k

n
k k i i j ij1 1 , which included 

all variables in the univariate analysis models; an intercept (α); a spatially unstructured random effect term (νi); 
a spatially structured conditional autoregression term (υi); a first-order random walk-correlated time variable 
(γ1j); and an interaction term for time and place (δij).

https://doi.org/10.1038/s41598-019-56104-8


5Scientific Reports |         (2019) 9:19650  | https://doi.org/10.1038/s41598-019-56104-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

covariates, an overall increasing trend was found in the temporal trend term in the 14-year study period. The 
risk of influenza remained low between 2005 and 2008. A steep increase was observed in 2009. It dropped 
slightly back to a low level and remained stable in 2010 and 2011. A rapid increase was obvious in the last 3 years  
(Table 3) (Fig. 7).

For the temporal trend term in the spatiotemporal model with covariates, the relative risks in the years from 
2005 to 2016 were not significantly different from that in the spatiotemporal model with covariates. The relative 
risks in the model with covariates in 2017 and 2018 were significantly lower than those in the model without 
covariates. The lower boundary of the 95% confidence intervals in the model with covariates showed some level-
ling off in recent years. The differences between the spatiotemporal model with and without covariates indicated 
that the recent increases in influenza incidence risks could be partially explained by the fixed covariate effects.

Space-time interactions.  The probability exceedances for the yearly space-time interactions are presented 
for the study period (Fig. 8). These identify areas with residual spatial risk greater than 1.0 compared to the 
prefecture-wide risk after the fixed effects, unstructured, spatially structured, and time random effects are held 
constant. Changing patterns and large variations among the yearly specific spatial distributions are shown in 
Fig. 8. It is interesting that most of the higher-risk areas were western areas of China before 2009, and most of the 
higher-risk areas are eastern or northern areas of China after 2009.

Figure 4.  Map of the posterior probabilities of spatially structured relative risk ( υe i) > 1.0, spatiotemporal model 
of influenza incidence risk with covariates, China Prefectures, 2005–2018. Note: The linear terms in the model 
of spatiotemporal model of influenza incidence risk with covariates were θ β= α + ∑ +=( ) xlog ij k

n
k k1

ν υ γ δ+ + +i i j ij1 , which included all variables in the univariate analysis models; an intercept (α); a spatially 
unstructured random effect term (νi); a spatially structured conditional autoregression term (υi); a first-order 
random walk-correlated time variable (γ1j); and an interaction term for time and place (δij).

Figure 5.  Map of the convolutional spatial relative risk ( υ ν+e i i), spatiotemporal model of influenza incidence 
risk with covariates, China Prefectures, 2005–2018. Note: The linear terms in the model of spatiotemporal 
model of influenza incidence risk with covariates were θ β ν υ γ δ= α + ∑ + + + +=( ) xlog ij k

n
k k i i j ij1 1 , which 

included all variables in the univariate analysis models; an intercept (α); a spatially unstructured random effect 
term (νi); a spatially structured conditional autoregression term (υi); a first-order random walk-correlated time 
variable (γ1j); and an interaction term for time and place (δij).

https://doi.org/10.1038/s41598-019-56104-8


6Scientific Reports |         (2019) 9:19650  | https://doi.org/10.1038/s41598-019-56104-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
Based on the incidence data of influenza gained from the Chinese Notifiable Infectious Disease Reporting System, 
we used the Bayesian spatiotemporal model in this study to assess the space-time patterns of the influenza epi-
demic at the prefecture level in mainland China from 2005 to 2018 and explored several factors that may be 
associated with the changing spatial and temporal patterns in the influenza incidence risk.

The time trend.  An increasing trend of influenza incidence was observed from 2005 to 2018, with a steady 
level in the first 4 years and a much faster increase in the last 3 years. A sharp increase in 2009 was observed due 
to the transmission and widespread effect of influenza A (H1N1)pdm09 in China16,35,36.

Several potential factors may be associated with the rapid increasing trend of influenza in China.
First, insufficient flu vaccine supplements and a low uptake rate might be associated with an increase in influ-

enza incidence. The results of the final spatiotemporal model showed that every million increase in the number 
of influenza vaccines approved for sale by the China Food and Drug Administration was associated with a 12.7% 
decrease in the influenza incidence risk (95% CI = 0.825–0.923). The rapidly increased crude rates of influenza 
from 2016 to 2018 coincided with a large reduction in the numbers of vaccines approved for sale at the same 
time. The reductions in the numbers of vaccine supplements were mostly due to the outcomes of vaccine scandals 
related to improper vaccine storage and production in 2016 and 2018, respectively9,10,37.

Previous studies reported that uptake figures of the influenza vaccine averaged 1.9% nationally and 4.3% 
among urban elderly aged 60 years and above in 9 cities of China during the 2008–2009 and 2011–2012 influenza 
seasons, respectively7,8,20. It is expected that the uptake may be even lower, as people lost their faith in the safety of 
domestically produced vaccines after the vaccine scandals in China38. Our results are consistent with the study in 
Italy, which reported an association between vaccination coverage decline and influenza incidence among Italian 
elderly39.

Figure 6.  Map of the posterior probabilities of convolutional spatial relative risk ( υ ν+e i i) > 1.0, spatiotemporal 
model of influenza incidence risk with covariates, China Prefectures, 2005–2018. Note: The linear terms in the 
model of spatiotemporal model of influenza incidence risk with covariates were θ β= α + ∑ +=( ) xlog ij k

n
k k1

ν υ γ δ+ + +i i j ij1 , which included all variables in the univariate analysis models; an intercept (α); a spatially 
unstructured random effect term (νi); a spatially structured conditional autoregression term (υi); a first-order 
random walk-correlated time variable (γ1j); and an interaction term for time and place (δij).

Figure 7.  Temporal trend term, spatiotemporal models of influenza risk with and without covariates, 
China prefectures, 2005–2018. Blue lines: relative risks of years and their 95% confidence intervals in the 
spatiotemporal model with covariates. Black lines: relative risks of years and their 95% confidence intervals in 
the spatiotemporal model without covariates.
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Second, currently circulating influenza strains in humans include influenza A (H1N1)pdm09, influenza 
A (H3N2) and influenza B viruses, (B/Victoria and B/Yamagata)5,40,41. Influenza A (H1N1)pdm09 has been 
reported to be the predominant subtype in recent years according to ILI surveillance and is more likely to be the 
major cause of regional and widespread outbreaks40. Our study showed that for every 10% increase in the rate of 
influenza A (H1N1)pdm09 among all processed specimens from ILI patients, there was a 19.5% increase in the 
influenza incidence risk (95% CI = 1.005–1.413). Shu et al. reported that the predominant subtype of seasonal 
influenza A (H1N1) and B/Yamagata could circulate from the south to the north of China from 2006 to 200934. 
Our study also found that every one degree increase in latitude and longitude was associated with a 1.5% (95% 
CI = 0.980~0.991) and 0.2% (95% CI = 0.997~0.999) increase in the influenza incidence risk, respectively. This 
result was consistent with the role of climatic factors in influenza transmission dynamics20,42.

Third, the greater effort in influenza surveillance and the use of new technologies may account for the rise in 
influenza incidence. In recent years, especially after the 2009 pandemic season, influenza surveillance has been 
expanded worldwide, as recommended by the World Health Organization (WHO)43–45. In China, influenza sur-
veillance protocols and technical guidance have been updated in line with new emerging virus subtypes and new 
detection methods. The major revision in 2009 and 2010 was to include influenza A (H1N1)pdm09 virus infec-
tion in the case definition, and updating in 2017 focused on the use of fast detection methods. Our study showed 
that the new update of the influenza surveillance protocol in 2017 was related to a 65.6% increase in the influenza 
incidence risk (95% CI = 1.097–2.496) compared to the protocol used in 2005 to 2008. Moreover, the number of 
sentinel hospitals for ILI reporting increased from 193 in 2005 to 554 in all provinces in 200933,34,41. As CNIDRS 
includes all sentinel hospitals, sentinel hospitals are likely to report more cases of influenza to CNIDRS. In addi-
tion, more hospitals have used electronic health information systems, which may improve both the quantity and 
quality of data collection and exchange from hospitals to CNIDRS46–49.

Fourth, the reporting on influenza A (H1N1)pdm09, avian influenza A (H7N9), highly pathogenic avian 
influenza (HPAI) H5N1 and avian H6 influenza has increased in recent years12,18,19,30,50,51. Constant reports in the 

Figure 8.  Map of the posterior probabilities of relative risks of space-time interaction terms ( δe ij) > 1.0, 
spatiotemporal model of influenza incidence risk with covariates, China Prefectures, 2005–2018. Note: The 
linear terms in the model of spatiotemporal model of influenza incidence risk with covariates were 

θ β ν υ γ δ= α + ∑ + + + +=( ) xlog ij k
n

k k i i j ij1 1 , which included all variables in the univariate analysis models; 
which included all variables in the univariate analysis models; an intercept (α); a spatially unstructured random 
effect term (νi); a spatially structured conditional autoregression term (υi); a first-order random walk-correlated 
time variable (γ1j); and an interaction term for time and place (δij).
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media and public health campaigns against the new emerging virus have caused both the government and the 
public to be more concerned about influenza. The improved public perception of influenza may change people’s 
health-seeking behaviours, especially in the epidemic seasons52,53. Furthermore, enlarged coverage of health care 
insurance in both urban and rural areas in recent years in China may also induce people to use more health 
services54,55.

A rapid increase in the numbers of airlines and high-speed railway transports in China has been reported in 
recent years56. These factors would make it easy to transmit the influenza virus at a larger scale and in a shorter 
time across the country56–58.

The spatial pattern.  The BYM model includes both a spatial conditional autoregression component and a 
heterogeneous random effect component. This structure allows us to know how much of the residual disease risk 
is due to spatially structured variation and how much is unstructured overdispersion22.

The spatially structured conditional autoregression term demonstrated areas of spatial patterning and sim-
ilarity among prefectures. The results of spatially structured variation show a distinguished spatial pattern of 
risk of influenza across prefectures in China. The highest-risk areas clustered in the middle part of China, while 
the lowest-risk areas were distributed in the east, northwest and southwest. Different patterns of influenza 
between the north and south in China were well reported3,16,20,34,41,59. In China, the line following the Qinling 
Mountain range in the west and the Huaihe River in the east is often used to split the mainland into the north 
and the south34. In this study, we observed clustering in both the north and the south in the middle part of 
China. The unique structured spatial patterns may be attributed to the shared risk factors among the neigh-
bouring areas. This may be associated with similarities in the climatic zone, the predominant subtype of the 
virus at the time of epidemics, socioeconomic background or lifestyles. The last important factor should not 
be ignored. Some studies reported that clustering of diseases may be a consequence of spatial heterogeneity in 
surveillance efforts60,61.

The space-time interaction.  The space-time interaction is a random effect term, which is interpreted as 
the residual effect after the unstructured, spatially structured and time effects are modelled and represent spo-
radic short-term outbreaks or clusters.

The changes and circulations of virus subtypes may determine the characteristics of the space-time interac-
tion terms. The year 2009 was the critical point according to the results of the spatiotemporal analysis. There are 
four types of ILI activities: sporadic, local outbreak, regional outbreak and widespread outbreak in FluNet (www.
who.int/flunet), Global Influenza Surveillance and Response System (GISRS)62,63. Since the first case of influenza 
A (H1N1)pdm09 was reported on May 9, 2009, in mainland China, the type A (H1N1)pdm09 virus has been 
detected in all ILI activities according to the data from FluNet.

The yearly ILI activities may be partially associated with the changes and similarities in the patterns of the 
space-time interactions from 2005 to 2018. From the FluNet data mentioned above, we found that sporadic ILI 
activities were dominant in 2005, 2006, 2007 and 2008. Correspondently, we found more areas with high relative 
risk in these 4 years in the space-time term. This implies that the more sporadic the activities are, the larger the 
variations in the spatiotemporal distribution of the risk of influenza. In contrast, the large outbreaks account for 
most ILI activities in the years 2009, 2010, 2017 and 2018. Few prefectures were observed to have a relative risk 
greater than 2 or 3 during that period. Large outbreaks, especially large regional and widespread outbreaks, may 
reduce the differences in the incidence risk of influenza among the areas and times on a large scale.

Strengths.  This work adds to the existing research on influenza epidemiology in the following ways. First, 
the study initially presents the spatiotemporal distributions with higher-resolution spatial data than has been 
reported in China for the last 14 years, which allows more opportunity for focused investigations and interven-
tions. Next, we used the exceedance probabilities instead of the observed risk estimates to identify those areas for 
which the increased risk was highly unlikely to be due to chance. Then, this study also provided a baseline model 
that can be extended to include social, economic, ecological, and environmental factors, as well as intervention 
measures to explore their associations with influenza. Finally, the methods in this study offer practical tools for 
spatial analysis of other notifiable infectious diseases in CNIDRS.

Limitations.  There are some limitations to this study. CNIDRS is a passive surveillance system, and accessi-
bility to health facilities and patient visit behaviour may affect the number of cases reported. We collected both 
clinically diagnosed and laboratory-confirmed cases in CNIDRS, so misdiagnosis and misreporting are una-
voidable because it is difficult to distinguish influenza from other respiratory viruses without laboratory testing, 
especially in the non-epidemic seasons.

Conclusions
This paper outlined the application of the Bayesian spatiotemporal model to assess the relative disease risk of 
influenza at the prefecture level in mainland China. We observed an increased incidence trend of influenza from 
2005 to 2018 that was fairly steady in the first 4 years and increased rapidly in the last 3 years. Clusters of prefec-
tures with high relative risk values concerning influenza incidence were identified in the central part of China. 
The identification of high-risk areas is especially a priority in China because the limited resources available for 
disease control need to be focused on the places most in need. We hypothesize that the insufficient flu vaccine 
supplements, low vaccine uptake, the newly emerging influenza A (H1N1)pdm09 and expansion of influenza 
surveillance efforts might be the major causes of the dramatic changes in outbreak and spatiotemporal epidemic 
patterns. Future research with more risk factors at the national and local levels is necessary to explain the chang-
ing spatiotemporal patterns of influenza in China.
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Method
Data sources.  Influenza data were obtained from the Chinese Notifiable Infectious Disease Reporting 
System (CNIDRS). The CNIDRS started in the early 1950s. A web-based online reporting system was developed 
and put to use in 2004 after the SARS outbreak in 200332,64. To date, 39 notifiable infectious diseases have been 
included in the reporting system. Hospital doctors are responsible for collecting and reporting the individual 
case information through the web-based CNIDRS. All 39 notifiable infectious diseases were classified into three 
categories. A disease in category A should be reported within 2 hours once diagnosed. The diseases in categories 
B and C should be reported within 24 hours32,33,64.

The data on influenza were extracted from the Year-Areas Statistic Tables from 2005 to 2018 in CNIDRS. Four 
municipalities directly under the central government (i.e., Beijing, Shanghai, Tianjin, and Chongqing without 
prefecture administrative level) and 344 prefectures were included in the final spatiotemporal analysis.

Case definitions.  Case definitions for influenza and diagnostic criteria are outlined by the National Health 
and Family Planning Commission of the People’s Republic of China. Both clinically diagnosed cases and 
laboratory-confirmed cases should be reported to CNIDRS. The influenza A (H1N1)pdm09 cases were added to 
the general influenza cases in May 2009. Before October 12, 2009, influenza A (H1N1)pdm09 cases only refers 
to suspected and laboratory-confirmed cases defined in the Guideline for Influenza A (H1N1)pdm09 Treatment 
(Second Version, 2009). Four types of cases were defined in the third version, 2009. The reported cases include 
suspected, clinically diagnosed, laboratory-confirmed, and severe cases. The protocols for influenza surveillance 
and technical guidance were updated in 2009, 2010 and 2017.

Covariates.  In order to account for the changing spatiotemporal patterns of influenza in China, we defined or 
collected covariates that may be associated with the risk of influenza at the national level. The covariates included 
the yearly total number of flu vaccines approved for sale by China’s National Institute for Food and Drug Control 
(NIFDC), the positive rate of influenza A (H1N1)pdm09 among the number of ILI specimens processed, the 
percentage of influenza A (H1N1)pdm09 among all the positive influenza specimens, and protocol changes. Data 
on the total number of influenza vaccines released by the China Food and Drug Administration were collected 
from the National Institute for Food and Drug Control (NIFDC) of China [https://www.nifdc.org.cn/nifdc/fwzn/
ppjpqf/index.html]. The numbers of lot releases of influenza vaccines were rescaled to one million doses as one 
unit. The number of specimens of ILI and the number of influenza A viruses detected by subtype were down-
loaded from FluNet (www.who.int/flunet), Global Influenza Surveillance and Response System (GISRS). The 
positive rate of influenza A (H1N1)pdm09 and the percentage of influenza A (H1N1)pdm09 were all rescaled to 
10% changes as one unit. The protocols were divided into three stages: 0 for 2005 to 2008, 1 for 2009 to 2016, and 
2 for 2017 to 2018. Univariate and multivariate Poisson models were used to calculate crude and adjusted odds 
ratios (ORs) with 95% confidence intervals (CIs) for covariates, which were further adjusted in the spatiotempo-
ral models hereafter.

Model specifications for spatiotemporal analysis.  The Besag York Mollié (BYM) convolution model 
was used as a baseline model22. Using the notation of Banerjee et al.65, the BYM model is as follows:

θ∼ ∗y Poisson E( )i i i

θ α ν υ= + +log( )i i i

for I ∈ 1: N, where

•	 N is the number of areas. The yi counts of influenza cases in area i are independently identically Poisson dis-
tributed. θi is the risk for area i. Ei is the number of expected cases of influenza in area i, which acts as an offset.

•	 α quantifies the average incidence risk of influenza in all the prefectures.
•	 νi is a spatially unstructured random effects component that is i.i.d normally distributed with mean zero.
•	 υi is a spatially structured component using an intrinsic conditional autoregressive structure (iCAR).

The random effect for each area ζi is thus the sum of a spatially structured component υi and an unstructured 
component νi. It is termed a convolution prior22,66.

The BYM model was extended to include a linear term for space-time interaction and a nonparametric spatio-
temporal time trend. Possible random effects specifications for the temporal term include a linear time trend (βj), 
a random time effect (γj), a first-order random walk (γ1j), a second-order autoregression (γ2j), etc.25.

Four types of interactions are proposed in Knorr-Held (2000)28, see Knorr-Held (2000)28 for a detailed 
description. In this study, we assume no spatial and temporal structure on the interaction, and therefore, δij ∼ 
Normal(0; τδ).

Four candidate models were tested and compared:

	 1.	 Model 1, convolution + uncorrelated time (time IID), e.g.,

θ α ν υ γ= + + +( )log ij i i j

	 2.	 Model 2, convolution + 1st order random walk correlated time (time RW1), e.g.,
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θ α ν υ γ= + + +( )log ij i i j1

	 3.	 Model 3, convolution + 1st order random walk correlated time (time RW1) + uncorrelated time (time 
IID), e.g.,

θ α ν υ γ γ= + + + +( )log ij i i j j1

	 4.	 Model 4, convolution + 1st order random walk correlated time (time RW1) + space-time interaction term 
with uncorrelated prior for the interaction term

θ α ν υ γ δ= + + + +( )log ij i i j ij1

In Model 4, the space-time interaction is a random effect term and is interpreted as the residual effect after the 
unstructured, spatially structured and time effects are modelled and represent sporadic short-term outbreaks or 
clusters.

Model selection was based on deviance information criteria (DIC), which take into consideration the poste-
rior mean deviance, a Bayesian measure of model fit, and the complexity of the model. A smaller DIC indicates a 
better fit of the model67.

The final linear model consisted of an intercept (α); a vector of national-level explanatory variables ∑ β=( x )k 1
n

k k  
for the yearly total number of lot release of influenza vaccines by the China Food and Drug Administration, the 
positive rate of influenza A (H1N1)pdm09 among the number of ILI specimens processed, the percentage of 
influenza A (H1N1)pdm09 among all the positive influenza specimens, and protocol changes; a spatially unstruc-
tured random effect term (νi); a spatially structured conditional autoregression term (υi); a first-order random 
walk-correlated time variable (γ1j); and an interaction term for time and place (δij).

∑θ β ν υ γ δ= α + + + + +
=

( ) xlog ij
k

n

k k i i j ij
1

1

The prefecture-specific structured and unstructured spatial risks of influenza compared to the whole spatial 
risk of all prefectures are obtained by applying an exponential transformation to the components of νi and υi, 
respectively. The relative risk of space-time interaction is computed by the exponentiation of the term δij.

The exceedance probabilities of spatial risk and risk of space-time interaction were also calculated. The 
exceedance probability represents the posterior probabilities for an area’s spatial risk estimate exceeding some 
pre-set value and has been proposed as a Bayesian approach to hotspot identification68,69.

All spatial models were computed using integrated nested Laplace approximations (INLA), which have been 
developed as a computationally efficient alternative to MCMC70. All spatial analyses were conducted within 
Microsoft R Open version 3.5 using the R-INLA package (version 18.07.12).
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