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Abstract
Purpose: Radiotherapy planning based only on positron emission tomography/magnetic resonance imaging (PET/MRI) lacks computed

tomography (CT) information required for dose calculations. In this study, a previously developed deep learning model for creating

synthetic CT (sCT) from MRI in patients with head and neck cancer was evaluated in 2 scenarios: (1) using an independent external

dataset, and (2) using a local dataset after an update of the model related to scanner software-induced changes to the input MRI.

Methods and Materials: Six patients from an external site and 17 patients from a local cohort were analyzed separately. Each patient

underwent a CT and a PET/MRI with a Dixon MRI sequence over either one (external) or 2 (local) bed positions. For the external

cohort, a previously developed deep learning model for deriving sCT from Dixon MRI was directly applied. For the local cohort, we

adapted the model for an upgraded MRI acquisition using transfer learning and evaluated it in a leave-one-out process. The sCT mean

absolute error for each patient was assessed. Radiotherapy dose plans based on sCT and CT were compared by assessing relevant

absorbed dose differences in target volumes and organs at risk.

Results: The MAEs were 78 § 13 HU and 76 § 12 HU for the external and local cohort, respectively. For the external cohort,

absorbed dose differences in target volumes were within § 2.3% and within § 1% in 95% of the cases. Differences in organs at risk

were <2%. Similar results were obtained for the local cohort.

Conclusions: We have demonstrated a robust performance of a deep learning model for deriving sCT from MRI when applied to an

independent external dataset. We updated the model to accommodate a larger axial field of view and software-induced changes to the

input MRI. In both scenarios dose calculations based on sCT were similar to those of CT suggesting a robust and reliable method.

© 2021 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1 F.L.A. and B.M.F. contributed equally to this work.
Introduction

The use of combined positron emission tomography

(PET)/magnetic resonance imaging (MRI) offers new

possibilities for individualized radiotherapy planning as

it provides spatially and temporally aligned structural and

functional information in a single examination.1 The

excellent soft tissue contrast of MRI is ideal for target

delineation and biological tumor characterization based

on functional information from both PET and MRI for

dose painting and adaptive planning strategies.2-4 The

development of dedicated radiotherapy equipment, which

is compatible with MRI and PET means it is possible to

integrate PET/MRI in the radiotherapy workflow5,6 with

the aim of completely replacing the routine planning CT

to eliminate systematic registration errors between scan

sessions7,8 and reduce scan time. Studies concerning

head and neck cancer have demonstrated the feasibility

of scanning patients with PET/MRI in the radiotherapy

treatment position using dedicated equipment such as flat

table overlay and immobilization masks.9,10

Information about the electron density of tissue is a

prerequisite for dose calculation, which is provided by

CT to a very good approximation, but not by MRI. Simi-

lar information is needed for PET attenuation correction

(AC) in the context of PET/MRI. Consequently, several

studies have reported methods for generating synthetic

CT (sCT) from MRI with promising results, especially in

the brain and the pelvic region using a variety of different

approaches.11-16 The number of studies in head and neck

is more limited and while initial methods have used atlas-

based approaches14,17,18 the challenging complex
anatomy with large inter-patient variations and abnormal

anatomy raise the need for an alternative strategy.

Recently, deep learning algorithms such as convolu-

tional neural networks have been derived for the head

and neck region demonstrating great results.10,19,20 Data

used to train and test such networks are often selected

from a well-characterized group of patients from a single

site and a single scanner resulting in a model, which is

tuned to specific training data. In a clinical setup, robust-

ness and generalizability are critical for methods to be

successfully applied across sites and scanners. Deep

learning methods developed locally must therefore be

tested in external independent test data. In scenarios

where input data significantly differ from the data origi-

nally used for training (eg, due to a permanent change in

acquisition protocol), it might be necessary to update the

model through transfer learning. This is a highly regarded

strategy to update/fine-tune a model, allowing for a sig-

nificant reduction in training data.21

In this study, we aimed to evaluate the robustness and

generalizability of a previously developed deep learning

model for creating sCT from MRI in head and neck

patients. We evaluated the model performance for radio-

therapy when: (1) applied to an independent external

dataset from another site, and (2) the model was updated

to accommodate input MRI with a larger axial field of

view (FOV) and changes in MRI sequence parameters

induced by a scanner software upgrade.

Methods and Materials
Patient data from 2 sites were included in this study; 6

patients from an external site (Guy’s and St. Thomas’

http://creativecommons.org/licenses/by/4.0/
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Hospital, London, United Kingdom), and 17 patients from

the local site (Rigshospitalet, University Hospital Copen-

hagen, Copenhagen, Denmark). All patients were referred

for radiotherapy of head and neck cancer (except one gas-

trointestinal patient with upper esophageal cancer). All

patients gave written informed consent and study participa-

tion did not alter the planned treatment at either site. The

studies were approved by the local ethics committees.
Imaging

All patients underwent either a planning CT (external

site) or a planning [18F]FDG-PET/CT (local site) as part

of the clinical routine of the individual site. CT scan

parameters are specified in Table 1 and imaging was per-

formed in the treatment position using flat table overlays

and thermoplastic fixation masks for patient immobiliza-

tion as per international standard. Subsequently, [18F]

FDG-PET/MRI examination was performed in the same

treatment position using the same fixation mask as for the

preceding planning CT or PET/CT examination.5,10,22
Table 1 Technical details concerning imaging and dose planning a

External (n = 6)

Planning CT
Scanner SOMATOM definition AS (CT
Examination type Whole body
X-ray tube voltage 120 kVp
CT intravenous contrast Yes
Reconstruction matrices 512 × 512
Pixel spacing, mm2 0.98 × 0.98
Slice thickness, mm 2

PET/MRI
Scanner Biograph mMR (PET/MRI)
Software version VB20P (old)
Examination type Regional
Dixon AC sequence
TR/TE1/TE2, ms 3.60/1.23/2.46
Orientation Coronal (x,z)
Reconstruction matrices 192 × 126 × 128 (x,z,y)
Pixel spacing, mm2 2.6 × 2.6 (x,z)
Slice thickness, mm 3.1 (y)
Bed-positions 1
MR-AC map with bone No

Treatment planning
TPS Monaco
Delivery technique VMAT (2 arcs)
Prescribed dose, Gy 65
Dose calculation
Calculation model Monte Carlo (0.3% statistical u
Reported dose Dose to medium
Grid spacing, mm2 2.5 × 2.5
Grid thickness, mm 2.5

Abbreviations: CT = computed tomography; MR-AC =magnetic resonance

PET = positron emission tomography; TPS =XXX; VMAT = volumetrically
Images from the 2 scan sessions were coregistered by

nonrigid alignment (reg_f3d, NiftyReg)23 after an initial

rigid registration (reg_aladin, NiftyReg).

Relevant details about the PET/MRI examinations are

given in Table 1. PET/MRI was performed on the same

scanner model (Siemens Biograph mMR) but with differ-

ent software versions across the 2 sites. At both sites, the

MRI protocol included the vendor-provided Dixon

sequence, which was performed over either one (external

cohort) or 2 (local cohort) bed positions. This sequence

produces 2 image volumes where signals from water and

fat are in-phase and opposed-phase, respectively. How-

ever, as the vendor has pursued Dixon images of diagnos-

tic quality, certain parameters were changed after

upgrading the software versions (Table 1). In particular,

the newer software version (VE11P) achieves a higher

resolution while covering approximately the same FOV

in the same scan time (19 seconds) as the older version

(VB20P) due to CAIPIRINHA (controlled aliasing in vol-

umetric parallel imaging) acceleration.24

The scanner uses the Dixon sequence to perform MR-

based attenuation correction (MR-AC) of PET. The
t the 2 sites

Dataset

Local (n = 17)

) Biograph TruePoint 64 (PET/CT)
Whole body
100 kVp/120 kVp
Yes
512 × 512
1.52 × 1.52
2

Biograph mMR (PET/MRI)
VE11P (new)
Regional

3.85/1.23/2.46
Transaxial (x,y)
384 × 312 × 88 (x,y,z)
1.3 × 1.3 (x,y)
3.0 (z)
2
Yes

Eclipse
VMAT (2 arcs)
68 (66 post surgery)

ncertainty per plan) AcurosXB
Dose to medium
2.5 × 2.5
3.0

-based attenuation correction; MRI =magnetic resonance imaging;

modulated arc therapy.
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scanner derives an MR-AC map, which is a segmentation

of the Dixon images of the patient into different tissue

classes: soft tissue, fat, lung, and air each with a fixed lin-

ear attenuation coefficient value.25 After the software

upgrade, the vendor-provided MR-AC map includes

major bones from the skull and spine, which are superim-

posed onto the segmented Dixon images (MR-ACBone).
26
sCT generation

The method for generating sCT was a deep convolu-

tional neural network with a 3-dimensional (3D) U-net

architecture, which was presented previously (https://

github.com/andersolin/DeepMRAC_headneck).10 The

model was originally trained on voxel-to-voxel matched

pairs of CT (converted into LAC values) and DixonMRI of

the head (n = 811) and fine-tuned to the head and neck

region (n = 11). The MRI data were acquired at the local

site on a Siemens Biograph mMR prior to the software

upgrade (ie, VB20P). The model takes 16 full adjacent

axial slices from each of the Dixon in-phase and opposed-

phaseMRIs as a 2-channel input and yields the correspond-

ing slices of a sCT given in LAC values. Preprocessing of

input images entails resampling to isotropic voxels

(2.04 £ 2.04 £ 2.04 mm3) in 240 £ 192 matrices before

normalizing to zero mean and unit standard deviation. A

full sCT volume can be generated by predicting 16 full

axial slices in a slice-by-slice manner throughout the MRI

volume and composing the outputs into one volume by

averaging overlapping slices. We refer to this model as the

original model. This original model was directly applied to

the external patient cohort to test the cross-site robustness.

For the local cohort, we created an updated model using

transfer learning from the original model to accommodate

the extended axial FOV and exploit the improved MRI res-

olution after the software upgrade. The training and evalua-

tion in this step was performed in a leave-one-out process

using the local dataset. Prior to training the model, contrast

artifacts in the reference CT were manually set to the value

of water and the 2 bed position MRIs were composed into

one volume by normalizing the individual volumes to their

combined global average before averaging overlapping sli-

ces (mincaverage; McConnel Imaging Center). The com-

posed MRIs and the reference CT were preprocessed as in

Olin et al10 but with image resampling into a smaller isotro-

pic voxel size (1.3 £ 1.3 £ 1.3 mm3) in 416 £ 288 matri-

ces. To keep the subsequent validation as close to an

independent test as possible, both the model architecture

and training parameters were kept similar to the original

model except for the loss function, which was changed to

mean absolute error, as this is known to be less noise sensi-

tive and causes less blurring.27,28 Training was performed

with batch size of 12 in 20 steps per epochs for a total of

200 epochs on an IBM POWER9 server with 4 NVIDIA

TESLAV100GPUs.
All of the derived sCT images and the MR-ACBone

maps were given in linear attenuation coefficients at

511 keV and converted to HU according to a bilinear

scaling assuming an x-ray tube voltage corresponding to

that of the reference CT.29 Finally, all sCT images and

MR-ACBone maps were resampled to match the resolution

of the reference CT using a trilinear interpolation (min-

cresample; McConnel Imaging Center).
sCT evaluation

Each sCT was evaluated by comparing directly to the

CT. For each patient the mean error (ME) and mean abso-

lute error (MAE) between sCT and CT (sCT-CT) was

calculated for the patient body, as well as air/lung (voxels

below �200 HU in CT), bone (above 250 HU), and soft

tissue compartments (between �200 and 250 HU). We

also assessed the dice coefficients for bone and air/lungs.

For the local cohort, these results were compared with

those obtained using MR-ACBone maps. For this cohort,

we further performed a visual one by one inspection of

each sCT/CT pair and the corresponding Dixon MRI to

identify regions where the sCT typically differs from the

reference CT.
Dosimetric evaluation

The effect of using sCT for calculating dose distribu-

tions was evaluated separately for the 2 sites. For each

patient, a CT-based volumetrically modulated arc therapy

treatment plan was created according to the local guide-

lines (see technical details in Table 1). Streaking artifacts

caused by metal implants were manually delineated and

the CT image value was overwritten with a HU value of

0. The optimized volumetrically modulated arc therapy

plans, together with all delineated volumes, were copied

onto the sCT and recalculated without modifications. No

modifications were done to the sCT prior to dose calcula-

tion. The sCT-based and CT-based dose distributions

were compared by gamma map (g-map) analyses30 and

dose-volume histogram (DVH) evaluations. For these

analyses, we excluded all patients scanned with mouth-

pieces, as these are not visible on MRI together with

patients with large MRI artifacts significantly affecting

the sCT quality.

Local 3D gamma maps (g-maps) with different accep-

tance criteria (eg, 2% difference between local doses

within 2 mm [g2%/2mm] were calculated for each sCT and

pass rates (fraction of voxels passing the given criteria)

were assessed within different planning target volumes:

the primary (PTV1), the high risk of subclinical spread

(PTV2), and the low risk of subclinical spread (PTV3).

For the local cohort, g-maps also were calculated using

the MR-ACBone maps.



Table 2 Quantitative evaluation of sCT with CT as reference and vendor-provided MR-ACBone maps for comparison

Dataset

External (VB20P data) Local (VE11P data)

sCT MR-ACBone map sCT

ME, HU

Body �22 § 14 �43 § 14 �14 § 13

(�52; �10) (�66; �17) (�43; 9)

Soft tissue �9 § 6 �18 § 8 �3 § 9

(�21; �3) (�31; �3) (�21; 13)

Air/lungs 54 § 18 95 § 81 37 § 44

(27; 74) (�46; 352) (�77; 98)

Bone �199 § 60 �459 § 42 �189 § 44

(�288; �120) (�553; �378) (�278; �101)

MAE, HU

Body 78 § 13 130 § 10 76 § 12

(68; 105) (114; 156) (62; 120)

Soft tissue 48 § 3 78 § 7 48 § 10

(45; 54) (65; 89) (37; 83)

Air/lungs 117 § 12 200 § 73 121 § 64

(107; 142) (137; 456) (81; 239)

Bone 257 § 45 500 § 39 271 § 33

(192; 321) (429; 592) (224; 387)

Dice

Bone 0.67 § 0.03 0.38 § 0.04 0.67 § 0.05

(0.62; 0.73) (0.28; 0.45) (0.58; 0.76)

Air/lungs 0.91 § 0.01 0.80 § 0.11 0.89 § 0.05

(0.89; 0.93) (0.42; 0.91) (0.72; 0.95)

The average mean error (ME) and mean absolute error (MAE) (§ standard deviation and range) for different tissue compartments across all patients

of each site. Average dice coefficient § standard deviation and range for bone and air/lungs compartments.

Abbreviations: CT = computed tomography; MR-AC = magnetic resonance-based attenuation correction; sCT = synthetic computed tomography.
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Using the DVHs of both the CT-based and sCT-based

dose distributions, we assessed differences in relevant

absorbed doses for PTV1, PTV2 and PTV3 as well as dif-

ferent organs at risk (OARs; ie, brain stem, spinal cord,

and left/right parotid). The following absorbed doses

were calculated for all regions of interest: the mean and

maximum dose (Dmean and Dmax), the minimum dose

given to 2%, 50%, 98%, 1 mL and 0.1 mL of the volume

(D2%, D50%, D98%, D1cc, and D0.1cc).
Results
External cohort

Results of the quantitative comparison of sCT to CT in

terms of ME, MAE, and the dice coefficients are shown

in Table 2. The ME metrics show that soft tissue values

are close to the reference CT, but for the entire body sCT

values are underestimated, which is primarily driven by

the underestimation of bone values. The sCT of a repre-

sentative patient from the external cohort is shown in

Figure 1A alongside the input MRIs and the correspond-

ing reference CT. Visually, the sCT is similar to the refer-

ence CT but with a slightly blurred appearance.
Figure 2A, shows a patient case where a dental implant

causes streaking artifacts on the CT but has no severe

impact on the MRI nor on the resulting sCT, which does

not exhibit any significant artifacts.

Results of the gamma map analyses (Table 3) show a

high agreement between the sCT-based and CT-based

dose calculations with an average g2%/2mm pass rate of

98.9 § 0.9% for PTV1. Differences in DVH points

between the dose calculations are seen in Figure 3A and

3B. For PTV1 and PTV2 relative differences are less than

§ 1.3% for all patients except one case (�2.3%/�1.2 Gy

seen for D98% of PTV2; Fig. 3A). The absolute differences

in DVH points for all OARs are within § 1 Gy, and most

(95% of cases) within§ 0.5 Gy (Fig. 3B). The correspond-

ing relative differences are <2% for all of the OARs, when

including volumes with a CT-based Dmax above 10 Gy.

Figure 3C and 3D show the DVH curves for 2 patients of

the external cohort, including the patient where the differ-

ence in D98% of PTV2 was�2.3% (Fig. 3C).
Local cohort

The ME, MAE, and the dice coefficients of the sCT

for the local cohort are also shown in Table 2, where the



Figure 1 A patient example from the external cohort (A) and the local cohort (B). From top to bottom: The water and fat opposed-

phase and in-phase Dixon magnetic resonance imaging (MRI), which serve as model input. The synthetic computed tomography

derived from either the original model (A) or the updated model (B). The reference computed tomography. The MR-ACBone map

(only in B). Notice the improved MRI resolution and the increased axial field-of-view for B compared with A.
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results and trends are similar to those of the external

cohort. Table 2 further shows the results for the vendor-

provided MR-ACBone maps, where the errors for all the

compartments are higher and the dice coefficients for

bone are correspondingly lower relative to sCT.

The sCT of a representative patient from the local

cohort is shown in Figure 1B alongside the input

MRIs and the corresponding reference CT. It is appar-

ent that the MRIs have a higher image resolution after
the upgrade, which can be seen when compared to

Figure 1A. However, the relative image contrast

between different tissues is similar before and after

upgrade, as the acquisition relies on the same type of

sequence. It can also be noticed that the MRI has a

larger axial FOV as it is composed of 2 bed positions.

The sCT resembles the reference CT and is more

detailed compared to the sCT in Figure 1A, due to the

improved MRI resolution.



Figure 2 Cases illustrating the model’s ability to handle metallic dental implants. (A) A case from the external cohort, where the den-

tal implant caused severe streaking artifacts in the computed tomography (CT) and a signal void in the magnetic resonance imaging

without translating significantly into the synthetic CT. (B-D) Cases from the local cohort, where dental implants only slightly affected

the CT, but caused larger signal voids in the magnetic resonance images (MRI). For these cases the artifacts translated in varying

degree into the synthetic CT images. Metal artifacts are marked on the MRI by red arrows.
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The systematic one-by-one visual inspection of each

sCT/CT pair and the corresponding Dixon MRI revealed

frequent MRI signal voids due to metallic dental

implants, which may affect the sCT quality.
Approximately half of the patients from the local cohort

had dental implants clearly visible on MRI manifesting

as signal voids that varied greatly in size and shape. For a

few patients, the artifacts were rather small (»1 cm) and



Table 3 The average pass rate ( ± standard deviation and range) for gamma maps with 2%/2 mm and 3%/3 mm acceptance crite-

ria evaluated in PTV1, PTV2, and PTV3 (if available)

Dataset

External (VB20P data) Local (VE11P data)

sCT MR-ACBone map sCT

γ3%/3mm pass rate

PTV1 99.8 ± 0.3 99.0 ± 0.6 99.6 ± 0.4

(99.3; 100.0) (98.2; 100.0) (98.9; 100.0)

PTV2 99.7 ± 0.2 98.8 ± 2.2 99.7 ± 0.5

(99.4; 99.9) (92.9; 100.0) (98.5; 100.0)

PTV3 98.8 ± 1.2 99.7 ± 0.8

(96.0; 99.9) (97.4; 100.0)

γ2%/2mm pass rate

PTV1 98.9 ± 0.9 95.8 ± 2.7 98.8 ± 0.8

(97.7; 99.9) (91.3; 99.7) (97.3; 99.7)

PTV2 98.1 ± 1.0 95.1 ± 9.7 99.0 ± 0.7

(97.3; 99.5) (67.7; 99.8) (97.5; 99.9)

PTV3 95.1 ± 4.5 98.9 ± 1.2

(82.8; 99.9) (95.7; 99.9)

Abbreviations: MR-AC =magnetic resonance-based attenuation correction; PTV = planning target volume; PTV1 = primary planning target vol-

ume; PTV2 = the high risk of subclinical spread; PTV3 = low risk of subclinical spread; sCT = synthetic computed tomography.
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showed no impact on the sCT, whereas most were larger

(»2 cm) and the model’s ability to handle these artifacts

varied (Fig. 2B-C). For a single case the artifact was

deemed so critical for the sCT that it was excluded from

the dosimetric analyses (Fig. 2D). Two additional

patients from this cohort were also excluded due to the

use of mouthpieces not visible on MRI.

The results of the gamma analyses (Table 3) show

high pass rates for the sCT with an average above 98.8%

regardless of the acceptance criteria and volume. The cor-

responding pass rates are lower for MR-ACBone maps

with a single worst g2%/2mm pass rate of 67.7%, which

can be attributed to incorrect tissue segmentations

(Fig. E1). Differences in DVH points between the CT-

based and sCT-based dose calculations are seen in

Figure 3E and 3F. For PTV1, PTV2 and PTV3 relative

differences are within § 2% and in 95% of cases within

§ 1% (Fig. 3E). The absolute dose differences in DVH

points of the OARs are within § 1.1 Gy and most (87%

of cases) within § 0.5 Gy (Fig. 3F). Similar to the exter-

nal cohort, no DVH points for any of the OARs differ by

more than 2%, when including volumes with a Dmax

above 10 Gy. Figure 3G and 3H show DVH curves for 2

patients of the local cohort.
Discussion
In this study we explored the robustness of a previ-

ously developed deep learning model for generating sCT

from MRI when applying it to a completely independent

dataset from another hospital. As the model relies only

on images from the Dixon MRI sequence, which is rou-

tinely performed for AC purposes on all Siemens
Biograph mMR PET/MRI systems, it was therefore

directly applicable to a retrospective dataset from the

external site. The model demonstrated results that were

similar to those of our previous study from which the

model originally arises.10 Specifically, we obtained simi-

lar results for soft tissue (MAE of 48 § 3 HU vs 41 §
4 HU) and bone (MAE of 257 § 45 HU vs 258 § 51 HU)

compartments, whereas we have achieved improved

results for air (MAE of 117 § 12 HU vs 300 § 69 HU),

which could be due to differences in the evaluations and

the FOVs. The fact that the model performance is just as

good in an independent external test as in the leave-one-

out validation on a local dataset performed in the original

study, underlines the robustness of the derived model.

The model performance is further in accordance with

other studies also reporting underestimated bone values,

which is to be expected given the blurred appearance of

the sCT and can be attributed to imperfect alignment

between CT and MRI training data.19,20 Another contrib-

uting factor is that all CT voxels above 250 HU were

assumed to be bone despite also including very high HU

values originating from metallic implants. Dinkla et al19

used a cross validation to report a body MAE of 75 §
9 HU (compared with our 78 § 13 HU), while Klages

et al20 obtained MAEs of 94 § 10 HU and 103 § 15 HU

for 2 different deep leaning models applied to a test data-

set. Also, the dice coefficients we report for bone (range,

0.62-0.73) and air/lungs (range, 0.89-0.93) match those

reported by Dinkla et al (bone range, 0.52-0.84; air range,

0.63-0.91).19 More importantly, the dosimetric evaluation

shows excellent agreement between sCT-based and CT-

based dose distributions as almost all differences in tar-

gets are within § 1% and after inspection of the single

case exceeding �2% the difference was attributed to



Figure 3 Dosimetric results for the external patient cohort (A, B, C, D) and the local patient cohort (E, F, G, H). (A, E) Scatter plots

with box-whiskers (box shows the quartiles of the data; whiskers show the range of the data) of the relative dose difference between

dose-volume histogram (DVH) points of the synthetic computed tomography-based dose distribution and the computed tomography-

based dose distribution for the planning target volumes (PTV: primary [PTV1], the high risk of subclinical spread [PTV2], and the low

risk of subclinical spread [PTV3], if available). (B, F) The dose difference between DVH points for the organs at risk (left/right parotid,

spinal cord, and brainstem). (C, D, G, H) Patient examples of DVH curves. In (C) the red arrow indicates a �2.3% difference in D98%

for PTV2 (as seen in panel A).
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misalignment between the sCT and CT in the lower neck

region. Other studies have similarly reported less than

2% difference in DVH points.10,14,20 Another study dem-

onstrated gamma map pass rates (g3%/3mm of 98.7% §
1.4% and g2%/2mm of 95.6% § 2.9%)19 lower than ours,

but a direct comparison is difficult due to differences in

the analyzed volumes. We report pass rates only within

the high dose PTVs in contrast to within a 10% dose

threshold, which also includes lower doses.

In this study, we further updated our deep learning

model to accommodate changes to input MRIs when

acquired with the vendor-provided Dixon AC sequence

after a major scanner software upgrade (VB20P to

VE11P). After the upgrade the MRIs differed specifically

by having an improved image resolution and were fur-

thermore acquired over a larger axial FOV. We used

transfer learning from the original model to create an

updated model, which was evaluated by a leave-one-out

cross validation. These sCT images had ME, MAE, and

dice coefficients comparable with the literature as well as

the external cohort and exceeded the performance of the

MR-ACBone maps. The errors in the MR-ACBone maps

were primarily attributed to the lack of a complete bone

representation, misplacements of the registered bones,

and inaccurate segmentation of air compartments. These

should therefore be carefully inspected if used for clinical

dose calculations. The updated deep learning model

exploited the improved image resolution of the MRIs to

provide sharper sCT images, which may be important for

online registration on the treatment linac. In addition, the

updated model was adapted to accommodate inputs of a

larger axial FOV extending from the skull to approxi-

mately mid lungs (2 bed-positions), which allows for

accurate treatment of inferior nodes. The dosimetric eval-

uation indicated that the updated model could be used

clinically with all dose differences in target volumes

within § 2%. These low errors were achieved despite the

fact that we report dose-to-medium, which is more sensi-

tive to tissue inhomogeneities instead of dose-to-water

from more established algorithms like AAA.31

Although no explicit test data were available for the

updated model, the leave-one-out validation simulated

a test scenario as no hyperparameters were optimized

for improving model performance. Network alterations

were kept to a minimum, changing only input size,

training duration, and loss function from mean squared

error to mean absolute error as this is known to

reduce blurring.27,28 Nevertheless, an independent

test dataset is still required prior to eventual clinical

implementation.

This study uses a deep learning U-net for deriving

sCT, which has the clear advantage over atlas-based

methods by being computationally faster and more suit-

able for patients with abnormal anatomical.11

However, our deep learning strategy also has some

limitations. First, it is only capable of modeling what is
reflected in the training database and both models used in

this study are trained on small datasets of head and neck

patients. However, for both models, transfer learning has

been used to maintain model robustness as the original

model was created from a model pretrained with >800
head scans. Furthermore, a recent study also addressing

the challenges of converting Dixon-MRI to sCT, when

the MRI differed after a software upgrade, concluded that

just 5 patients were needed for updating a model to pro-

vide a clinically acceptable performance.21 Second, the

blurred appearance of the sCT is partly caused by imper-

fect alignment between the MRI and CT pairs in the

training data and the lower resolution of the MRI com-

pared to the CT. Although still slightly blurred, the

updated model showed more detail in the sCT partly due

to the improved image resolution and potentially also

because of the choice of loss function. Third, the quality

of the sCT is sensitive to artifacts in underlying input

images. This is problematic for patients with metal

implants significantly affecting the MRI signal, and

although we have demonstrated that the model to some

extend is capable of handling such artifacts (Fig. 2A-C),

it was not able to fully correct for severe artifacts and we

had to exclude one such patient in the dosimetric evalua-

tion (Fig. 2D). However, as it was demonstrated in

another study, a larger training cohort exposing the net-

work to an increasing number of similar artifacts will

improve model robustness.21 If the improvements are not

completely satisfactory manual corrections could be

applied, as is already the case for streaking artifacts in

CT and for some cases the sCT may even provide a better

alternative (Fig. 2A).

The proposed models for sCT generation could be sus-

ceptible to other types of artifacts besides metal artifacts

(eg, motion). Future work should focus on improving the

model robustness towards region-specific challenges by

using a larger and more diverse training cohort. Further-

more, prior to clinical implementation, we suggest a qual-

ity assurance strategy for detecting model-specific

failures by comparing the output to another and indepen-

dent algorithm (eg, an atlas-based method) for generating

sCT.

In this study we also excluded 2 patients for whom

radiotherapy mouthpieces were used, as these devices are

not visible on MRI and therefore was not translated into

the sCT. Besides trying to make the model infer such

devices by training on a larger dataset, another potential

solution could be to include MRI visible landmarks on

the device and subsequently add a CT-based template

manually.

Besides the challenge of accurate dose calculation,

radiotherapy planning using solely PET/MRI is challeng-

ing because of other important factors such as reliable

patient positioning (ensured in this study); the ability of

the sCT to match with cone beam CT as a means to deter-

mine couch movement on the linac; geometric distortions
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for MRI; and finally, attenuation correction of PET.

These challenges were addressed in our previous study.10

Conclusions
We have studied the robustness and generalizability of

a previously developed deep learning method for deriving

sCT from MRI for radiotherapy usage. The model was

applied to a completely independent external dataset and

was furthermore updated to accommodate scanner soft-

ware-induced MRI changes and a larger axial FOV

extending from the skull to mid thorax. In both cases, the

derived sCT images produced radiotherapy dose distribu-

tions that were very similar to those calculated on the ref-

erence CT suggesting a robust, generalizable, and

reliable method.
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