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Abstract

Background: Metabolic engineering design methodology has evolved from using pathway-centric, random and
empirical-based methods to using systems-wide, rational and integrated computational and experimental
approaches. Persistent during these advances has been the desire to develop design strategies that address
multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs.

Results: Here, we use constraint-based modeling to systematically design multiple combinations of medium
compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and
Shewanella oneidensis) and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and
succinate). We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including
product rates, costs, yields and purity.

Conclusions: The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes) for
each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated
with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing
number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy
could be extended to address a growing range of biological questions and engineering applications.
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Background
Microorganisms possess metabolic capabilities that are
essential to society, science, and industry. Today, most
bulk and specialty chemicals are derived from crude oil.
However, declining oil reserves, rising oil prices, and
growing environmental concerns have prompted renewed
interest in producing chemicals using microorganisms
instead of fossil fuels [1]. To transform microbial hosts
into cellular factories, the applied discipline of systems
metabolic engineering is using genome-scale approaches
that redirect microbial metabolism to synthesize renew-
able and cost-effective biochemicals [1-3].
Classical metabolic engineering methods use localized

metabolic intuition and random mutagenesis screening to
develop microbial strains that possess improved bio-
chemical production capabilities. For example, Escherichia
coli does not naturally produce succinic acid as a major
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reproduction in any medium, provided the or
fermentative product; consequently, early metabolic en-
gineering efforts targeted metabolic pathways that were
thought to be involved in succinic acid synthesis. How-
ever, these perceived improvements were often ineffective
or produced undesirable side-effects (e.g. large amounts of
impurities were produced or cell growth was significantly
inhibited) [4-7]. While some conventional strategies have
shown a degree of success, production levels for the
synthesis of succinic acid, as well as many other valu-
able biochemical compounds, often fall considerably short
of maximum theoretical production limits [1,3,8]. These
shortcomings are due, in part, to the fact that metabolic
pathways and related regulatory processes form complex
molecular and functional interaction networks. By focusing
solely on one particular enzyme or metabolic pathway, it is
likely that interrelated and potentially undesirable effects
elsewhere in the cell might be inadvertently missed [9].
Similarly, conventional metabolic designs often singly

focus on achieving maximal production rates or yields of
targeted compounds without accounting for adverse
economic consequences (e.g., due to material costs or
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final product purification processes) that may ultimately
make a design impractical or commercially infeasible.
Many, or even most, real engineering problems have mul-
tiple engineering goals, such as maximizing operational
performance, minimizing material cost, and maximizing
experimental reproducibility. The criteria subsequently
used for design and optimization of engineering processes
largely depend on which engineering goals are chosen. For
industrial fermentation processes, four of the most im-
portant design-selection criteria are productivity, yield,
final titer, and economic cost [10]. Productivity is the rate
of product generation and is important to ensure the
effective utilization of production capacity (e.g. capacity of
bioreactors). Yield is the ratio of unit product formation
to unit substrate consumption and is used as a measure of
the production efficiency. Final titer is the purity of prod-
uct generation and is important since further treatment of
the fermentation medium, such as removal of impurities,
may be necessary. Finally, economic cost is the monetary
expenditure per unit of generated product. Economic
costs may be associated with each component of the fer-
mentation process and may ultimately dictate the viability
of a product given current market conditions. Further-
more, engineering criteria may be condition-dependent
(e.g. the criteria used for high volume, low value-added
industrial fermentation products may differ significantly
from the criteria used for low volume, high value-added
products) and conflicting (e.g. the goal of maximum
productivity may adversely affect the goal for mini-
mum economic cost). Thus, tradeoffs among engineering
goals can help to differentiate and prioritize design selec-
tion criteria.
To help evaluate and understand these complex bio-

logical and engineering relationships, system modeling is
becoming an increasingly valuable tool for scientists and
metabolic engineers alike. Kinetic modeling has been
used to evaluate dynamic enzymatic effects of metabol-
ism [11]. However, at whole-cell scales, kinetic modeling
can become unwieldy due, in part, to the prerequisite of
kinetic parameters that may be difficult to obtain experi-
mentally [12]. Consequently, constraint-based modeling
has become a powerful alternative, since it obviates this
prerequisite by approximating metabolism in steady-state
[9]. Despite this simplification and some additional limita-
tions [12], constraint-based modeling has been experi-
mentally shown to provide valuable predictions of whole-
cell metabolic fluxes and growth phenotypes under a var-
iety of environmental and genetic conditions [13-15]. As a
result, a growing number of constraint-based analysis
methods are being developed to evaluate metabolic mod-
els and the corresponding mathematical solution space
that characterizes the phenotypic potential of an organism
[9]. For example, flux balance analysis (FBA) uses a chosen
objective function to search the edges of the mathematical
solution space for a single optimal network state and asso-
ciated flux distribution [16]. FBA has been used for a
variety of applications, such as predicting the lethality
of gene knockouts [17] and quantitatively predicting
cellular growth rates and fluxes under different condi-
tions [14]. Bi-level optimization approaches based on FBA
[18] have been developed to simultaneously optimize two
hierarchically-related objectives such as a primary and sec-
ondary metabolite production in microbial strain design.
In particular, an initial algorithm aimed at identifying opti-
mal designs through multiple gene knockouts (OptKnock
[19]) was followed by more versatile approaches capable
of taking into account gene up-regulation and down-
regulation (OptReg [20]), as well as existing flux measure-
ments (OptForce [21]). Rather than analyzing single net-
work states, other constraint-based analysis techniques,
such as extreme pathway analysis [22] and uniform
random sampling [23], may be used to assess global
network properties, characterizing ranges of optimal or
sub-optimal biochemical network states. In addition, to
address multiple optimality goals that may conflict and
cannot be optimized simultaneously, multi-objective
optimization and trade-off analysis approaches have been
recently developed [24-26]. Together, these methods are
yielding new biological and engineering insights.
In this study, we develop an integrative computational

framework that elucidates relationships between environ-
mental and genetic perturbations and their system-wide
effects on microbial metabolism and metabolic engineer-
ing design strategies. Prior metabolic engineering studies
have primarily focused on either environmental or genetic
perturbation strategies, a single organism, one or a few en-
gineering goals (usually productivity or yield) and optimal
design solutions. Conversely, our approach addresses the
multifaceted nature of metabolic engineering design pro-
cesses by exhaustively generating and systematically ana-
lyzing more than four hundred million designs that
incorporate both extracellular (i.e. medium composition)
and intracellular (i.e. genetic knockout) perturbations and
multiple microorganisms and engineering goals. Although
any biochemical reaction network and synthesized target
metabolite can be incorporated into our methodology, we
focus on three microorganisms (E. coli, S. cerevisiae and
S. oneidensis) and six target metabolite by-products of
industrial interest: acetate [27], ethanol [28,29], formate
[30], hydrogen [31], D-lactate [27,32], and succinate
[33-35]. Escherichia coli [13,36] and Saccharomyces
cerevisiae [35] are perhaps the best characterized and
studied prokaryotic and eukaryotic microorganisms, re-
spectively, and are commonly used for a wide range of
computational and experimental scientific studies and
industrial applications. Shewanella oneidensis [37] is, by
comparison, a more recently sequenced [38] and less well-
studied bacterium, yet it possesses considerable potential
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for bioremediation [37], microbial fuel cells [39] and other
bioenergy applications [31]. A set of 36 biological and eco-
nomic traits is used to evaluate corresponding engineering
design goals. Although economic considerations are para-
mount in evaluating feasibility of any industrial design
with commercial potential, a methodology for incorporat-
ing economic factors into constraint-based modeling had
not been implemented before. The resulting population of
phenotypes provides a rich dataset that is used to assess
local design considerations and biological causalities, as
well as global perturbation effects. An experimental com-
patibility score is used to assess the expected agreement of
predictions with experimental data, such as mRNA ex-
pression arrays. Additionally, we present local tradeoffs
between individual designs and engineering goals and glo-
bal tradeoffs of metabolic traits across and within organ-
isms. We find distinctive phenotypic characteristics that
differentiate innate organism-specific metabolic capabil-
ities, making certain organisms more suitable for particu-
lar engineering applications. We also find specific and
general metabolic design strategies that can be used to
facilitate optimal engineering output.

Results
Generation of engineering design candidates
As a first step we sought to generate a large computational
dataset and a statistical analysis pipeline from which we
could identify optimal strategies for the production of dif-
ferent molecular compounds. Our predictions, based on
flux balance analysis, span different organisms, experimen-
tal design schemes and output metrics. Our computational
approach (Figure 1) incorporates three main decision vari-
able components: organism model definitions, imposed
environmental and genetic conditions, and a set of engin-
eering metrics for extraction. Additional file 1: Table S1
lists the model attributes and perturbations associated with
the three genome-scale metabolic models used in this
study: E. coli, S. cerevisiae, and S. oneidensis. Perturbations
are categorized by nutrient type (carbon, electron acceptor,
nitrogen, phosphorous, and sulfur sources) and single or
double gene deletions. An engineering design consists of a
specific organism, feedstock composition and genotype
(e.g. E. coli Δedd Δgnd mutant grown anaerobically on
glucose, ammonium, phosphate, and sulfur minimal
medium). Combinations of organisms and perturbation
parameters are exhaustively enumerated to simulate differ-
ent conditions, producing a population of candidate
designs. A set of generic metabolic traits (Additional file 1:
Table S2) is defined to characterize the engineering designs
and the phenotypic states of the metabolic system (e.g.
target-compound carbon yield is a measure of carbon
usage efficiency). The metabolic traits are functions of
specific targeted-compound secretion rates, economic cost
rates associated with the consumed media, or other mea-
surements of metabolic activity (e.g. formate carbon yield
is the proportion of the carbon consumed and utilized spe-
cifically for formate production). Engineering goals are par-
ticular metabolic traits that are preferentially either
maximized or minimized to achieve a desired outcome
(e.g., maximize formate carbon yield). The search for
designs that are closest to the desired engineering goals
is performed in two main steps: First, we solve an FBA
problem for each combination of nutrients and gene
deletions, using maximization of growth (biomass pro-
duction) as the objective function. During this first step
we prune out all designs that are non-viable. This con-
stitutes a significant fraction of the designs tested
(88%), but it still leaves a large number of viable solu-
tions (~5 × 107) to choose from. Second, we analyze all
viable solutions found, and search for designs that
optimize the engineering objective(s). During this stage
of the optimization, we do not conduct any additional
FBA, but rather perform a complex search among the
previously computed designs. This also implies that once
a design has been computed, the different phenotypes
don’t have to be re-computed, but are just extracted from
the data. We would like also to stress that, while in our
case the two optimization steps are performed in two
distinct procedures, the philosophy is similar to previ-
ous methods that perform the two steps in a single
optimization algorithm (such as OptKnock [19]).
In total, more than 435 million conditions were simu-

lated: 133,420,920 for E. coli, 179,133,985 for S. cerevisiae,
and 123,124,374 for S. oneidensis. A relatively small frac-
tion of these conditions produce viable-growth phe-
notypes (Additional file 1: Figure S1): 15% for E. coli,
11% for S. cerevisiae, and 9% for S. oneidensis. Thirty-six
metabolic metrics (18 of which are functions of eco-
nomic variables) are computed for each viable-growth
phenotype. Box-plot statistics for the complete data
set are shown in Additional file 1: Figure S2. Eco-
nomic data were available for 80% of E. coli nutrients,
71% of S. cerevisiae nutrients, and 63% of S. oneidensis
nutrients. Unless specified otherwise, subsequent ana-
lyses are performed on the economic data subset (see
Methods for more details). Experimental data used
for estimating an experimental consistency score were
available for 149 of the simulated conditions. While
in this work we use an indirect measure of experi-
mental consistency and do not present a direct com-
parison of predicted and measured fluxes, we wish to
emphasize that flux balance models have undergone a
number of experimental tests [40-43], and have been
used successfully for different specific metabolic en-
gineering applications, such as production of lycopene
and vanillin [40-43].



Figure 1 Procedural overview. The multi-goal metabolic engineering process incorporates three main decision-variable components:
(1) organism model definitions, (2) imposed environmental and genetic conditions, and (3) extraction of desirable engineering metrics and goals.
The resultant extracellular engineering phenotypes, relationships between the decision variables, and intracellular pathway activity can then be
analyzed and experimentally verified to provide mechanistic insight and achieve optimal engineering designs.
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Different organisms are better at achieving different
goals
Given the enormous amount of data collected through
the simulations across organisms and designs (approxi-
mately 6 terabytes of data in totality), it is a significant
challenge to sort through and visualize this information
in a useful manner. Using the metabolic traits, we classi-
fied the resultant viable phenotypes into dominant
engineering meta-phenotypes for each organism. Clas-
sification was achieved by using iterative k-means
clustering on the set of engineering phenotypes until
an optimal cluster number was identified (Methods and
Additional file 1: Figure S3). Each meta-phenotype vector
is the computed centroid for the phenotypes within the
associated cluster. Along with cluster sizes and hetero-
geneities, the meta-phenotypes succinctly describe the
frequency and similarity of dominant phenotypic char-
acteristics. For the economic dataset, we found 10, 30,
and 20 meta-phenotypes for E. coli, S. cerevisiae, and
S. oneidensis, respectively. To compare metabolic traits
across phenotypes and organisms, the data are trans-
formed into row-wise z-scores. The transformed data are
then grouped by organism and hierarchically bi-clustered.
The resultant “phenotypic maps” (Figure 2, Additional
file 1: Figure S4 and Additional file 2: Table S4) provide a
condensed global perspective of dominant phenotypic
characteristics and metabolic capabilities that can quickly
and easily be scanned to compare metabolic traits
within and across organisms. A comprehensive list of all
phenotype metrics and associated conditions may be
downloaded or viewed using the online tool (see Methods).
Once organized into clustered meta-phenotypes, our

data reveal that different organisms possess distinct dom-
inant phenotypic characteristics. Figure 2 shows the meta-
phenotypes for the subset of data with economic pricing.
E. coli can be characterized by the fewest number of dom-
inant meta-phenotypes (10) followed by S. oneidensis (20)
and S. cerevisiae (30). The associated number of pheno-
types is 10,086,971 for E. coli, 10,080,733 for S. cerevisiae,
and 12,632,536 for S. oneidensis. The largest phenotype
cluster for E. coli accounts for more than 56% of all phe-
notypes. That meta-phenotype has relatively low biomass
production rates and high biomass carbon yields, as well
as low profit rates due to lower rates of targeted bypro-
ducts synthesis. The second largest phenotype is similar to
the first largest phenotype; the only major difference is
considerably higher acetate and hydrogen revenue
yields. Together, the two largest meta-phenotypes ac-
count for more than 70% of all phenotypes. This im-
plies that for the metabolic traits and conditions under
consideration, E. coli has relatively low phenotypic vari-
ation compared to S. cerevisiae and S. oneidensis, which
are much more broadly distributed. The first two largest
meta-phenotypes contain 30% and 36% of all phenotypes
for S. cerevisiae and S. oneidensis, respectively. A compari-
son between the meta-phenotypes within and between
organisms can be visualized in the form of a correlation
matrix (Additional file 1: Figure S18).



Figure 2 Engineering meta-phenotypes for economic data set. Each column (listed by Cluster Id and grouped by organism) is the centroid
associated with a corresponding k-means phenotype cluster (meta-phenotype) for the simulation data subset with economic metrics. Cluster Ids
increase sequentially, from left to right: 1 to 10 for E. coli, 11 to 30 for S. cerevisiae, and 41 to 60 for S. oneidensis. To compare across phenotype
clusters and organisms, the metric values have been transformed into row-wise z-scores. All the rows and organism-specific columns were then
hierarchically clustered. The “cluster sizes” are the number of individual phenotype simulations associated to each phenotype cluster. The “cluster
heterogeneity” is the within-cluster sum of squared errors (SSE) for each phenotype cluster normalized by the maximum for each organism.
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Upon zooming into different regions of the meta-
phenotype map (with representative engineering goals
and conditions shown in Table 1 and Additional file 1:
Tables S3 and S5), it is possible to identify specific
meta-phenotypes that are associated with favorable
strategies for a particular molecular product and
goal. Figure 2 and Additional file 1: Figure S4 indi-
cate that E. coli has a distinctively higher growth rate
than S. cerevisiae and S. oneidensis, consistent with
available experimental data [44]. E. coli readily produces
ethanol, hydrogen, and acetate, whereas succinate and
formate are produced only under very particular con-
ditions. Comparatively, S. cerevisiae also readily pro-
duces ethanol (mainly yield and purity rather than
production rate), whereas succinate is produced under
particular conditions. S. cerevisiae produces little to no
levels of hydrogen, acetate, and formate. S. oneidensis
readily produces acetate and formate (mainly yield rather
than purity), whereas hydrogen and ethanol are produced
under fewer conditions. Since E. coli has a higher growth
rate than S. cerevisiae and S. oneidensis (and therefore it
would be expected to also have higher production rates),
the higher yields and purities for formate and succinate
for this organism are particularly noteworthy.
It is apparent that different organisms are better at

achieving different goals. E. coli tends to produce
higher ethanol rates than the other organisms, whereas
S. cerevisiae tends to produce higher ethanol purities and
at better cost efficiency. Higher ethanol production rates
in E. coli tend to be positively correlated with increased
economic cost. E. coli also seems to be better at producing
hydrogen, whereas S. oneidensis tends to be better at pro-
ducing formate. Both E. coli and S. oneidensis are good at
producing acetate. Under various conditions, all the
organisms appear to be able to produce relatively high
levels of succinate.
An additional outcome of this analysis is that eco-

nomic considerations significantly affect optimal choices



Table 1 Selected Pareto optimal engineering designs

Design
identifiers

Design criteria Design annotations Design metrics

Design
Id a

Cluster
Id b

Design goals c Design
type d

Gene
deletions

Nutrient
sources e

Organism f Acetate
production
rate (mmol
gDW-1 hr-1)

Acetate
purity

Biomass
production
rate (hr-1)

Microarray
consistency g

Succinate
production
rate (mmol
gDW-1 hr-1)

Succinate
purity

Total
economic
cost rate
($ hr-1)

1 8 Succinate
production rate
(0.99),
Succinate
purity (0.01)

candidate edd, gnd malthx,
fum, gam,
pi, so4

ec 0 0 1.85 NA 195.34 0.63 19314.4

2 8 Succinate
production rate
(0.5), Succinate
purity (0.5)

candidate atpH, caiD malthx,
fum, gam,
pi, so4

ec 0 0 1.85 NA 181.57 0.71 19305.4

3 3 Succinate
purity (1)

candidate SO4417,
SO3136

ac, fum,
nh4, pi,
so4

so 0 0 0.01 NA 20 1 3.72

4 1 Succinate
production rate
(0.01), Total
economic cost
rate (−0.99)

candidate kgtP, lysP sucr, o2,
gam, ppt,
so4

ec 36.17 0.35 1.85 NA 51.45 0.49 4.33

5 30 Succinate
purity (0.5),
Total economic
cost rate (−0.5)

candidate YBR196C,
YMR256C

glc, o2,
urea, pi,
so4

sc 0 0 0.26 NA 14.77 0.43 0.05

6 1 Succinate
production rate
(0.33),
Succinate
purity (0.33),
Total economic
cost rate
(−0.33)

candidate SO4417,
SO3136

glyclt, fum,
nh4, pi,
so4

so 0 0 0.06 NA 20 1 2.26

7 1 Succinate
production rate
(1)

validated ptsG, pykFA,
pfl

glc, NA,
nh4, pi,
so4

ec 4.28 0.24 0.12 NA 9.12 0.5 0.03

8 1 Acetate
production rate
(1)

microarray appY glc, NA,
nh4, pi,
so4

ec 6.76 0.24 0.17 0.46 0.06 0 0.75

9 1 Acetate purity
(1)

microarray arcA glc, o2,
nh4, pi,
so4

ec 1.1 1 0.63 0.02 0 0 2.35

10 1 Microarray
consistency (1)

microarray arcA ec 0 0 0.11 0.56 0.04 0 0.02
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Table 1 Selected Pareto optimal engineering designs (Continued)

glc, NA,
nh4, pi,
so4

11 1 Acetate
production rate
(0.33),
Microarray
consistency
(0.33), Acetate
purity (0.33)

microarray appY glc, NA,
nh4, pi,
so4

ec 6.76 0.24 0.17 0.46 0.06 0 0.75

a Engineering designs are referenced in the text by this identifier. b Each engineering design is associated with an engineering phenotype cluster (meta-phenotype) and identified according to the “Clusters” shown in
Figure 6(A) for E. coli, Additional file 1: Figure S13(A) for S. cerevisiae, and Additional file 1: Figure S14(A) for S. oneidensis. c The specified engineering design goals and weights (shown in parentheses, where positive
weights indicate goal maximization and negative weights indicate goal minimization) are used to determine the optimal engineering designs for the corresponding “Design type”. d “Validated” designs are designs that
were experimentally validated, “microarray” designs are designs that had matching experimental microarray data, and “candidate” designs are simulated designs that are neither “validated” nor “microarray” designs.
e Nutrients are ordered by nutrient type: carbon, electron acceptor, nitrogen, phosphorous, and sulfur source. “NA” indicates that no nutrient source of that type was provided. Metabolite abbreviations: ac = Acetate,
fum= Fumarate, gam=D-Glucosamine, glc =D-Glucose, glu-L = L-Glutamate, glyclt = Glycolate, malthx =Maltohexoase, nh4 =Ammonium, o2 =O2, pi = Phosphate, ppt = Phosphonate, sbt-D =D-Sorbitol, so4 = Sulfate,
sucr = Sucrose, urea =Urea. f Organism abbreviations: ec = Escherichia coli, sc = Saccharomyces cerevisiae, so = Shewanella oneidensis. g Engineering design simulations were compared with microarray data to compute
experimental microarray consistency. “NA” indicates that no microarray data was available for the corresponding design.
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Figure 3 Pareto optima and trade-offs for multiple engineering goals. (A-C). Two-dimensional (2D) and three-dimensional (3D) candidate
and Pareto optimal designs and frontiers for engineering goals related to succinate production. Sub-optimal candidate designs for all organisms
and experimentally validated E. coli designs are shown in (A) and (B), but are not shown in (C) for clarity. (D-F). 2D and 3D candidate and Pareto
optimal designs that had matching experimental microarray data and frontiers for engineering goals related to acetate production. Error bars are
too small to be visualized. For comparison, candidate designs that use the same media conditions as the microarray designs are shown in (D),
however only the microarray designs are used to compute Pareto optima and frontiers. Sub-optimal microarray designs are shown in (D) and (E),
but are not shown in (F) for clarity. The 3D Pareto frontiers shown in (C) and (F) are colored in proportion to the total economic cost and
acetate production rates, respectively. Trade-offs can be determined by evaluating the rate of change of the Pareto frontier over the desired
range of Pareto optimal designs. “Validated” designs are designs that were experimentally validated, “microarray” designs are designs that had
matching experimental microarray data, and “candidate” designs are simulated designs that are neither “validated” nor “microarray” designs.
Abbreviations: ec = Escherichia coli, sc = Saccharomyces cerevisiae, so = Shewanella oneidensis. The legend on top of the panels summarizes the
symbols used.
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of engineering designs. This may be obvious, and com-
mercial industries usually develop engineering strategies
based on economic considerations. But, to our know-
ledge, this is the first time high-throughput FBA analysis
has been combined with economic considerations. A
very distinctive bimodal economic feature in the engin-
eering phenotypic landscape (Figure 2) is that there are
very expensive, high growth rate (with low profit rates
and high ethanol production rates) designs and, con-
versely, there are cheaper and low growth rate designs.
In E. coli, ethanol tends to be a costly product, whereas,
by comparison, ethanol would seem to be more profit-
able in S. cerevisiae. In E. coli, acetate production tends
to be more profitable than in the other two organisms.

Pareto analyses and correlation maps reveal local and
global trade-offs
The engineering goals currently being considered
(Additional file 1: Table S2) can be optimized separately
or in combination. If multiple goals conflict with each
other, then one of the goals cannot be improved without
simultaneously worsening at least one of the other goals.
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To address this problem we use Pareto analysis,
which allows us to evaluate metric tradeoffs between
designs and assist in the design selection process. While
Pareto analysis can in principle yield solutions for any
multidimensional trade-off, we focus here on two and
three-dimensional cases, which can be readily visualized.
Figure 3 and Additional file 1: Figure S5 show all candi-
date designs and Pareto optimal designs for multiple (two
and three-dimensional) engineering goals.
While more detailed analyses for all six metabolic pro-

ducts are available in the Supplementary Materials and in
the online tool (see Methods), we focus here, as a repre-
sentative example, on all candidate designs relevant for
the production of succinate in all three organism (Figure 3
(A-C)). Results indicate that E. coli tends to have the great-
est range of succinate capabilities, followed by S. cerevisiae
and then S. oneidensis. The two-dimensional Pareto optimal
frontier contains all multi-goal optimal designs and
extends around the periphery of the solution space
(Figure 3(A, B, D, E)). Piece-wise linear trade-offs are
computed over a range of Pareto designs to determine the
marginal gain or cost of relative changes in weighted
linear combinations of goals. For example, for succinate
production rate versus succinate purity (Figure 3(A)),
there are 8 Pareto optimal designs within a range of suc-
cinate purity of 0 to 0.84 (succinate purity is defined as a
ratio and is dimensionless; see Additional file 1: Table S2
for more details) and linear regression yields a tradeoff of
−214.6 units of succinate production for every unit in-
crease in succinate purity. Above succinate purity of 0.84,
there are 16 Pareto optimal designs with tradeoff of −7.2
units of succinate production for every unit increase in
succinate purity. This indicates that for unit increases in
succinate purity below 0.84, there is a very large negative
cost in succinate production rate, whereas above 0.84,
where succinate purity is relatively high and succinate pro-
duction rate is low, further increases in succinate purity
come at relatively low additional cost in terms of succinate
production rate decreases. Additionally, for succinate pur-
ity below 0.6 there are several E. coli Pareto optimal
designs, between 0.6 and 1 there are many S. cerevisiae
Pareto optimal designs, and for succinate purity close to 1
there is one S. oneidensis optimal design. Thus, E. coli
is better for high succinate production rates and low
succinate purity (with succinate purity sensitive to design
changes), whereas S. cerevisiae (and to a small extent
S. oneidensis) is better for high succinate purity and low
succinate production rate (with comparatively low sensi-
tivity to design changes). Similar logic can be applied to
the Pareto optimal designs in three dimensions presented
in Figure 3(B, C).
One may choose to prioritize simulated designs by

their degree of consistency with available experimental
data. High experimental consistency indicates that subse-
quent experimental validation may be more consistent
with the predicted design solution. We computed experi-
mental consistency scores by mapping available mRNA
microarray data to metabolic flux values, in analogy with
previously developed approaches to integrate gene expres-
sion data with FBA modeling (see Methods). Figure 3(E)
shows designs considered for maximal acetate production
rate, acetate purity and experimental consistency. Al-
though designs with higher experimental consistency are
preferable, Figure 3(E) indicates that higher microarray
consistency comes at a cost of reduced acetate production
rate. With additional higher resolution experimental data,
such as metabolic flux measurements [45,46], these
insights could be improved and expanded. In principle,
prediction-mapped experimental data could be used as a
proxy for predicting sensitivity or accuracy and as a metric
for ranking designs.
The Pareto frontiers discussed above allow one to

visualize different trade-offs identifiable from our data. It
is further possible to focus on specific sections of these
frontiers, and characterize engineering designs that are
optimal for a specific linear combination of engineering
goals. In general, we observe that different combinations
of goals warrant very different design solutions. As illus-
trative examples, selected design criteria and associated
optimal designs are presented in Table 1. Two of these
designs yield maximal succinate production rate, both of
which are for E. coli. Between the two designs, the de-
sign with higher succinate purity is an E. coli Δedd
Δgnd mutant grown on minimal medium with malto-
hexoase as carbon source, fumarate as electron acceptor,
D-glucosamine as nitrogen source, phosphate as phos-
phorous source, and sulfate as sulfur source. This design
(hereafter referred to as Design 1, as specified in Table 1)
produces 195.34 mmol succinate/gDW/hr with 0.63
succinate purity. Compared to Design 7 in Table 1
(an experimentally-validated succinate production design,
E. coli ΔptsG ΔpykFA Δpfl mutant fermented on glucose
minimal medium [8]), Design 1 has more than a 20-fold
increase in succinate production rate. However, we also
see that the total economic cost rate is very high
(19314.4 $/hr), perhaps impractically so. Thus, we
may alternatively choose design criteria that equally weight
the maximization of succinate purity and minimization of
total economic cost rate. Design 5 in Table 1 shows that
this engineering goal combination produces a design for
S. cerevisiae ΔYBR196C ΔYMR256C mutant aerobically
grown on minimal medium with glucose as carbon source,
urea as nitrogen source, phosphate as phosphorous
source, and sulfate as sulfur source. Design 5 produces
succinate purity of 0.43 and total economic cost rate of
$0.05/hr. It also produces 14.77 mmol succinate/gDW/hr.



Figure 4 Metabolic network pathway activity in E. coli. (A-C). Differential pathway activity between the wild-type E. coli grown anaerobically
on glucose minimal media and the mutant E. coli Δedd Δgnd grown anaerobically on maltohexoase, fumarate, D-glucosamine, phosphate, and
sulfate minimal media (Design 1 in Table 1). (A) The complete metabolic network map, and close-ups (regions framed by red boxes) of (B) the
citric acid cycle and (C) the lipid metabolism. Metabolic pathway reactions are color-coded according to the relative flux differences (color legend
for flux values in (C) applies to (A-C)) between the engineering designs. Similar metabolic network maps for all organisms and Pareto optimal
designs can be viewed using the Multi-Goal Metabolic Engineering Website (Methods).
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As a result, this design has comparable economic cost to
the validated E. coli ΔptsG ΔpykFA Δpfl mutant design
(Design 7) [8], yet has 60% higher succinate production
rate. In general, many of the resultant designs (including
Design 1 and Design 5) do not appear in published litera-
ture and subsequent experimental validation of the simula-
tion predictions will be warranted. It should be noted also
that an effective implementation of Design 5 may be prob-
lematic, as it involves the deletion of a gene (YBR196C)
previously reported to be essential under similar growth
conditions, probably due to regulatory effects [47].
In order to obtain more biological insight about the spe-

cific designs identified, we developed a new metabolic
network visualization tool called Multi-Goal Metabolic
Engineering (MGME) Visualizer that highlights the ac-
tive fluxes for any given choice of engineering goals
(Additional file 1: Figures S16 and S17 and online re-
source at http://nets.bu.edu). This interactive visualization
of active fluxes makes it possible to identify potential
causal connections between predicted phenotypes and
underlying metabolic activity. Thus, MGME Visualizer
constitutes a tool of broad practical applicability. Figure 4
shows the differential pathway activity results from the
MGME Visualizer for Design 1 relative to a baseline de-
sign (wild-type E. coli grown fermentatively on glucose
minimal medium, which are a typical laboratory strain
and feedstock, respectively). We see that many of the reac-
tions have relatively high flux values, which is expected
since there is a large influx of carbon due to the use of
maltohexoase (36 carbons per mole) in Design 1, com-
pared to glucose (6 carbons per mole) in the reference
design. Importantly, however, while the carbon input of
Design 1 is 7 times larger than the carbon input of stand-
ard minimal medium, the predicted succinate rate increase
is more than 2000–fold, demonstrating that the pro-
duction improvement observed in Design 1 is largely

http://nets.bu.edu


Figure 5 Pair-wise correlations of engineering metrics. Pearson correlations are computed between all pairs of engineering metrics for the
combined organism data. Rows and columns are hierarchically clustered. Column labels are in the same order as the row labels, with the top
metric row associated with the left-most metric column.
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a consequence of flux rerouting, rather than simply of
additional carbon intake. In particular, from looking at the
visualized flux differences, it is apparent that much of the
flux is routing through the TCA cycle and is being chan-
neled into the synthesis of succinate, a flux distribution
trending towards maximum theoretical succinate produc-
tion (Additional file 1: Figure S6(B)). The imposed gene-
deletions Δedd and Δgnd amplify this effect since knock-
ing out enzymes Entner-Douderoff dehydratase (EDD)
and Gluconate-P dehydrogenase (GND) prohibits flux
from being channeled into the pentose phosphate pathway
and instead forces more flux into glycolysis, the TCA
cycle, and finally succinate synthesis. A similar rerouting
(though visually much more complex, due to intracellular
compartments) can be observed for Design 5, based on
yeast (Additional file 1: Figure S7).
The above Pareto analysis focuses on the choice of an

optimal design for a given set of desired goals. We rea-
soned that it would be interesting to obtain, in addition, a
global snapshot of the tradeoffs between different meta-
bolic traits. In fact, the large data set that we generated
allows us to ask whether an increase of a given trait (e.g. a
compound yield) is likely to be correlated or anti-
correlated with another (e.g. the compound’s purity), and
whether the observed tradeoffs are universal or organism-
specific. We analyzed the data for all three organisms
combined (Figure 5), and found that only a few general
metabolic traits are highly correlated (5 pairs of engineer-
ing goals with |r| > 0.8). Biomass, as well as ethanol
production rate, and total carbon change appear as
correlated. Biomass production rate is highly anti-
correlated with total overall carbon change and acetate
production rate. Biomass carbon yield is highly anti-
correlated with total carbon yield. Price change for all
compounds (and for target compounds) is highly corre-
lated with total intake price for all compounds. Profit rates
tend to be anti-correlated with total economic cost rate
and biomass production rate. By definition, profits and



Figure 6 Perturbation effects on phenotype changes in E. coli. (A) A subset of the engineering metrics associated with E. coli phenotype
clusters (meta-phenotypes) shown in Figure 2. For values of engineering metrics (z-scores) and cluster sizes, refer to legend in Figure 2.
(B) Meta-phenotype transition network for E. coli. Nodes i and j represent two viable-growth engineering meta-phenotypes (the
nonviable-growth meta-phenotype is not shown). Node labels correspond to Clusters shown in (A). Node sizes are proportional to cluster
sizes shown in (A). Edge ti,j represents the cumulative phenotype-cluster transition frequency between Nodes i and j due to a specified
perturbation type. Edges are bidirectional, so ti,j is equivalent to tj,i. Edge thickness is proportional to the cumulative transition frequency
for environmental or genetic perturbations. Edges with relative frequency < 1% have been filtered out, primarily omitting low relative
frequency single and double gene-deletion perturbations. (C) Legend for meta-phenotype transition network in (B). Node faces are
divided into quadrants that correspond to the selected engineering metrics shown in (A). Quadrant colors indicate the associated metric
z-scores for the corresponding Cluster. Perturbation type (edge attribute) abbreviations: C = carbon sources, EA = electron acceptor sources,
N = nitrogen sources, P = phosphorous sources, S = sulfur sources, SGD = single gene deletions, and DGD= double gene deletions.
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costs are inversely correlated. Additionally, economic prof-
its are directly related to the over-production of desired
products ethanol, hydrogen, formate, or succinate. This
over-production is typically made possible by re-routing
precursor metabolites away from biomass synthesis path-
ways and towards by-product synthesis pathways. As a
result, the increased rates of targeted production tend to
reduce the growth rate. In general, these conserved rela-
tionships tend to reinforce our biological intuition.

Perturbation effects on engineering phenotypes are
generalizable
So far, we focused on specific engineering goals. To
provide an overall comparison of design strategies, we
assessed the relative phenotypic effects of specific types of
environmental and genetic perturbations. From a practical
standpoint, a metabolic engineer would like to know what
types of perturbations (i.e. gene deletions or environmen-
tal changes) are the most effective at inducing desirable
phenotypes. To address this issue, a graph-based method
was developed to assess the frequency at which different
types of perturbations induce changes in the phenotypes.
The availability of a huge number of phenotypic states
provided the unique opportunity to explore the global
connectivity between phenotypes. In particular, given
any two meta-phenotypes, we asked how many elem-
entary changes in nutrient conditions (e.g. carbon
sources) or genetic background (e.g. single gene deletions)
could mediate a transition between these two phenotypes.
By computing the relative frequency at which a phenotype
transitions from one meta-phenotype to another meta-
phenotype, we can compare causal environmental and
genetic perturbation types.
Figure 6 and Additional file 1: Figures S13 and S14

show the resultant meta-phenotype transition networks
for E. coli, S. cerevisiae, and S. oneidensis, respectively.
Many interesting features are observed within and be-
tween these networks. Phenotypic variation can be
evaluated based on the number of meta-phenotypes
for each organism. For the 36 computed phenotypic traits,
S. cerevisiae (30 meta-phenotypes) has the greatest pheno-
typic variation, followed by S. oneidensis (20 meta-
phenotypes) and then E. coli (10 meta-phenotypes).
This comparison implies that S. cerevisiae is the most
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versatile organism among the three, and can potentially
serve a greater variety of metabolic engineering purposes
associated with the six target metabolic products (acetate,
ethanol, hydrogen, formate, succinate, and D-lactate).
Differences in the meta-phenotypic traits can be evalu-

ated by comparing node colors. Each node face is divided
into quadrants associated with the four selected engineer-
ing metrics: succinate production rate, succinate purity,
biomass production rate, and total economic cost rate.
For example, in Figure 6, meta-phenotype Nodes 9 and 10
are the most economically costly, whereas Nodes 7 and 8
have the highest succinate production rates. We compre-
hensively analyzed Design 1 and Design 5. Table 1 showed
details of the designs and associated phenotype Cluster
Ids. Design 1 is associated with Node 8 in Figure 6 and
has high succinate production rate. Design 5 is associated
with Node 30 in Additional file 1: Figure S13 and has high
succinate purity.
Phenotypic prevalence is a measure of how common a

meta-phenotype is, given the imposed conditions. Pheno-
typic prevalence is represented by node size, which is
scaled by phenotype cluster size. We see that both Designs
1 and 5 are phenotypes associated with less prevalent
meta-phenotypes. Node 1 in Figure 6 is the largest, and
thus most common meta-phenotype for E. coli. We can
similarly evaluate the distribution of phenotypic preva-
lence for each organism. The distribution for E. coli is
the most skewed and, thus, the majority of E. coli
phenotypes are associated with a few meta-phenotypes,
whereas the distribution is comparatively more uniform
for S. cerevisiae and S. oneidensis. Together with pheno-
typic variation, this further shows that for the studied
traits E. coli has few overall dominant phenotypes and a
single super-dominant meta-phenotype.
Some phenotypes are innately more robust or sensitive

to different types of perturbations. Self-loops indicate
the robustness of the phenotype cluster to genetic or
environmental perturbations, whereas the thick edges
between meta-phenotypes indicate that those pheno-
types are sensitive to the considered type of perturbation.
In Figure 6, phenotypes are generally robust against
changes in electron acceptors but are relatively more
sensitive to changes in carbon or nitrogen sources.
Design 1 (associated with Node 8 in Figure 6) is rela-
tively robust to changes in phosphorous sources, but
more sensitive to carbon and nitrogen sources and
single gene-deletions.
Network edges can be used to determine global transi-

tions between meta-phenotypes. For example, Node 8
(meta-phenotype associated with Design 1) is connected
to Nodes 6, 7, and 10 by nitrogen source perturbations
and to Node 3 by carbon source perturbations. Thus,
Node 8 is more closely related to those nodes and it is
easier (i.e. fewer perturbations of those types are required)
to transition between those nodes than between the other
nodes that it is not connected to.
Interestingly, the different patterns of connectivity

found in meta-phenotype graphs for different organisms
suggest that, broadly speaking, the metabolic usefulness
of different organisms may be best assessed through
different types of perturbation analyses. Additional file 1:
Figure S15 shows the relative perturbation influences on
global phenotype changes. It is apparent that carbon
and nitrogen source perturbations have the greatest
relative effect on changes in phenotype in E. coli,
whereas S. cerevisiae, and S. oneidensis are more uniformly
sensitive to all types of environmental and genetic per-
turbations analyzed. Thus, if one is trying to perturb
the E. coli metabolism, one might preferentially design
carbon and nitrogen source perturbations.

Discussion
We presented a high-throughput computational frame-
work for generating and exploring an exhaustive land-
scape of in silico perturbations and metabolic engineering
designs. Each design condition consists of an environment
(medium composition), an organism (Escherichia coli,
Saccharomyces cerevisiae, or Shewanella oneidensis) and a
genotype (set of gene deletions). The vast population of
the resultant design solutions produces a contextualized
phenotypic map that is used to evaluate relationships
between engineering goals and fundamental biological
network properties. Using a set of metabolic traits, the
large number of metabolic phenotypes is clustered into
dominant meta-phenotypes. Whereas individual pheno-
types are used to evaluate localized design considerations,
causal biological mechanisms and design tradeoffs, the
meta-phenotypes are used to evaluate global phenotypic
diversity and relationships between metabolic traits and
perturbation strategies. The proposed approach can help
understand how environmental and genetic factors influ-
ence metabolism and metabolic engineering design.
A single unique optimal design solution may suffice

for a single distinct set of weighted engineering goals.
The resultant phenotypic map provides a regional and
global context for this design solution relative to all
other designs. If, for example, the exact values of the
weights associated with the importance of the engineer-
ing goals are uncertain, we show that, by using the map,
sub-optimal designs located in the proximity of optimal-
ity can be evaluated to assess the sensitivity of those
weights. A designer can then assess whether or not it
might be desirable to reprioritize engineering goals. By
analogy, instead of having a single travel destination and
navigational route to that destination, a map is very use-
ful for assessing alternative destinations and routes that
may, upon further inspection, be deemed more desirable
than the original one.
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Prior metabolic engineering studies have primarily
focused on a single organism, engineering application, en-
vironment or genetic perturbation strategy, and optimal
design solution. However, different organisms have differ-
ent metabolic capabilities, due to diverse environmental
adaptations and biochemical wiring. Thus, the inter-
dependencies between the desirable organism, engineering
application and design strategy are often unclear a priori.
Here, we extended prior approaches by comparing organ-
isms and systematically evaluating both environmental and
genetic perturbation strategies. We illustrated inherent
differences in the metabolic capabilities and phenotypic
variations of E. coli, S. cerevisiae and S. oneidensis. To
account for important economic considerations, we devel-
oped a methodology for integrating economic data. Fur-
thermore, we showed that preexisting experimental data
can be readily incorporated to help rank designs by how
likely they are to be accurately reproduced experimentally.
After initial compilation of the phenotype population

dataset, multiple complex combinatorial optimization pro-
blems can be solved (e.g. Pareto optimality design analysis).
There is no restriction in terms of linearity or nonlinearity
of metabolic traits and, if an engineering goal needs to be
changed, there is no need to re-compute the phenotype
dataset; one just needs to redefine the corresponding func-
tion and re-query the data. There are, however, limitations.
For example, prediction accuracy of the metabolic designs
is limited by the accuracy of the underlying models. Thus,
accuracy can be further improved by improving the models
(e.g. incorporating additional biological mechanisms, such
as transcriptional regulation). Searching the design param-
eter space is also limited by the combinatorial nature of
this “brute-force” approach. Here, we evaluated a compre-
hensive, but limited, subset of the theoretically infinite
number of genetic and environmental parameter values
and combinations. Simulating and processing the 435
million conditions took approximately 4 weeks of CPU
time (see Methods for more details). By further optimizing
the underlying programming code and by incorporating
additional computing processors, the overall compute-
time could be significantly reduced and many additional
organisms and design strategies could be evaluated.
Nevertheless, since an exhaustive search of the complete
parameter space is not possible, prior knowledge will be
useful in deciding which regions and level of granularity
of the parameter space to explore.
Compared to other optimization approaches, our method

potentially sacrifices depth (e.g. looking at triple and
multiple knockouts) in favor of breadth (i.e. obtaining a
snapshot of behaviors across an unprecedented number of
perturbations and environments). Future studies may
seek to further compare and contrast the spectrum of
perturbation strategies to assess the advantages and
limitations of each. For example, methods that can infer
optimal combinations of more than two gene additions or
deletions [19,41] could be preceded by broad surveys
across multiple organisms. In addition, our approach
could provide useful preliminary indication of the suit-
ability of specific organisms for nonlinear objectives
that may not be easily addressed through other avail-
able optimization approaches.
We would like to highlight that the biological details of

our results can be conveniently accessed and visualized
through the online tool that we present as part of this
work. This tool is currently tied to predefined criteria for
the choice of designs and engineering goals. However, fu-
ture elaborations of our approach and of this tool could
easily relax the existing constraints, for example including
weights for the importance of different objectives, and
thresholds for levels of acceptable violations of specific
constraints. In addition, the process could be transformed
into an iterative one, where an initial query throughout
the entire space could be followed by a user-defined
choice of specific criteria, which would lead to a deeper
search in a restricted region of the space.
Furthermore, while in the current work we focus

mainly on the metabolic phenotypes relevant for meta-
bolic engineering applications, a different type of analysis
could provide complementary insight on the biological
aspects of the data presented. For example, it would be
interesting to understand, for each meta-phenotype,
whether it can be associated with specific environmen-
tal or genetic properties (e.g. limitation of a specific
nutrient). This type of analysis would require revisiting
our large data set (i.e. the meta-phenotypes shown in
Additional file 2: Table S4, and the complete list of designs
they comprise, available online, see Methods), in search
for meaningful biological patterns.

Conclusions
Given the increasing number of sequenced genomes,
improved model accuracy and the growing available
computing power, it is foreseeable that future extensions
of our approach could help address a growing range of
biological questions and engineering applications. Rapid
growth of industrial biotechnology is helping to drive
demand for a widening range of products, such as com-
modity chemicals (e.g., succinic acid and ethanol), fine
chemicals (e.g. 6-aminopenicillanic acid and other
antibiotics), and specialty chemicals (e.g., food and
feed additives) [48]. In many application areas, how-
ever, production output of cellular factories falls signifi-
cantly short of what is theoretically possible and may be
insufficient for practical implementation. Systems engin-
eering methods, including the approach presented, hold
great promise in overcoming current engineering limita-
tions and design challenges [1-3]. The exhaustive strategy
we have explored, while combinatorially limited, enables
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complex searches across nonlinear objectives and mul-
tiple species, complementing other optimization methods,
and providing a global portrait of the landscape of possible
metabolic phenotypes.

Methods
Constraint-based modeling
The general equations describing the dynamics of a meta-
bolic network can be written as

d
dt

C ¼ Ax� μC ð1Þ

where C (mol/L) is the concentration vector of m internal
metabolites, x (mol/L/h) is the reaction rate (flux) vector
of n reactions, A is the stoichiometry matrix of dimension
m×n whose elements aij represent the stoichiometric coef-
ficient of the element i involved in reaction j, and μ (1/h) is
the specific dilution rate associated with the change in vol-
ume of the system. At steady state there is no accumulation
of internal metabolites in the system [49] and Equation (1)
can be simplified to Ax=0. Additionally, due to thermo-
dynamic restrictions, some reactions can effectively be con-
sidered irreversible leading to additional contraints of the
type xi≥0.
Flux balance analysis (FBA) is a method for predinct-

ing steady state reaction rates in a metabolic network
[16]. Additional linear constraints are included to set
upper and lower bounds on individual fluxes (αi ≤ xi ≤ βi)
and are often used to impose maximal nutrient uptake
rates. Upon choosing a linear objective function f(x) to
be optimized, linear programming (LP) [50] is used to
identify a solution subject to the constraints:

max f xð Þ
s:t: Ax ¼ 0
αi ≤ xi ≤ βi

ð2Þ

An objective function that is commonly used for micro-
bial systems is the maximization of biomass formation
[51] (see Equation 3). To simulate changes in nutrient
composition or gene-deletion effects over a range of par-
ameter values, parameters αi and βi in the LP problem
(Equation 2) can be iteratively modified (e.g., both set to
zero to stimulate a gene knockout) and the problem
solved again to obtain a new solution vector x. While this
new solution achieves max f(x), the engineering objective
(e.g. maximization of target-compound synthesis or
minimization of media cost) may be suboptimal.
The genome-scale metabolic models for E. coli [52],

S. cerevisiae [53], and S. oneidensis [44] are used to enu-
merate over a comprehensive set of feedstock medium
compositions and single and double gene deletions. The
nutrient and gene-deletion parameter space that is
explored is described in Additional file 1: Table S1. Single
and double gene-deletions are chosen from the genes
associated with the citric acid cycle, glycolysis, gluconeo-
genesis, oxidative phosphorylation, pentose phosphate,
and pyruvate metabolism pathways.
Medium nutrients are first categorized as carbon, elec-

tron acceptor, nitrogen, phosphate, or sulfur sources
(progressively and exclusively, in that order) to enu-
merate all nutrient and gene-deletion combinations. The
resultant candidate designs are then screened and selected
to optimize for one or several specified engineering objec-
tives. Upper bounds to nutrient uptake rates are com-
puted based on the standard rates found in the literature
[13,14,32,54]. Biomass production is incorporated as an
additional reaction,

X

i

dizi ! 1 biomass ð3Þ

where the stoichiometric coefficient di corresponds to
the experimentally measured contribution of biomass
component zi to biomass [51]. To quantify the engin-
eering value of metabolic states under the various con-
ditions, engineering metrics are defined as listed in
Additional file 1: Table S2. Values for maximum theor-
etical engineering goals are computed using FBA
(Equation (2)) using the engineering metrics themselves
as objectives to be either maximized or minimized, ra-
ther than the objective function expressed in Equation
(3). Linear programming is implemented using the
GNU Linear Programming Kit software [55]. Data pro-
cessing is implemented as a distributed process run on
a computing cluster with 192 processor dual-dual core
2.8 Ghz computer nodes.

Metabolic traits
Metabolic traits are defined in Additional file 1: Table
S1. Final titer is typically measured as a concentration.
However, it may alternatively be thought of as a ratio of
the target product to the total by-products being pro-
duced (i.e. titer ratio).
Reagent prices were compiled from Sigma-Aldrich

Corporation’s website http://www.sigmaaldrich.com/
on May 10, 2011. The nutrient unit prices ($/g) were
computed using the largest reagent allotment size
available and nutrient cost rates were computed as a
product of the nutrient unit price, molecular weight,
and flux:

$
g
� g
mol

�mmol
hr

� mol
1000 mmol

Unit prices for some nutrients were not available.
Approximately 23% of the simulated medium composi-
tions included one or more nutrients that did not have
an assigned nutrient unit price. Additional file 1: Figures

http://www.sigmaaldrich.com/
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S2 and S4 show the results for all simulations. All other
figures contain economic metric data based on nutrient
unit prices and, therefore, omit those simulations with
missing unit price data.
To evaluate how closely the simulated phenotype and

pathway activity predictions correspond to the experimen-
tal values, a metric for experimental consistency is com-
puted using a method called Gene Inactivity Moderated by
Metabolism and Expression (GIMME) [56]. The GIMME
algorithm provides a quantitative consistency score that
indicates how consistent a set of gene expression data is
when compared to a simulated flux solution under similar
conditions. A set of 149 Affymetrix microarrays for E. coli,
processed using GC-RMA [57], was gathered [56]. This
method evaluates how closely the pathway activity, as mea-
sured by microarray gene expression, matches the simu-
lated pathway flux activity.

Meta-phenotypes
A combination of the computed metabolic traits can
be considered a complex engineering phenotype. The
engineering phenotypes across all the possible designs
computed with FBA can be clustered into “meta-
phenotypes” based on the similarity of their vectors.
K-means clustering [58] was used with 10 seeds and
up to 100 iterations to assign the engineering pheno-
types into clusters that minimize the within-cluster
average square-error:

E ¼ 1
n

Xk

i¼1

X

x2Ci

x�mið Þ2

where mi=mean of cluster Ci and n=number of objec-
tives in the dataset. To find the optimal number of
clusters, the gap statistic [59] is used to compare within-
cluster dispersions in the observed data to expected
within-cluster dispersions in data generated from a null
distribution when the deviation is maximized. This
method, designed to be applicable to any cluster technique
and distance measure, is in wide use [60-62]. We found
that our optimal cluster numbers are fairly robust, par-
ticularly for the economic dataset discussed in the main
text (Additional file 1: Figure S3B), where the deviation is
significantly less for one cluster more or less than the
computed optimal number of clusters.
To compare engineering metric values across meta-

phenotypes, a z-score is computed as

yi � �yð Þ
σ

where yi is meta-phenotype i, �y is the average meta-
phenotype vector and σ is the meta-phenotype standard
deviation. Instructions for downloading the phenotype
metric data and conditions and associated meta-phenotypes
mapping are available at http://nets.bu.edu/about.

Pareto optimal designs and trade-offs
Multi-goal optimization (also known as multi-objective
optimization) is the process of simultaneously optimiz-
ing two or more conflicting goals (or objectives) subject
to a set of constraints [63-65]. In our study, we have a
vector of engineering goals f(v) = [f1(v),f2(v),. . .fm(v)],
where v is the vector of computed engineering metrics
shown in Table S2. The associated multi-goal optimization
problem is min f (v), bounded by the discrete set of avail-
able solutions. Each solution corresponds to a metabolic
engineering design candidate (or multiple candidates if
they have identical engineering phenotypes). If the individ-
ual goals in f (v) do not conflict, then it is possible to find
a unique optimal solution. However, if the individual goals
in f (v) do conflict, then a unique solution will not exist.
Instead, there will be a set of Pareto solutions. If a change
(or tradeoff) in one of the solutions improves one goal
without making another goal any worse, then that change
is called a Pareto improvement and the initial solution is
called dominated. If the subsequent solution is such that
an improvement in one goal requires degradation in
another goal, then that solution is called nondominated
and is Pareto optimal. The set of Pareto optimal solutions
is often called the Pareto frontier.
To determine the Pareto optimal designs and frontiers in

our study, we use a Pareto-compliant method called Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [66].
This method, widely used in prior research [25,67-69],
incorporates a genetic algorithm and a ranking procedure
to select nondominated solutions. Specifically, we used the
Matlab function gamultiobj, from the Global Optimization
Toolbox. We feed into the function our set of engineering
goals, f(v), and obtain as a result the set of Pareto optimal
designs. The parameter values that we used are 500
maximum number of generations, population size of 100
chromosomes, 0.85 probability of crossover, 0.05 probabil-
ity of mutation, distribution index of 10 for simulated
crossover, distribution index of 20 for simulated mutation
and a random seed of 0.6. Prior studies showed that these
parameter values are generally satisfactory [25,68] and we
found that our results were not significantly sensitive to
changes in these values. Subsequent Pareto tradeoff ana-
lysis (i.e. determining marginal gain or cost of relative
changes in weighted linear combinations of goals) is com-
puted using piece-wise linear differences between the
Pareto designs associated with particular Pareto frontiers.

Meta-phenotype transition network
Transition frequencies are computed by varying a single
individual perturbation type (carbon, electron acceptor,
nitrogen, phosphorous, and sulfur sources and single

http://nets.bu.edu/about
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and double gene deletions), while maintaining fixed
the remaining perturbation types. Environmental pertur-
bations are imposed by changing the absence or presence
of a nutrient in the medium (as described in the Methods
“Constraint-based modeling” subsection), whereas genetic
perturbations are imposed by deleting single or double
genes. A resultant meta-phenotype transition network can
be generated such that Nodes i and j represent two viable-
growth engineering phenotype clusters. Edge ti,j represents
the cumulative phenotype-cluster transition frequency
between Nodes i and j due to either environmental pertur-
bations or genetic perturbations. Node 0 represents the
nonviable-growth phenotype. Thus, edges ti,0 and tj,0 repre-
sent the cumulative phenotype-cluster transition fre-
quencies to the nonviable-growth phenotype due to
perturbations. Edges are bidirectional, so ti,j is equiva-
lent to tj,i. Edge thickness is proportional to the cu-
mulative transition frequency for environmental or
genetic perturbations. By performing this analysis system-
atically for all meta-phenotypes, we obtained a network of
meta-phenotype transitions for each organism E. coli,
S. cerevisiae, and S. oneidensis. Because the non-viable
meta-phenotype is the sum of all possible non-viable phe-
notypes, it is comparatively extremely large and would
effectively dwarf all viable meta-phenotype nodes. Thus,
the non-viable meta-phenotype is not shown or included
in the figures and results presented.

Multi-goal Metabolic Engineering Visualizer
A public website (Additional file 1: Figures S16 and S17),
located at http://nets.bu.edu, was developed to make avail-
able the optimal metabolic engineering design results. The
website provides an interface that may be used to submit
customized search queries, choose engineering designs, and
interact with resultant metabolic network visualizations.
From the website’s main page (Additional file 1:

Figure S16), a user can choose from a list of organisms,
target products, and engineering goals. Based on selected
optimization criteria, the website generates a list of meta-
bolic engineering designs. If multiple engineering goals
are selected, then a resultant set of Pareto optimal designs
are tabulated where one can compare alternative designs
with competing metric values. The user may click on any
one of the designs to generate a metabolic network map
that has corresponding metabolic pathways and reactions
color-coded by flux values. The map can be panned,
zoomed, and searched. Other map features include click-
able nodes and edges for obtaining additional information
about metabolites and reactions.
An online tutorial for the website (Additional file 1:

Figure S17) is located at http://nets.bu.edu/about. Alter-
natively, the tutorial can be obtained by clicking “Help”
on the website’s main page. The tutorial explains the
process of defining engineering optimization criteria,
selecting resultant designs and visualizing metabolic path-
way activity.

Additional files

Additional file 1: Supplementary Information. Tables S1, S2, S3, S5
and Figures S1-S18.

Additional file 2: Supplementary Information. Table S4 (Tabulated
version of Figure 2).
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