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Abstract

Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it
enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods
have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these
methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene
duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded
large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees
that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and
Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying
its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more
accurate than alternative methods.
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Introduction
The evolutionary history of a gene can differ from that of the
species containing the gene for several reasons (Maddison
1997), including incomplete lineage sorting (ILS), duplication
and loss (DupLoss for short), gene transfer, and hybridization.
Species-tree inference is a central question in evolutionary
biology and dealing with these sources of discordance is cru-
cial. Many approaches have been proposed for species-tree
inference, including gene trees–species tree coestimation (Liu
2008; Heled and Drummond 2010; An et al. 2013; Boussau
et al. 2013; Szöll}osi et al. 2015) and species-tree inference from
sequence data (Bryant et al. 2012; De Maio et al. 2013;
Chifman and Kubatko 2014). However, the most scalable
approach has remained a two-step process: first infer gene
trees independently from sequence data and then combine
them using summary methods. The goal of a summary
method is to find the species tree best explaining the gene
trees according to a model of gene tree discordance.
Although the ultimate goal is to develop summary methods
modeling all sources of discordance, the literature has mostly
focused on separate causes.

A major family of summary methods focuses on duplica-
tion and loss processes producing multicopy gene trees
(Hallett and Lagergren 2000; Ma et al. 2000; Wehe et al.
2008; Bansal et al. 2010; Chaudhary et al. 2010; Bayzid et al.
2013). Most of these summary methods rely on maximum

parsimony reconciliation (Goodman et al. 1979) and aim at
finding the species tree with the minimum reconciliation
cost. Example methods include DupTree (Wehe et al.
2008), its later extension iGTP (Bansal et al. 2010;
Chaudhary et al. 2010), DynaDup (Bayzid et al. 2013), and
earlier similar dynamic programing algorithms (Hallett and
Lagergren 2000). Other methods take a more agnostic ap-
proach and minimize the distance between species trees and
the gene trees without necessarily invoking specific reasons
for discordance. Example methods of this type include MulRF
(Chaudhary et al. 2013) and guenomu (De Oliveira Martins
et al. 2016). A recent result asserts that the optimal solution
to the optimization problem solved by MulRF is indeed a
statistically consistent estimate of the species tree under a
generic duplication-only model of gene evolution (Molloy
and Warnow 2019). These methods are mostly designed to
handle duplication and loss, and although in simulations
some have reasonable accuracy under ILS and gene transfer
(Chaudhary et al. 2015), they have not been widely adopted.

Several summary methods target ILS as modeled by the
multispecies coalescence (MSC) model (Pamilo and Nei 1988;
Rannala and Yang 2003), and many of them are statistically
consistent (e.g., Liu et al. 2009, 2010; Larget et al. 2010; Mossel
and Roch 2010; Liu and Yu 2011; Wu 2012; Vachaspati and
Warnow 2015; Sayyari and Mirarab 2016a). The most success-
ful summary method for ILS has arguably been ASTRAL
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(Mirarab et al. 2014), which, due to its high accuracy (Giarla
and Esselstyn 2015; Molloy and Warnow 2018; Ballesteros and
Sharma 2019) and scalability (Mirarab and Warnow 2015; Yin
et al. 2019), has been used to perform species-tree inference in
numerous studies. ASTRAL, like several other methods (e.g.,
Larget et al. 2010; Chifman and Kubatko 2014; Sayyari and
Mirarab 2016a), relies on dividing gene trees into unrooted
four-taxon trees (called quartets), a feature that allows it to
address ILS and may contribute to its high accuracy. ASTRAL,
however, was designed to handle single-copy gene trees
reconstructed from sets of orthologous genes. This limitation
has restrained its application scope. As an example, two stud-
ies on plant transcriptomes had to discard thousands of avail-
able multicopy genes (Wickett et al. 2014; Leebens-Mack et al.
2019) and only use the 400–800 single-copy gene trees. A
recent result by Legried et al. (2020) asserts that treating
gene copies as alleles of a same gene, a feature ASTRAL sup-
ports (Rabiee et al. 2019), is a valid method under a paramet-
ric model of gene duplication and loss and may lead to
accurate results. Du et al. (2019) have shown that random
sampling of leaves works well empirically and Markin and
Eulenstein (2020) have shown that method to be consistent
under a model combining ILS and duplication and loss.
Beyond ASTRAL, several methods have focused on dividing
multicopy gene trees into single-copy genes without appar-
ent duplications (e.g., Marcet-Houben and Gabald�on 2011;
Scornavacca et al. 2011; Dunn et al. 2013; Yang and Smith
2014; Ballesteros and Hormiga 2016). However, to our knowl-
edge, no quartet-based methods designed to handle duplica-
tion and loss currently exist. Extending quartet-based
methods to multicopy gene trees while modeling orthology
and paralogy is difficult.

We introduce the quartet-based species-tree inference
method ASTRAL for PaRalogs and Orthologs (ASTRAL-Pro).
Given a set of multicopy gene family trees, ASTRAL-Pro seeks
to compute a single-copy tree (the species tree) maximizing
the total similarity to the input gene trees. To define the
similarity, we introduce a new measure of quartet similarity
between single-copy and multicopy trees accounting for
orthology and paralogy. Tests on an extensive set of simulated
and real data sets provide evidence of ASTRAL-Pro’s robust-
ness and accuracy.

Results
We start by informally introducing the methodology under-
lying ASTRAL-Pro, leaving the formal definition and proofs to
the Materials and Methods section. We will then compare
the performances of ASTRAL-Pro with leading alternative
methods on simulated and real data sets.

ASTRAL-Pro Algorithm
Per-Locus Quartet Similarity
ASTRAL-Pro maximizes a measure of quartet similarity be-
tween a multicopy and a single-copy tree. Let us consider a
rooted gene family tree where multiple leaves can have the
same label (i.e., the species identifier). We need a principled
way to compare this tree with a species tree where each

species identifier appears once. The measure we define is
based on several observations.

i. Internal nodes of the gene tree correspond to either du-
plication or speciation events; thus, we can tag nodes of
the tree as speciation or duplication (Definition 1; see
Materials and Methods). Although the true tagging is
unknown, as we will see, it can be partially inferred (fig. 1).

ii. Each quartet of leaves in the gene tree defines two an-
chor nodes, and we refer to the Least Common
Ancestor (LCA) of the two anchors as the anchor LCA
(fig. 1). In a correctly tagged tree, a quartet has informa-
tion about the speciation events only if it includes four
distinct species and if the LCA of any three out of four
leaves of the quartet is a speciation node (fig. 1). Thus, to
define our measure of quartet similarity, we only include
these speciation-driven quartets (SQs) and ignore the
rest (Definition 2).

iii. All the SQs on the same four species that share the same
anchor LCA must also share the same topology
(Proposition 1). Thus, once we know the topology of
one of them, the others do not provide new informa-
tion. We call these SQs equivalent (Definition 4); in our
quartet measure, we count them as one unit, and we
consider them as part of the same quartet equivalence
class. Moreover, we show that, for all equivalent quar-
tets, the gene copies present at the current time all share
the same ancestral locus at the time of the speciation
event corresponding to the anchor LCA (Proposition 2)
(see Materials and Methods for formal statements).

Based on these observations, we define the per-locus quar-
tet score of a species tree S with respect to a gene family tree
G with tagged internal nodes to be the number of quartet
equivalence classes of G agreeing with S (Definition 5). We
then define the Maximum per-Locus Quartet-score Species
Tree (MLQST) for a setG of gene trees as the tree that has the
maximum total per-locus quartet score with respect to G
(Definition 6).

ASTRAL-Pro
As formalized in Theorem 1 in Materials and Methods, our
new method is based on an efficient dynamic programing
algorithm to find the MLQST tree. The ASTRAL-Pro algo-
rithm, like ASTRAL, solves this problem restricted to a large
search space X, defined heuristically using Algorithm 2. The
running time of ASTRAL-Pro grows polynomially with the
number of species, the number of genes, and the size of X
(Claim 3). Finally, note that the per-locus quartet score is only
defined for rooted and tagged gene trees. Since, in practice,
gene trees are often unrooted and untagged, we also provide
Algorithm 1 to tag and root gene trees using the parsimony
principle.

Statistical Consistency and Local Support
In the presence of gene duplication and losses only, under the
birth–death model called GDL proposed by Arvestad et al.
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(2009), Theorem 2 (Materials and Methods) states that
ASTRAL-Pro is statistically consistent given correctly tagged
and rooted error-free gene trees, even with partially correct
rooting (see Claim 1). Under the MSC model and in the
absence of gene duplication and gene loss, gene trees are
single-copy. For single-copy gene trees, ASTRAL-Pro solves
the same problem as ASTRAL and thus, like ASTRAL, it is a
statistically consistent estimator of the species tree under the
MSC model given a random sample of error-free gene trees
(Mirarab et al. 2014). However, we do not currently have a
proof of consistency of ASTRAL-Pro under models that com-
bine GDL and ILS (see Discussions).

With correctly tagged error-free gene trees, differences in
SQ topologies from the species tree must be due to processes
other than GDL, such as ILS (Proposition 3). We use this
observation to extend the local posterior probability
(localPP) measure of branch support to multicopy gene trees
(Definition 8).

Accuracy of ASTRAL-Pro in Simulations
We first test ASTRAL-Pro (A-Pro for short) against two lead-
ing summary methods: MulRF (Chaudhary et al. 2013) (opti-
mizing an extension of the RF distance [Robinson and Foulds
1981] to multilabeled trees) and DupTree (Wehe et al. 2008)
(minimizing the duplication reconciliation cost [Maddison
1997]). We also compare A-Pro with ASTRAL-multi (Rabiee
et al. 2019), which is the feature of ASTRAL designed for
handling multiple alleles (as opposed to multiple copies); al-
though ASTRAL-multi is not designed for multicopy data, we
include it because of recent theoretical results showing that it
is consistent under the GDL model (Legried et al. 2020). We

compare the methods in terms of the accuracy of the species
tree topology that they produce.

In our tests, we use two simulated data sets, one called S25,
which is new to this study, and one called S100 from Molloy
and Warnow (2019), which is based on a real fungal data set
(Butler et al. 2009; Rasmussen and Kellis 2012). Both data sets
were created by 1) simulating true gene trees under the
DLCoal model, which is a unified model of ILS and gene du-
plication and loss (Rasmussen and Kellis 2012), 2) simulating a
sequence alignment from each true gene family trees, and 3)
estimating a gene tree from each gene alignment. In S25, we
varied parameters that control the rate of duplication (kþ),
the rate of loss (k�), the ILS level, the number of species (n),
and the number of genes (k) (table 1). We also varied align-
ment length, which effectively varied the level of gene tree
estimation error. The S100 data set also varies all these param-
eters, except n. Thus, we simulate effects of ILS, duplication
and loss, and gene tree estimation error (see Materials and
Methods for details).

S25 Data Set

Controlling Duplication and Loss Rates. We begin by describ-
ing the results of experiments that vary the duplication and
loss rates (kþ; k�) (fig. 2a). On true gene trees, A-Pro and
DupTree are essentially tied in terms of accuracy, except for
the case with no duplication and loss where A-Pro is slightly
more accurate. Overall, the accuracy of A-Pro and DupTree is
statistically indistinguishable under these conditions (p value
¼ 0.79 according to a multivariate analysis of variance
(ANOVA) test). Increasing kþ reduces error (p < 10�5), per-
haps because additional copies provide more information,

FIG. 1. Per-locus quartet score. Example gene family tree from the fungi data set (Butler et al. 2009) restricted to five species and a potential species
tree. Two nodes of the gene tree are tagged as duplication (red dots) and others as speciation. Quartet scas1, sbay1 j smik1, scer1 is anchored by
nodes u and v, where u is the anchor LCA. Because the LCAs of any three leaves (u or v) are speciation nodes, this quartet is a SQ. Quartet scas1,
sbay2 j smik1, scer1 is anchored by node v and a duplication (top red dot). Since the duplication node is the LCA of three leaves, this quartet is a
non-SQ that does not count toward the per-Locus (PL) quartet score. Note u is the anchor LCA of both scas1, sbay1 j smik1, scer1 and scas2, sbay1 j
smik1, scer1; thus, they form the equivalence class scas*, sbay1 j smik1, scer1. In this example, there are ten equivalence classes of SQ quartets, eight
of which match the species tree; thus, the PL quartet similarity is 8. The goal of ASTRAL-Pro is to find the species tree that maximizes this score
summed over all input trees.
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akin to increasing the number of loci. Despite statistically
significant increases (p¼ 0.006) in error as k� increases,
both methods are quite robust to loss rates, losing at most
1.5% accuracy on average when k� ¼ kþ compared with no

losses. MulRF has much higher error than other two methods,
with errors that range between 10% and 17% across model
conditions (we remind the reader that all these conditions
exhibit high ILS, a process that MulRF ignores).

On estimated gene trees, the pattern changes, and the
error of DupTree increases dramatically, whereas A-Pro
remains relatively accurate. When kþ ¼ k� ¼ 0, DupTree
has on average an 11.5% error, whereas A-Pro has only a
4.5% error for 500 bp. Adding duplications helps both meth-
ods, but A-Pro remains more accurate. For example, with 100-
bp input gene trees (i.e., high estimation error), DupTree has
errors between 50% and 260% higher than A-Pro. With 500-
bp input (i.e., low-error gene trees), differences are statistically
significant (p < 10�5) but are more modest in magnitude
(across conditions, DupTree has a median of 28% higher er-
ror). The relative accuracy of A-Pro and DupTree is not a
function of k� (p¼ 0.8) but may depend on kþ (p¼ 0.05).

In terms of running time, on the default model condition,
we observe that A-Pro is the fastest method, taking less than a
minute on this data set, followed closely by DupTree (sup-
plementary fig. S8, Supplementary Material online).

Controlling the Level of ILS. As we change the ILS level (ta-
ble 1), the reason for the poor performance of MulRF
becomes clear (fig. 2b). Without ILS, MulRF has excellent ac-
curacy, often matching A-Pro and beating DupTree on low-
error gene trees. As the ILS level increases (especially above
20%), the accuracy of MulRF deteriorates quickly. Overall, ILS

Table 1. Simulation Settings for S25 Data Set with Varying
Parameters.

Condition Parameter Ranges

Default model n 5 25; k 5 1,000; s � LNð21:25; 0:2Þ
kþ ¼ 4:9310�10; k� ¼ kþ; Ne ¼ 4:73108

C � 5; ILS � 70%
MGTE 5 15% (500 bp) or 36% (100 bp)

Varying kþ; k�
(DupLoss rate)

kþ‰f4:9; 2:7; 1:9; 0:52; 0g310�10

k�‰f1; 0:5; 0:1; 0g3kþ; C � f5; 2; 1; 0:2; 0g
Varying kþ;Ne

(dup rate, ILS)
kþ‰f4:9; 1:9; 0g310�10;
Ne‰f4:7; 1:9; 0:48; 0:0001g3108

ILS �f70; 52; 20; 0g%; C � f5; 1; 0g
MGTE �f15; 15; 15; 16g% (500 bp) or
f36; 36; 36; 35g% (100 bp) as Ne changes

Varying n n‰f10; 25; 100; 250; 500g
MGTE �f15; 15; 17; 18; 18g% (500 bp)
or f34; 36; 40; 43; 43g% (100 bp)

Varying k k‰f25; 100; 250; 1; 000; 2; 500; 10; 000g

NOTE.—See supplementary table S1, Supplementary Material online, for full param-
eters and supplementary figures S1–S6, Supplementary Material online, for full
statistics. n, number of ingroup species; k, number of genes; s, tree height in gen-
erations; kþ , duplication rate; k� , loss rate; Ne, haploid effective population size. We
estimated the following empirically. C, mean number of copies per species minus
one when k� ¼ 0 and n¼ 25; ILS, mean RF distance between true gene trees and
the species tree when kþ ¼ 0; MGTE, mean RF distance between true and esti-
mated gene tree when kþ ¼ 0.

(a) (b)

FIG. 2. Species tree error on the S25 data set for n¼ 25 ingroup species, k¼ 1,000 gene trees, and both true and estimated gene trees from 100 and
500 bp alignments. (a) Controlling duplication rate (box columns; labeled by C) and the loss rate (x-axis; ratio of the loss rate to duplication rate).
(b) Controlling the duplication rate (columns; labeled by C) and the ILS level (x-axis; NRF between true gene trees and the species tree for kþ ¼ 0).
A-Pro and ASTRAL-multi are identical with kþ ¼ 0. See table 1 for parameters and supplementary figure S7, Supplementary Material online, for
iGTP-DupLoss.
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has the strongest effect on accuracy (p� 10�5) but its im-
pact on methods varies (p� 10�5). DupTree seems as tol-
erant of ILS as A-Pro, despite the fact that DupTree is not
designed specifically for ILS, and both methods are much
more tolerant of ILS than MulRF. Nevertheless, once again,
DupTree shows extreme sensitivity to gene tree error.

To summarize, DupTree is relatively tolerant of ILS but less
tolerant of gene tree error; MulRF is tolerant of gene tree error
but not of ILS; A-Pro is quite robust to both.

Controlling the Number of Genes and Species. Increasing the
number of genes k in the most difficult model condition (i.e.,
high kþ; k�, and ILS) results in continued improvement in
accuracy for A-Pro for every value we tested up to k ¼ 104

(fig. 3a). With true gene trees, the error reduces from 26%
with k¼ 25 to below 1% with k ¼ 104. Even with less accu-
rate gene trees, the error reduces to below 2% with increased
numbers of genes. Increasing k increases running time, which
empirically grows proportionally with k1:4 (supplementary fig.
S9a, Supplementary Material online). Nevertheless, using 28
cores, the running time was never more than 3.5 min even
with k ¼ 104.

Increasing n from 25 to 500 shows that A-Pro is relatively
robust to a large number of species (fig. 3b). With true gene
trees, the error ranges between 2.5% with 10 species and 3.5%
with 500 species. With estimated gene trees, error ranges
between 4.1% and 9.5% (for 100 bp) and between 2% and
5% (for 500 bp). Note that as n increases, the gene tree error
also increases (table 1 and supplementary fig. S6,
Supplementary Material online). The running time of A-Pro
increases roughly quadratically with n (supplementary fig.
S9b, Supplementary Material online) but is below 2 h (given
28 cores) even for n¼ 500 (k¼ 1,000).

S100 Data Set
Patterns of performance on the S100 data set are consistent
with the S25 data set (fig. 4). DupTree is highly accurate with
true gene trees and gene trees with low estimation error but
quickly degrades in accuracy as gene tree error increases.
MulRF is less sensitive to gene tree error but is more sensitive
to the ILS level (which is always moderate or low on this data
set). As in S25, here, we see that using ASTRAL-multi to
handle duplication and loss is not beneficial.

A-Pro works the best overall, ranking first in terms of mean
error (rounded to two significant digits) in 105 out of 120 test
conditions and ranking second in 14 of the 15 remaining cases
(supplementary table S2, Supplementary Material online).
Many of the conditions where A-Pro is ranked second are
among those with true gene trees where DupTree works
great. The second best method overall is MulRF, which is
not surprising given the low ILS levels in this data set. As
expected, all methods are helped with increased numbers
of genes; however, even with 500 genes, differences in accu-
racy remain, especially with shorter gene sequences.

Accuracy on Biological Data Sets
Plant (1KP) Data Set
We reanalyze the transcriptome data set of 103 plant species,
which was previously analyzed by Wickett et al. (2014) using
424 single-copy gene trees using ASTRAL. The original study
had also inferred 9,683 multicopy gene trees with up to 2,395
leaves for 80 of the 103 species and three other genomes (a
total of 83). However, due to a lack of suitable species tree
methods, these gene trees were left unused (Materials and
Methods). Here, we analyze all 9,683 multicopy gene trees
using A-Pro.

A-Pro on multicopy gene trees returns a species tree
(fig. 5a) similar to the single-copy ASTRAL tree reported by
the original study but with five differences. In contrast,
DupTree differs from the ASTRAL tree in 33 out of 77
branches (21/77 for iGTP-DupLoss) and violates many known
biological relationships (supplementary fig. S10,
Supplementary Material online). A-Pro has higher localPP
than ASTRAL (e.g., four vs. eight branches with localPP below
0.95). The A-Pro tree is consistent with ASTRAL for major
groups, including placing Zygnematales (not Chara) as sister
to all land plants, the placement of Amborella as sister to the
rest of angiosperms, and the monophyly of Bryophytes (liver-
worts, mosses, and hornworts). Some of these consistencies

●

●
●

●

●

●
●

●
●

●
●

●
●
●
● ●

●●1%

2%

5%

10%

25%

0.1 1.0
Running time (minutes)

Sp
ec

ie
s 

tre
e 

er
ro

r (
N

R
F)

Gene trees
●

●

●

100 bp

500 bp

true gt

k
●

●

●

●

●

●

25

100

250

1,000

2,500

10,000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2%

5%

10%

1 100
Running time (minutes)

Sp
ec

ie
s 

tre
e 

er
ro

r (
N

R
F)

Gene trees
●

●

●

100 bp

500 bp

true gt

n
●

●

●

●
●

10

25

100

250

500

(a)

(b)
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axes are in log-scale. As k increases, accuracy increases (see also sup-
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with ASTRAL (e.g., monophyly of Bryophytes) are in contrast
to the concatenation analyses of single-copy genes, as
reported by Wickett et al. (2014).

Changes between the ASTRAL and A-Pro trees mostly
have low support. In A-Pro, unlike ASTRAL, Rosmarinus
and Ipomoea are grouped together (albeit, with 0.6 localPP
support), which is likely the correct result as these species are
in the same order (Lamiales). The ASTRAL tree has only 0.75
localPP for dividing this order. The position of genus Yucca
has low support in the ASTRAL tree and has changed in the
A-Pro tree. Interestingly, a recent update to this transcrip-
tome analysis using 1,124 species (Leebens-Mack et al. 2019)
(which samples close genera Asparagales and Liliales) finds
Yucca in a position identical to A-Pro. Another change is the
relative position of Coleochaetale and Chara which has low
localPP in both trees. Most consequentially, the main highly
supported change is that A-Pro, unlike ASTRAL, recovers the
GnePine hypothesis (i.e., combining Gnetales and Pinaceae)
with 1.0 localPP. This hypothesis is supported by several stud-
ies (Burleigh and Mathews 2004; Zhong et al. 2010, 2011;

Laurin-Lemay et al. 2012) and all concatenation analyses
from Wickett et al. (2014). Examining quartet frequencies
for single-copy gene trees around this branch, we see that
the second and third most frequent quartets do not match
(fig. 5a) and are skewed toward GnePine; this pattern is not
consistent with ILS as the main source of discordance, and
may suggest other processes such as hybridization. However,
multicopy gene trees also show a similar pattern, with sup-
port for GnePine and Gnetifer swapped.

Fungal Data Set
We reanalyze a data set of 16 yeast species with 7,280 multi-
copy gene families available from Butler et al. (2009). To ob-
tain the species tree, the original study used only 706 one-to-
one orthologs with concatenation and did not use multicopy
gene trees in species tree inference (Materials and Methods).
We used all amino acid multicopy gene families as input to A-
Pro.

The A-Pro species tree has 1.0 localPP everywhere and
matches the published species tree except for one branch
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FIG. 4. Species tree error on S100 data set. We compare the species tree error of the four methods, showing mean and standard error over ten
replicates for each model condition, with varying numbers of genes (k) and sequence lengths (with Inf signifying true gene trees). Model conditions
are labeled as a/b where a is the level of ILS (1 or 5) and b is the duplication/loss rate (1, 2, or 5).

ASTRAL-Pro . doi:10.1093/molbev/msaa139 MBE

3297



(fig. 5b). The position of Saccharomyces castellii as sister to
Candida glabrata and the Saccharomyces group in the orig-
inal study was enforced by a constraint in the ML search
because the unconstrained analyses did not recover the rela-
tionship the authors expected. This enforced constraint was
justified based on genome rearrangement and syntenic con-
servation, but was not recovered in the concatenation anal-
yses. In the A-Pro tree, Candida glabrata is at the base of this
clade, matching the unconstrained concatenation analysis.
Salichos and Rokas (2013) also recovered the same topology
as A-Pro and used this branch as an example of relationships
that challenge phylogenomics. Although gene synteny evi-
dence suggests that A-Pro may be finding the wrong resolu-
tion, it is worth highlighting that it matches trees inferred
using substitution models.

Discussions
We introduced A-Pro, a summary method for combining
multicopy gene trees. By allowing the use of multicopy
gene trees, A-Pro enables a manyfold increase in the number

of genes used in phylogenomic analyses. Note that neither
concatenation nor ASTRAL (the dominant methods used by
practitioners) is able to use multicopy genes. The main set of
methods available for multicopy analyses are the coestima-
tion methods (e.g., Szöllosi et al. 2012; Boussau et al. 2013;
Szöll}osi et al. 2013). However, these methods, although accu-
rate, are inherently less scalable than summary methods. A-
Pro provides a scalable yet accurate alternative to these coes-
timation methods.

As an example for testing the advantage of using all multi-
copy gene trees, we revisit the simulated S25 data set with k
¼ 104 multicopy gene trees. Among the 104 gene trees, we
have between 200 and 900 single-copy gene trees across our
50 replicates (the variation is due to stochastic differences).
An alternative to using ASTRAL-Pro is to use normal ASTRAL
on single-copy gene trees. Comparing ASTRAL on single-copy
gene trees and ASTRAL-Pro on all 104 multicopy gene trees
shows a great loss of accuracy as a result of the filtering (fig. 6).
Our simple filtering strategy, keeping all single-copy gene
trees, does not consider orthology but is not dramatically

(a)

(b)

FIG. 5. Biological data set. (a) Plant data set (1kp). Right: ASTRAL on 424 single-copy gene trees. Left: ASTRAL-Pro on 9,683 multicopy gene trees.
Three genomes (noted by * and dashed lines) were present in multicopy data set but not in the single-copy data. The single-copy tree includes 23
species that were not in the multicopy data and are pruned from the species tree (localPP support is recomputed using gene trees pruned to the 80
common species). Five branches (red) differ between the two trees. LocalPP support shown except when equal to 1. For the main highly supported
conflict (Gnetifer vs. Gnepine), we show quartet support of alternative topologies among single-copy gene trees using DiscoVista (Sayyari et al.
2018). (b) Fungi data set. Right: Concatenation of 706 single-copy gene trees with the red branch enforced as a constraint (Butler et al. 2009). Left:
ASTRAL-Pro on 7,280 multicopy gene trees.
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different from the approach used by many (e.g., Leebens-
Mack et al. 2019; Wickett et al. 2014). Despite the potential
for paralogy in single-copy genes, the example shows the
negative impact of gene filtering. This observation is consis-
tent with prior results that have established a close link be-
tween the accuracy of summary methods and the number of
input genes both in practice (for an overview, see Mirarab
2019) and in theory (Shekhar et al. 2018).

A-Pro is based on a per-locus quartet-based measure of
similarity between multicopy gene trees and a species tree.
The measure relies on internal nodes of gene trees being
tagged as speciation or duplication. Somewhat counterintu-
itively, despite being a quartet measure, it needs partially
rooted trees (Claim 1). The measure defines an equivalence
relationship on quartets and counts each equivalence class
only once, avoiding double-counting quartets that are bound
to have identical topologies. Avoiding double-counting is at
the heart of the approach and likely is a main reason behind
its high accuracy on the simulated and empirical data we
tested.

Quartet-based methods for handling multicopy gene trees
are not abundant. Besides our method, one can attempt to
sample single-copy gene trees, an approach that shows prom-
ise but fails to model orthology/paralogy (Du et al. 2019).
Legried et al. (2020) recently provided theoretical and empir-
ical evidence that simply treating gene copies as alleles may be
sufficient. We showed that this alternative, although attrac-
tive in theory, is less accurate and less scalable than A-Pro. We
are unaware of other quartet-based species-tree inference
methods for multicopy input. Nevertheless, our approach is
not the only one that can be imagined and future work
should explore other quartet metrics.

To get rooted and tagged gene trees, we used the maxi-
mum parsimony principle, with duplication and loss each
penalized equally and deep coalescence not penalized at all
(methods). The algorithm we use is not guaranteed to find
the correct tags or the root under complex scenarios involv-
ing gene duplication and subsequent losses. Thus, the

consistency results under the GDL model should be inter-
preted with this caveat in mind. A-Pro may be statistically
consistent even when gene trees are imperfectly rooted and
tagged, but we leave this to be determined in future work.
Furthermore, there is a large literature on various ways of
tagging and rooting gene trees (e.g., Durand et al. 2006;
Bansal et al. 2013; Jacox et al. 2016), including other penalties
for the duplication and loss events (e.g., there is a suggestion
of losses having half the penalty of duplications [David and
Alm 2011]). It may also be possible to improve tagging of gene
trees using probabilistic orthology inference (Arvestad et al.
2004; Sennblad and Lagergren 2009) or using synteny infor-
mation (Bourque et al. 2005; Chauve et al. 2013). However,
these methods often require a species tree. It may be possible
to use A-pro in an iterative fashion, where the species tree is
inferred, gene trees are retagged and rerooted, and a new
species tree is inferred. Future work should explore these
approaches.

A-Pro, like other summary methods, depends on accurate
input trees. Although A-Pro is more robust to gene tree error
than alternatives, combining it with coestimation (Boussau
et al. 2013) or gene tree correction (Lafond et al. 2013, 2014;
Wu et al. 2013; Scornavacca et al. 2015; Noutahi et al. 2016; El-
Mabrouk and Noutahi 2019) may further improve its accu-
racy. Future work should also explore extending A-Pro to
multifurcating input gene trees because contracting low sup-
port branches may help dealing with gene tree error (Zhang
et al. 2018).

ASTRAL-Pro, which maximizes the per-locus quartet score,
is statistically consistent under the MSC model (when given
single-copy gene trees as input) and under a GDL model
(when given multicopy gene trees as input). This makes
one hope that it may also be consistent under both causes
of discordance combined. The DLCoal model (Rasmussen
and Kellis 2012) accounts for ILS, duplication, and loss.
Under this model, each duplication immediately creates a
daughter locus, which is unlinked from the parent locus;
the duplication event gets fixed in all species. Gene trees
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are seen as generated by first producing a locus tree via a
birth–death process that runs on the species tree and then
running an MSC process on the locus tree. Because the loci
are considered as unlinked, the coalescence processes occur
independently between the parent and daughter loci (but the
daughter MSC process is “bounded” at the time of duplica-
tion). Interestingly, a new paper has suggested that simply
selecting one copy of each gene at random and feeding the
resulting gene trees to ASTRAL would be consistent under
the DLCoal model (Markin and Eulenstein 2020). Due to the
independence of loci, dividing a multicopy gene family into its
constituent loci can give us distributions on gene tree topol-
ogies that behave similarly (though not identically) to the
MSC model. The per-locus metric seeks to count quartet
topologies across loci as they existed at the time of speciation
events relevant to a quartet (i.e., at the time of the anchor
LCA). When successful, it counts only topologies that are
drawn from independent coalescent processes. However,
complicated scenarios involving a combination of duplica-
tions, losses and ILS can lead to incorrectly tagged gene trees.
These scenarios create complications for theoretical proofs.
Although our simulations were performed under the DLCoal
model, we leave it to the future to study whether ASTRAL-
Pro is statistically consistent under the DLCoal model.

Our simulations, which all followed the DLCoal model, do
not consider some relevant biological scenarios. Examples
include whole-genome duplication events, interlocus gene
conversion, and hemiplasy of duplication and loss events
(Li et al. 2020). Since ASTRAL-Pro is nonparametric (i.e.,
does not assume rates of duplication), we predict that
whole-genome duplication events do not impose a major
obstacle. The impact of interlocus gene conversion is much
harder to predict and needs careful testing. Future work
should study ASTRAL-Pro under these more complex scenar-
ios of duplication and loss.

Materials and Methods

The Algorithm
Proofs of all propositions, lemmas, and claims can be found in
supplementary Proofs, Supplementary Material online.

Notations and Definitions
Let S be a set of n species. Let us suppose that we are given a
set of binary gene trees G, and, for each tree G 2 G with leaf
set qG ¼ f1 . . . mGg, we have a mapping aG : qG ! S
specifying in which species each gene is sampled. For a rooted
tree G, we denote the set of internal nodes in G by I(G), and,
for each u 2 IðGÞ, we define qGðuÞ as the set of leaves below
u. We define two short-hands: aGðAÞ ¼ faGðiÞ : i 2 Ag for
A � qG and aGðuÞ ¼ aGðqGðuÞÞ for a node u (i.e., all species
labels corresponding to a set A of gene tree leaves and all
species labels under a gene tree node u, respectively). The
notation G„A denotes G restricted to the set A.

We let XðGÞ be the multilabeled tree obtained by replac-
ing each leaf l 2 qG with aGðlÞ. Multiple copies of the same
species in a gene tree G may be created by gene duplication.
Note that we ignore other processes such as transfers, gene
conversion, and hybridizations. We assume that each dupli-
cation creates a new genomic locus (i.e., a position along the
genome) and therefore, each locus, except the original one,
has a parent locus (which may or may not have survived to
the present day). Thus, each element of qG can be theoret-
ically mapped to its parent locus, allowing us to “trace” the
locus of each leaf to its ancestors.

In each gene tree G, we refer to a subset Q of four
distinct elements of qG as a quartet. The subtree of a fully
resolved tree G restricted to a quartet Q exhibits two
degree-three nodes. We refer to these nodes as anchors
of Q on G. As shown in figure 7, for a rooted tree G and for
a quartet Q, up to label permutations, G„Q can only have
two topologies: an unbalanced one (when one anchor
descends from the other), denoted as Q / G, and a bal-
anced one (otherwise), denoted as Q?G. We say a tripar-
tition ðP1; P2; P3Þ of S “can anchor” a quartet Q of G iff
8i : Pi \ aGðQÞ 6¼1.

Definition 1 (Tagged trees). We say that a rooted tree G
is tagged if every internal node is tagged either as dupli-
cation or as speciation. A node u with children u1 and u2

can be tagged as speciation only if the sets aGðu1Þ and
aGðu2Þ are mutually exclusive.

We note that these labels may or may not correspond
to real speciation and duplication events. In particular,
when loci coalesce before duplication events, a correct

/

21

1 2

1 1 1 2 2 2 1 3 3

Speciation Speciation or DuplicationDuplication

1.(a) (b) 2.

FIG. 7. (1) An example of a quartet Q ¼ fa; b; c; dgwith (a) unbalanced topology (Q / G) and (b) balanced topology (Q?G). Anchors are u and v,
and w is the anchor LCA. Although w has to be a speciation for Q to be considered a SQ, u and v (when different from w) can be either speciation or
duplication. (2) An example of equivalence classes. Three equivalence classes are anchored on z: all eight quartets of the form fai; bj; dk; e3g, of the
form fai; cj; dk; e3g, and of the form fbi; cj; dk; e3g, all with balanced topology. Anchored on x: two equivalence classes with unbalanced topology:
fa1; b1; c1; d1g � fa1; b1; c1; d3g and fa1; b1; c1; e3g. Anchored on y: two equivalence classes: fa2; b2; c2; d1g � fa2; b2; c2; d3g and
fa2; b2; c2; e3g.
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tagging corresponding to actual events may not be
possible.

Per-Locus Quartet Score

Definition 2 (SQ). A quartet Q on a rooted tagged gene
tree G is called a SQ iff jaGðQÞj ¼ 4 and the LCA of any
three out of four leaves of Q is a speciation node.
Equivalently, a quartet with topology abjcd is a SQ if
and only if its genes are all contained in different species
and the LCA of either a or b with either c or d is tagged
as speciation. Let RG denote the set of SQs in G.

Definition 3 (Quartet anchor LCA). Let u and v be
anchors of a quartet Q on a rooted tree G. We refer to
the LCA of u and v as the anchor LCA of Q on G and
denote it as wGðQÞ.

The last definition is central to our approach. Note
that anchors of a SQ can be speciations or duplications
(fig. 7) and thus SQs are not simply quartets with
anchors being speciation nodes. Instead, they are quar-
tets with a topology predetermined by the speciation
event represented by the anchor LCA, regardless of sub-
sequent duplications and losses. Such subsequent dupli-
cations and losses may lead to multiple quartets being
associated with the same speciation event. Since these
events include no new information on the speciation
event, we count only SQs toward the quartet score of
a species tree and weight them in a nontrivial way to
avoid double-counting.

Definition 4 (Equivalent SQs). Two SQs on the same four
species are equivalent if they have the same anchor LCA;
that is, for two SQs, Q1 � Q2 () aGðQ1Þ ¼ aGðQ2Þ ^ w
GðQ1Þ ¼ wGðQ2Þ.

PROPOSITION 1. If Q1 and Q2 are equivalent SQs on G, then
XðG„Q1Þ and XðG„Q2Þ are isomorphic.

Thus, equivalent SQs have the same quartet topology
when mapped to species. Proposition 1 tells us that
equivalent SQs do not provide any extra information
on the speciation event, and therefore, it is reasonable
to count all equivalent SQs as one unit when computing
the quartet score of a species tree. This intuition is
backed by the following proposition:

PROPOSITION 2. Assuming a correctly rooted tagged tree G,
for all equivalent SQs with a shared anchor LCA w, the
three (in the unbalanced case) or four (in the balanced
case) quartet leaves below w will all share an ancestral
locus at the time of the speciation event corresponding
to w.

We can now provide a natural definition of the quar-
tet score. The equivalence relation (Definition 4) parti-
tions all quartets in equivalence classes and, by
Proposition 1, for each equivalence class, we can define
a unique quartet tree labeled by S. By Proposition 2,
each class corresponds to an ancestral locus. We can

denote each equivalence class in G as a pair, consisting
of the set of species and the anchor node
ðaGðQÞ;wGðQÞÞ.

Definition 5 (Per-locus Quartet Score). The per-locus
quartet score of a species tree S with respect to a rooted
tagged gene tree G is the number of equivalent quartet
classes that match the S topology. More formally, qðS;GÞ
is defined as:

jfðaGðQÞ;wGðQÞÞ : Q 2 RG;XðG„QÞ ’ S„aGðQÞgj :

The PL quartet score of S with respect to a set of
tagged gene trees G is qðS;GÞ ¼ RG‰G qðS;GÞ :

Note that this definition gracefully handles missing
data; gene family trees that do not include a specific
species will not contribute quartets that include that
species.

Definition 6 (MLQST problem). Given a set of rooted
tagged gene trees G, find the species tree that maximizes
the PL quartet score with respected to input gene trees,
that is, argmaxSqðS;GÞ.

Finally, note that although the PL quartet score
depends on rooting and tagging, it is robust to some
changes in the root placement; thus, the tree needs to
be only partially rooted.

CLAIM 1. If all nodes on the path between the root r and
a node u are tagged as speciations, changing the root to
any branch on the path does not alter the PL quartet
score.

Solving the MLQST Problem
We start by briefly describing the ASTRAL algorithm to solve
a related problem (the Maximum Quartet Support Species
Tree [MQSST] problem), and then describe how we extend
this approach to the MLQST problem.

Background: ASTRAL on Single-Copy Gene Trees
Note that, a node in a binary single-copy unrooted species
tree forms a tripartition of S that implies the topology for all
quartets anchored at that node, and this observation is at the
base of the scoring scheme of ASTRAL. More formally, let P
¼ P1jP2jP3 and M ¼ M1jM2jM3 be two tripartitions, and let
Iij ¼ jMi \ Pjj. Any species tree that displays P will share a
certain number of quartets with any gene tree that displays
M, and we call this number QI(P, M) (calculations below
extends to multifurcations if M is a d-partition). Defining B3

as the set of all permutations of f1, 2, 3g, Mirarab et al. (2014)
showed:
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WðPÞ ¼ 1

2

X
G2G

X
M2PðGÞ

QIðP;MÞ where

QIðP;MÞ ¼ 1

2

X
ði;j;kÞ2B3

Ii1Ij2Ik3ðIi1 þ Ij2 þ Ik3 � 3Þ
(1)

and PðGÞ is the set of partitions representing internal nodes
of G. The quartet score of a species tree is simply the sum of
the weights of its tripartitions. The division by half in W(P) is
necessary because the sum counts each shared quartet twice
(once at each anchor).

ASTRAL finds the tree S that maximizes the quartet score
using dynamic programing. It recursively divides S into sub-
sets, in each step, choosing the division that maximizes the
sum of the weights. To avoid exponential running time, in-
stead of considering all ways of partitioning a set A � S into
A0 and A n A0, it constrains the search space to a given set of
bipartitions. Let X be this set and X0 ¼ fA : AjðS n AÞ 2 Xg
and Y ¼ fðC;DÞ : C 2 X0;D 2 X0; C \ D ¼1; C [ D 2
X0g. The quartet score of an optimal subtree on the cluster
A, denoted as V(A), is

VðAÞ ¼ maxðA0;AnA0Þ2Y VðA0Þ þ VðA n A0Þ
þWðA0jðA n A0ÞjðS n AÞÞ; (2)

where VðfagÞ ¼ 0 for all leaves a 2 S. This value can be
computed recursively, and the optimal tree for VðSÞ is the
ASTRAL tree.

ASTRAL-Pro Algorithm
We extend here ASTRAL to multicopy gene trees. The input
to the new method, called ASTRAL-Pro, is a set of rooted
tagged gene trees. This extension involves three changes in
the way the weight w is computed: 1) To handle multicopy
gene trees, when computing the tripartition associated with
each node, we use aG to map labels to S. Note that, in a
tripartition M ¼ M1jM2jM3, the Mi are sets and not multisets
so multiple copies of the same species are considered only
once. 2) We change the weight calculation W(P) so that each
equivalence class of quartets is counted once instead of twice
(only at its LCA anchor). 3) When computing w, we only sum
over internal nodes tagged as speciations. In addition, two
changes to the algorithm procedure are needed: we need to
root and tag gene trees and properly define the set X for
multicopy trees. We now detail these changes.

Weight Calculation. Let G be a rooted tagged gene tree, w an
internal node of G tagged as speciation and P ¼ ðP1jP2jP3Þ a
tripartition of S.

Definition 7. For a species tree tripartition P and a SQ
equivalence class that has the LCA anchor w in a gene
tree G, we say that the SQ is mapped from left to P iff for
each quartet Q in the equivalence class 1) P can anchor
Q and 2) the leaves a and b under the anchor of Q that
appear first in a postorder traversal of G (e.g., u in fig. 7)
both map to the same side of P (i.e., aGðaÞ‰Pi; aGðbÞ‰Pi

for some 1 £ i £ 3).
We denote such quartets by Qfi

w
P.

We now state a set of lemmas, followed by the main
result.

LEMMA 1. If Q1 � Q2 and Q1fi
w

P, then Q2fi
w

P.

LEMMA 2. For a speciation node w with left child w1 and
right child w2, let M1 ¼ aGðw1Þ; M2 ¼ aGðw2Þ and M3 ¼
faGðzÞ : z‰qG n qGðwÞ; LCA of w and z is tagged as
speciationg. Let Mw ¼ ðM1jM2jM3Þ. Recall Iij ¼ jMi \ Pjj.
The number of SQ quartet equivalence classes anchored to
w and mapped from left to the species partition P can be
counted as follows:

QIproðP;MwÞ ¼ jfaGðQÞ : Q � qG;Q!
w

Pgj ¼X
ði;j;kÞ2B3;j< k

I1i

2

� �
I2jI2k þ

X
ði;j;kÞ2B3

I1iI2jI3kðI1i þ I2j � 2Þ
2

: (3)

LEMMA 3. If XðG„QÞ ’ S„aGðQÞ, there exists a unique P‰

PðSÞ satisfying QfiwGðQÞP.

LEMMA 4. Let 1speciationðwÞ be 1 for speciation nodes and 0
for duplication nodes and let

wproðPÞ ¼
X
G2G

X
w2IðGÞ

QIproðP;MwÞ � 1speciationðwÞ :

Then: qðS;GÞ ¼ P‰PðSÞ wproðPÞ :

THEOREM 1. The ASTRAL-Pro algorithm obtained by replac-
ing W(P) function with wproðPÞ in the ASTRAL dynamic
programing solves the MLQST problem exactly if X ¼ 2S .

PROOF. By Lemma 4, argmaxS qðS;GÞ ¼ argmaxS P‰PðSÞ
wproðPÞ. Thus, ASTRAL dynamic programing can solve
the optimization problem exactly given the full search
space (the argument is identical to that of ASTRAL and
follows from the additive nature of qðS;GÞ). h

We now make two claims and provide a sketch of proofs in
supplementary appendix proofs, Supplementary Material on-
line. Note that by Claim 3, ASTRAL-Pro has polynomial run-
ning time.

CLAIM 2. For a set of gene trees G including only speciations, the
tree returned by ASTRAL-Pro is the same as the one returned
by ASTRAL.

CLAIM3. The asymptotic running time of ASTRAL-Pro is OðDjX
j1:73Þ ¼ OðDðnNÞ1:73Þ where N ¼

P
G2G jqGj and D denotes

the number of unique gene tree tripartitions tagged as
speciations.

Tagging and Rooting Gene Trees
Gene trees inferred from sequence data are neither rooted
nor tagged. We use the heuristics presented in Algorithm 1 to
root and tag gene trees, noting that a partially correct rooting
suffices (Claim 1). Given a rooted tree, we tag a node as
duplication only if the node cannot be tagged as speciation
by Definition 1 (similar to observable duplication nodes
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defined by Scornavacca et al. [2011]); other nodes are as-
sumed to be speciation.

For rooting, we seek the root position that minimizes the
number of duplications and losses while allowing for “free”
ILS. In more details, in each gene tree G, for two nodes u and v
where aGðuÞ ¼ aGðvÞ, we explain all differences in topologies
below u and v by invoking ILS (as opposed to duplication/
loss). Then, three scenarios are possible for a node u with
children ul and ur. 1) When u is duplication and
aGðulÞ ¼ aGðulÞ, we do not need to invoke any loss. One
duplication suffices. 2) If aGðulÞ � aGðurÞ or vice versa, we
need one loss on ul and an arbitrary amount of ILS. 3) Else, we
need two losses (one in each side) and ILS to describe the
differences. Algorithm 1 computes the number of duplication
and loss events using this strategy, without penalizing ILS and
fixing a cost of one for both duplications and losses. As de-
scribed, it requires quadratic time per rooting and thus cubic
time to find an optimal rooting. In our implementation, we
used memoization to reduce this time to quadratic (details
omitted). The LCA-based linear algorithm of Scornavacca
et al. (2011) could also be adapted.

Search Space
We need to constrain the ASTRAL search space to biparti-
tions in a set X. To define X, we use a heuristic method relying
on several strategies (see Algorithm 2 and Supplementary
Material online). First, we use a sampling algorithm
(SampleFull procedure) to create single-copy versions of
each gene tree, creating a set F . This sampling algorithm
prunes the right (or left) subtrees below the highest duplica-
tion nodes in the tree, and recurses on each pruned tree, until
no species has multiple copies. In addition, per each gene, 2C

(default: C¼ 4) single-copy trees are sampled from F , creat-
ing a multiset I . This sampling can be probabilistic (taking
each side of a duplication with probability 1/2) for high num-
bers of duplications. When the number of input trees is small,
I may become too small; in these cases, I is augmented
using another sampling algorithm (SampleExtra procedure).
We provide I as input to the algorithms implemented in
ASTRAL-III for building the set X. Finally, we complete all trees
from F using the tree completion algorithm of ASTRAL-III
and add the resulting bipartitions to X. All methods used
guarantee that jXj grows polynomially with the number of
species, gene trees, and duplication nodes.

Implementation
We implemented Algorithms 1 and 2 as part of a native Cþþ
library called from Java. We based on code on the ASTRAL-
MP (Yin et al. 2019) code. The code is available for all plat-
forms, and can exploit multithreading. A-Pro is available at
https://github.com/chaoszhang/A-pro.

Statistical Consistency
When the input set G has only speciation nodes, the MLQST
problem reduces to the MQSST problem solved by ASTRAL
(Mirarab et al. 2014). Thus, like the MQSST, the MLQST is NP-
hard (Lafond and Scornavacca 2019). Moreover, the solution
to the MQSST problem is a statistically consistent estimator
of the species tree under the MSC model and thus ASTRAL-
Pro is also statistically consistent in absence of duplication.

In the presence of gene duplication and losses only, let us
consider the birth–death model proposed by Arvestad et al.
(2009) and refer to it as the GDL model.

PROPOSITION 3. Under the GDL model, every SQ in every
correctly tagged rooted gene tree is isomorphic in topology
to the species tree.

Since all quartets in every equivalence class of SQs
match the species tree, the per-locus quartet score will
be maximized by the species tree. The following theorem
follows.

THEOREM 2. Under the GDL model (Arvestad et al. 2009),
the solution to the MLQST problem is a statistically con-
sistent estimator of the species tree for correctly rooted
and tagged gene trees.

In fact, we suspect that ASTRAL-Pro is statistically consis-
tent under the GDL model even when gene trees are imper-
fectly rooted and tagged. We leave the proof to future work.

Algorithm 1 Gene tree tagging and
rooting.

procedure TAGANDROOT(G)
s 1
for edge e in G do

root G at e and let re be the new root
se  TAG(re)
if se < s then

r re

s se

root at r
TAG(r)

procedure TAG(u)
if u is a leaf then

scoreðuÞ  0
else

ul; ur  children of u
scoreðuÞ  TAG(ur) þ TAG(ul)
if aGðulÞ \ aGðurÞ ¼1 then

tag u as Speciation
else

tag u as Duplication
if aGðulÞ ¼ aGðuÞ _ aGðurÞ ¼ aG

ðuÞ then
if aGðulÞ ¼ aGðurÞ then

scoreðuÞ  scoreðuÞ þ 1
else

scoreðuÞ  scoreðuÞ þ 2
else

scoreðuÞ  scoreðuÞ þ 3
return score(u)
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Finally, note that restricting to X does not impact statistical
consistency, as each bipartition of the species tree has a non-
zero chance of appearing in output of this algorithm.

Adopting Local Posterior Probability for A-Pro
By Proposition 3, assuming no error in the input gene trees or
their tagging, differences between topologies of SQs and the
species tree are due to processes other than GDL. The main
such process is ILS. Thus, we can adopt the same quartet-
based metric used for measuring support of ASTRAL trees for
A-Pro trees.

For each quadripartition AjBjCjD of qS, representing an
internal branch in the species tree, we define z1, which is the
quartet count of the topology ðA [ BÞjðC [ DÞ, asP

G2G
P

a2A;b2B;c2C;d2D jfwGðQÞ : aGðQÞ ¼ abjcd;Q 2 RGgj
jAjjBjjCjjDj :

The quartet counts for ðA [ CÞjðB [ DÞ and ðA [ DÞjðB
[CÞ are similarly defined and are denoted by z2 and z3. We
use these counts as input the localPP calculation (Sayyari and
Mirarab 2016b). Thus,

Definition 8 . The localPP support of a branch with
counts z1 . . . z3 is defined as

hðz1Þ
hðz1Þ þ 2z2�z1 hðz2Þ þ 2z3�z1 hðz3Þ

;

where hðxÞ ¼ Bðxþ 1; k0 � xþ 2kÞð1� I1
3
ðxþ 1; k0 � x

þ 2kÞÞ, B is the beta function, Ix is the regularized in-
complete beta function, k is the Yule prior parameter,
set by default to 1/2, and k0 ¼ z1 þ z2 þ z3.

Data Sets
We use new and existing simulated data sets as well as a
biological data set to test A-Pro.

New Simulated Data Set (S25)
We perform a set of simulations using SimPhy (Mallo et al.
2016) starting from a default model condition and adjusting
five parameters (table 1). We simulate 50 replicates per con-
dition, and each replicate draws its parameters from prior
distributions. Exact commands are given in the
Supplementary Material online.

Default model: The species tree, simulated under the Yule
process with birth rate 5� 10�9 and the maximum number
of generations of the tree sampled from a log-normal distri-
bution (mean 1:9� 109), has 25 ingroup and an outgroup
species. Each replicate has 1,000 true gene trees simulated
under DLCoal with fixed haploid population size
Ne ¼ 4:7� 108. Gene trees have mean ILS level in ½60%; 80
%� range (mean 70%) across replicates (supplementary fig. S2,
Supplementary Material online). The duplication rate
kþ ¼ 4:9� 10�10; when there is no loss, gene trees on av-
erage include 145 leaves (�5 extra copies per species). The
loss rate k� is set to kþ; with loss, gene trees have on average

43 leaves. The average number of duplication and loss events
are 11 and 9, respectively, but variance is high (supplementary
fig. S1, Supplementary Material online). For each gene, we use
INDELible (Fletcher and Yang 2009) to simulate gap-free nu-
cleotide sequences along the gene trees using the GTRþC
model (Tavar�e 1986) with two different sequence lengths: 500
and 100 bp. We then use FastTree2 (Price et al. 2010) to
estimate maximum likelihood gene trees under the
GTRþC model. Gene tree estimation error, measured by
the false negative rate between the true gene trees and the
estimated gene trees, depends on the sequence length and
fluctuates significantly (from 0% to 100%) both within and
across replicates (supplementary fig. S3, Supplementary
Material online); mean error is 36% and 15% for 100 and
500 bp, respectively.

Controlling kþ; k�: Here, we consider 5� 4¼ 20 conditions,
changing duplication and loss rates. Our kþ settings result in
0–5 extra copies per gene, and the k�=kþ varies between 0
and 1 (table 1 and supplementary fig. S4, Supplementary
Material online). All other parameters are identical to the
default condition.

Controlling kþ;Ne: Here, we consider 3� 5¼ 15 conditions,
fixing k� to be equal to kþ, but changing kþ and ILS levels
(controlled by Ne). Our kþ settings result in 0–5 extra copies
per gene, and the mean ILS level between true and estimated
gene trees varies between 0% and 70% RF. (table 1 and sup-
plementary fig. S5, Supplementary Material online) All other
parameters are identical to the default model.

Controlling n: Fixing all parameters, we vary the number of
ingroup taxa n from 10 to 500.

Controlling k: Fixing all parameters, we vary the number of
gene trees k from 25 to 10,000.

Existing Simulations (S100)
We also used an existing data set that Molloy and Warnow
(2019) simulated based on a real fungal data set (Rasmussen
and Kellis 2012). The simulation protocol of this data set is
similar to that of S25 data set, with some notable differences.
1) The data set included 100 species (no outgroup); species
tree height, speciation rate, and mutation rates all differed
from S25. 2) Shorter gene alignments were also used, resulting
in higher MGTE (25 bp: 67%, 50 bp: 52%, 100 bp: 35%, and
500 bp: 19%). 3) The duplication rate kþ was set to
1� 10�10; 2� 10�10, or 5� 10�10 (named 1, 2, and 5, re-
spectively), and the duplication rate equaled the loss rate for
all model conditions. 4) ILS was much lower than S25; two
conditions were simulated with Ne set to 1� 107 and 5�
107 (named 1 and 5, respectively), which result in 2% and 12%
RF between true gene trees and the species tree. 5) Gene trees
were estimated using RAxML instead of FastTree2.

Biological Data
Wickett et al. (2014) have performed a transcriptome analysis
of 103 plant species and 424 single-copy gene trees (out of
thousands of genes) using both concatenation and ASTRAL.
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In preliminary analyses, the authors had inferred multicopy
gene trees using RAxML from 9,683 genes for 83 of those
species, ranging in size between 5 and 2,395 leaves.
However, not being able to obtain an accurate species tree
from the multicopy gene trees, they abandoned the strategy
in later analyses. The gene trees are available from Matasci
et al. (2014). We used RAxML gene trees inferred from the
first two codon positions (C12) as the original study.

For the fungal data set, all the peptide ML gene trees were
downloaded from Butler et al. (2009) and used here. We used
peptide gene trees because the reference species tree, inferred
through concatenation using MrBayes (Huelsenbeck and
Ronquist 2001), also uses peptide sequences. Authors com-
ment on unreliability of their nucleotide-based analyses due
to grouping by GC content.

Methods Compared
We compare A-Pro with the following methods, which are
the leading methods that can handle multiple copies.
Another method, STAG (Emms et al. 2018), is not included
because of its poor performance in the study by Molloy and
Warnow (2019), including that it fails to run on some model
conditions (supplementary fig. S11, Supplementary Material
online).

DupTree (Wehe et al. 2008) infers a species tree from
rooted or unrooted gene trees minimizing the duplication
reconciliation cost (Maddison 1997) under the duplication-
only model, but it does not model ILS. We provide DupTree
with unrooted gene trees. We also tried iGTP, minimizing
DupLoss score, but we only show results in supplementary
figure S7, Supplementary Material online, as it was almost
universally worse than DupTree.

MulRF (Chaudhary et al. 2013), based on an extension of
the RF distance (Robinson and Foulds 1981) to multilabeled
trees, is a hill-climbing method that aims at finding the tree
with the minimum RF distance to the input. We use MulRF
because of its advantage over other methods shown in pre-
vious studies (Chaudhary et al. 2015).

ASTRAL-multi (Rabiee et al. 2019) is a feature of ASTRAL
designed for handling multiple individuals. Legried et al.
(2020) propose to use ASTRAL-multi for multicopy data.
Due to its high memory requirements, we were able to in-
clude it in only one experiment of S25.

Data Availability
The code is available at https://github.com/chaoszhang/A-
pro (doi:10.5281/zenodo.3858153) and data are made avail-
able at https://github.com/chaoszhang/A-pro_data
(doi:10.5281/zenodo.3858155).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Szöll}osi GJ, Tannier E, Daubin V, Boussau B. 2015. The inference of gene
trees with species trees. Syst Biol. 64(1):e42–e62.

Tavar�e S. 1986. Some probabilistic and statistical problems in the analysis
of DNA sequences. Lect Math Life Sci. 17:57–86.

Vachaspati P, Warnow T. 2015. ASTRID: Accurate Species TRees from
Internode Distances. BMC Genomics. 16(S10):S3.

Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. DupTree: a program
for large-scale phylogenetic analyses using gene tree parsimony.
Bioinformatics 24(13):1540–1541.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter EJ,
Matasci N, Ayyampalayam S, Barker MS, Burleigh JG,

Gitzendanner MA, et al. 2014. Phylotranscriptomic analysis
of the origin and early diversification of land plants. Proc
Natl Acad Sci U S A. 111(45):E4859–4868.

Wu Y. 2012. Coalescent-based species tree inference from gene tree
topologies under incomplete lineage sorting by maximum likeli-
hood. Evolution 66(3):763–775.

Wu Y-C, Rasmussen MD, Bansal MS, Kellis M. 2013. TreeFix: statistically
informed gene tree error correction using species trees. Syst Biol.
62(1):110–120.

Yang Y, Smith SA. 2014. Orthology inference in nonmodel organisms
using transcriptomes and low-coverage genomes: improving accu-
racy and matrix occupancy for phylogenomics. Mol Biol Evol.
31(11):3081–3092.

Yin J, Zhang C, Mirarab S. 2019. ASTRAL-MP: scaling ASTRAL to very
large datasets using randomization and parallelization.
Bioinformatics 35(20):3961–3969.

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial
time species tree reconstruction from partially resolved gene trees.
BMC Bioinf. 19(S6):153.

Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA,
Nikiforova SV, Lockhart PJ. 2011. Systematic error in seed plant
phylogenomics. Genome Biol Evol. 3:1340–1348.

Zhong B, Yonezawa T, Zhong Y, Hasegawa M. 2010. The position of
gnetales among seed plants: overcoming pitfalls of chloroplast phy-
logenomics. Mol Biol Evol. 27(12):2855–2863.

ASTRAL-Pro . doi:10.1093/molbev/msaa139 MBE

3307


