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Abstract

Background: With the advance of high throughput sequencing, high-dimensional data are generated. Detecting
dependence/correlation between these datasets is becoming one of most important issues in multi-dimensional data
integration and co-expression network construction. RNA-sequencing data is widely used to construct gene
regulatory networks. Such networks could be more accurate when methylation data, copy number aberration data
and other types of data are introduced. Consequently, a general index for detecting relationships between
high-dimensional data is indispensable.

Results: We proposed a Kernel-Based RV-coefficient, named KBRV, for testing both linear and nonlinear correlation
between two matrices by introducing kernel functions into RV2 (the modified RV-coefficient). Permutation test and
other validation methods were used on simulated data to test the significance and rationality of KBRV. In order to
demonstrate the advantages of KBRV in constructing gene regulatory networks, we applied this index on real datasets
(ovarian cancer datasets and exon-level RNA-Seq data in human myeloid differentiation) to illustrate its superiority
over vector correlation.

Conclusions: We concluded that KBRV is an efficient index for detecting both linear and nonlinear relationships in
high dimensional data. The correlation method for high dimensional data has possible applications in the
construction of gene regulatory network.

Keywords: High-dimensional data, Nonlinear correlation, RV-coefficient

Background
With the rapid advance in high throughput sequencing
technologies, multiple, high-dimensional data types are
widely available. In recent years, the advance in next-
generation sequencing and single-cell sequencing offers a
significantly increased level of biological details than just
total gene expressions [1–5]. Moreover, research based
on exon-level expression data, multiomics data and other
high-dimensional biological data has led to a deeper
understanding of biology [6–8]. Figuratively speaking, the
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traditional genome data have been extended to transcrip-
tome, DNAmethylome data, etc., which reveal overall pic-
tures of cells (Fig. 1). A useful practice in high-dimensional
data integration is to measure and rank the dependence
between pairs of datasets in a simple and comprehensive
way and these datasets are usually represented as matrices
or even tensors. Therefore, one of the challenging tasks is
how to define a reasonable correlation coefficient between
pairs of high-dimensional data sets in matrix form.
Although a great number of tests and measures are

available for identifying linear and nonlinear correlations
between two variables, such as Pearson Correlation Coef-
ficient (PCC), Mutual Information (MI) and the Maximal
Information Coefficient (MIC), et al. [9–11], it is diffi-
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Fig. 1 Diversity of cellular data types. Increasing types of single-cell data are available with the advance of sequencing technology, including
genome, transcriptome, DNA methylome, etc

cult to evaluate relationships between a pair of matrix.
In practice, vector’s correlation methods are widely used
in high-dimensional data sets whose mathematical form
are matrices, which could lead to wrong results since peo-
ple just splice matrix into several vectors and ignore the
whole structure of the matrix. Normally, the information
obtained from data depends on the perspective of the
observation. When we observe high-dimensional data A
and B, we might see the data from different aspects and
acquire different information. For example, when we look
at the expression of gene pairs, if we consider level I, level
II and level III in Fig. 2a-c as three different time periods,
combination I in Fig. 2d indicates their overall change over
time. Besides, level I-III could also be regarded as three
samples from different human tissues at the same time so
that the combination II described the expression of gene
pairs in different tissues. What’s more, if level I, level II

and level III represent three different types of omics data
observed in the same tissues at the same time, then Fig. 2f
could be viewed as a combination of them. The above
three examples could be deemed as relationships between
genes in the form of two matrices rather than vectors. A
simple combination of different information from the per-
spective of vectors could lead to a misunderstanding and
makes it hard for us to evaluate the true relationship. In
exploring the correlations between matrices, Robert and
Escoufier first proposed the RV-coefficient in multivari-
ate analysis and Ramsay applied it to high-dimensional
data [12, 13]. Furthermore, Smilde et al. presented the
modified RV-coefficient (RV2) to improve this measure
and extended it to partial matrix correlations [14, 15].
Recently, Borzou et al. derived RV into three unique parts
with different functions [16]. Wang et al. integrated RV
and mutual information into Iso-Net for predicting func-

Fig. 2 Correlations and their combinations. a-c Different aspects of correlation show different information. d-f Different combinations of
correlations may have different results, which is misunderstanding and makes it hard for us to evaluate the true relationship
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tions of isoforms with the exon-level RNA-Seq data [17].
Though these coefficients are getting better at measuring
a linear correlation between two matrices, they lose effi-
cacy when used to detect a nonlinear correlation.
In this work, we propose a novel index for testing the

nonlinear dependence between two matrices by introduc-
ing kernel functions into RV2. We conduct simulation
studies to verify the rationality of KBRV and discuss its
application using examples with real data.

Methods
The underlying assumptions is that two high-dimensional
datasets could be represented as two matrices A ∈
R
M×N1 , B ∈ R

M×N2 , respectively, which indicates that
both matrices require an equal number of rows M. Pre-
vious work has showed that the matrix RV-coefficient
was presented to quantitatively evaluate the correlation
between any two matrices A and B sharing the row-mode.

RV (A,B) = tr
(
AATBBT)

√
tr

[(
AAT)2] tr

[(
BBT)2]

(1)

Subsequently, Smilde et al. found RV’s drawbacks in
a transcriptomics study, i.e. the RV values were high in
almost all cases especially for some strongly unequal sized
matrices where the number of rows are much smaller than
the number of columns. It was assumed that A (M × N1)
and B (M × N2) are two random matrices, with elements
drawn from standard normal distributions and N1, N2
much larger than M. Based on the expression of RV
and some properties of normal distributions, the RV-
coefficient can be approximated as

RV (A,B) ≈ N1N2√(
N2
1 + (M + 1)N1

) (
N2
2 + (M + 1)N2

) .

(2)

From (2) it can be found that the value of RV is directly
associated with the number of rows and columns of the
matrices. When M is small enough compared to N, the
value of RV is close to 1. To solve this problem, Smilde
et al. proposed a new correlation coefficient, the modi-
fied RV-coefficient (RV2), by replacing AAT to ÃAT (ÃAT

means AAT − diag(AAT )). Through this method, N1 and
N2 were eliminated because the information of N1 and N2
were contained in the diagonal elements of the matrices.
Thus, the modified RV-coefficient can be written as

RV2(A,B) =
tr

(
ÃATB̃BT

)

√

tr
[(

ÃAT
)2]

tr
[(

B̃BT
)2]

. (3)

Compared to the RV-coefficient, RV2 not only solves
the problem caused by high dimension, but also makes it
possible to take negative values.
RV2 performs well in the linear situation. However, it

will have difficulty in detecting nonlinear relationships
between matrices. Here we give a simple example. A

(
aij

)

and B
(
bij

)
are random matrices of size 1000×1000 with

aij and bij drawn from standard normal distributions. For
the linear situation, we start by calculating RV2(A,B).
Then, ten percent of the random elements in matrix B
are replaced by the corresponding elements in matrix A.
This procedure is repeated with 10 more percent of the
elements replaced each time until A and B are equal.
In the other case, an increasing proportion of elements
in matrix B is replaced by a2ij, which indicates a grow-
ing nonlinear relationship. That is to say, we want to
test the performance of RV2 as the linear or nonlinear
correlation of A and B increases step by step. If RV2 is
effective, the value of RV2 would increase in both cases
as the proportion grows. The result is shown in Fig. 3,
which demonstrates that RV2 fails when the correlation is
nonlinear.
The nonlinear relationship between matrix A and B

can be generalized as B = f (A) + noise, where f rep-
resents any smooth nonlinear function or transformation
and noise represents noises with different distributions. In
this paper, we mainly discuss the nonlinear f with element
wise. Therefore, the correlation coefficient we are looking
for is defined as follows

Definition 1 The mapping from R
M×N1 × R

M×N2 to [0,
1] is a correlation coefficient if the index satisfies C1 to C4

C1 : corr(p ∗ A,B) = corr(A, q ∗ B) = corr(A,B)

C2 : corr(A,B) = corr(B,A)

C3 : corr(A,B) = 1 if A = f (B)

C4 : corr(A,B) = 0 iff ATWB = 0.

where p and q are nonzero scalars and f (·) is nonlinear
functions acting on the elements of matrix B. To overcome
difficulties of RV2 in detecting nonlinear relationship in
C3, we apply a kernel transformation to the matrix A and
matrix B since we can obtain transformed RV-coefficients,
RVA and RVB, respectively.

RVA(A,B) =
tr

(
˜f (A)f

(
AT)

B̃BT
)

√√√
√tr

[(
˜f (A)f

(
AT)

)2
]

tr
[(

B̃BT
)2]

(4)
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Fig. 3 RV2 for testing linear and nonlinear correlation. The curve of RV2 with an increasing of sparsity between two matrices A and B under linear

and nonlinear relationship
(
bij = a2ij

)

RVB(A,B) =
tr

((
ÃAT

)
˜f (B)f

(
BT)

)

√√
√√tr

[(
ÃAT

)2]
tr

[(
˜f (B)f

(
BT)

)2
] (5)

where

f (X) = 1
1 + e−X

f
(
XT

)
= 1

1 + e−XT .

In order to measure both linear and nonlinear rela-
tionships between two matrices, we combine RV2 with
RVA and RVB to obtain a new index, i.e., a kernel-based
RV-coefficient (KBRV)

KBRV (A,B) = k1
k1 + k2

RV2 + k2
k1 + k2

RVA + RVB
2

(6)

where k1
k1+k2 and

k2
k1+k2 are weight coefficients.We can also

rewrite the KBRV as

KBRV (A,B) = αRV2 + (1 − α)
RVA + RVB

2
. (7)

In Eq. (7), the first termmeasures the linear correlations
and the second term measures the nonlinear correlations.
Thereby, RV2 is a special case of KBRV when α = 1
while RVA+RVB

2 is another case of KBRV as α = 0. Fur-
thermore, KBRV has a good property since KBRV (A,B)

equals KBRV (B,A), which means it is a symmetric index.
For analogue data knowing its correlation detail, we could
easily choose the most appropriate α. However, when it

comes to real data, the choice of α is particularly impor-
tant if we want to decide the type and size of the correla-
tion. Here, we use the following formula to determine the
optimal α for given A and B

α̂ = argmax
α

KBRV (A,B), (8)

where α ∈[ 0, 1]. We could estimate the type of correlation
based on α. For simplicity, when α ≥ 0.5, we think the
correlation between matrix A and B is linearly dominant,
and we consider it as nonlinearly dominant when α < 0.5.
To evaluate the effectiveness of KBRV, we applied a

permutation test to assess significance of this index.
KBRV (A,B) was compared to KBRV

(
Apermi ,B

)
in every

permutation, where Apermi is the matrix after shuffling the
rows and columns of A in the ith permutation. Subse-
quently, the P-value could be obtained from the following
equation

p =
∑n

i=1 IKBRV (A,B)≤KBRV (Apermi ,B)

n
, (9)

where I is the indicator function and n is the number of
permutations. Because RV2 is a special case of KBRV (α =
1), we could compare RV2 with KBRV, by the way, when
we calculate the significance with different α.
Combining Eqs. (8) and (9), the optimal solution α̂ is

derived from argmax
α

KBRV (A,B) under the condition

p < αsig , where αsig equals 0.05 in our research.
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Table 1 Power/False negative rate in different functions with Gaussian noise (The significance level α = 0.05)

A ∼ Random(0, 1) α = 0 α = 0.3 α = 0.5 α = 0.7 α = 1

B ∼ Random(0, 1) 0.06 0.07 0.04 0.07 0.06

B = A + 0.5N(0, 1) 0.92 0.99 1 0.99 1

B = (A + 1)2 + 0.5N(0, 1) 0.97 1 0.99 1 1

B = sin(A) + 0.5N(0, 1) 0.90 0.98 0.98 0.98 0.99

B = exp(A) + 0.5N(0, 1) 0.83 0.96 0.99 1 1

Simulation study
Matrix simulation
We generated two matrices A

(
aij

)
and B

(
bij

)
in sev-

eral different cases. In the fisrt case, A
(
aij

)
and B

(
bij

)

were both random matrices drawn from random num-
bers between 0 and 1, respectively, which means A and
B were independent matrices. In the following cases,
A(aij) was drawn in the same way while bij in matrix
B were set as different functions of aij. Here, noise was
derived from standard normal distribution, gamma dis-
tribution and bimodal distribution and their levels was
discussed [18]. We took the number of rows and columns
as 500 and 800, respectively, and different functions (lin-
ear, quadratic, sine, exponential, etc.) applying on bij with
different noise types were explored in Tables 1, 2 and 3.
The significance of the permutation test was calculated
after 100 permutations. Furthermore, the permutation
test was conducted 100 times to calculate the false posi-
tive rate/statistical power for independent and dependent
matrices, respectively. These simulations are all done on
different α of KBRV (0, 0.3, 0.5, 0.7, 1, respectively). The
computational cost of the permutation test and statistical
power are shown in Tables 4–5 (All experiments are exe-
cuted on an Intel Core i7-8700 running at 3.20 GHz and
16.0 GB memory).
To further validate the rationality of KBRV, we did some

simulations concerning matrix size and sparsity. In the
first case, we would like to show that as long as two matri-
ces are independent, KBRV is equal to 0 regardless of the
size of the matrices. Here, matrix A

(
aij

)
of size M × 500

and B
(
bij

)
of sizeM×800 are generated randomly. Under

this circumstance, A and B are repeated 100 times for
each M, where M was the number of matrix’s rows and
increased from 50 to 1000 with step size 50. In the second
case, A

(
aij

)
and B

(
bij

)
are drawn from standard normal

distribution while a random proportion of elements in

B
(
bij

)
is replaced by aij and a2ij in steps of 10%, 20%, . . . ,

and 90%, respectively. These further verifications are all
simulated with different α of KBRV (0, 0.3, 0.5, 0.7, 1,
respectively).

Exon-level simulation
To verify the validity of KBRV not only for general matri-
ces, but also for biological data, in this section, we applied
KBRV method to exon-level simulation data. Compared
to gene expression in vector form, exon-specific expres-
sion could be represented as a matrix of order S× J , where
S is the number of samples and J is the number of exons.
Here, we evaluate the performance of KBRV by ROC
curves and AUC values based on simulated exon-level
gene co-expression networks [19]. For non co-expression
genes, we generate two independent S × J1/2 matrices
A1 = (

a11, · · · , a1J1
)
and A2 = (

a21, · · · , a2J2
)
which

are drawn from a multivariate normal distribution N(0, I)
with aij =

(
a1ij, · · · , aSij

)T
, for i ∈ {1, 2} and j ∈ {1, · · · , J1}

or {1, · · · , J2}. In contrast with independent gene pairs
A = (A1,A2), dependent (co-expressed) gene pairs B =
(B1,B2) are drawn such that

Bi = Ai + c0F
(
AJi
m

)
, i = 1, 2,

AJi
m =

{
AJi
1 = (a11, · · · , a1Ji), J1 ≥ J2,

AJi
2 = (a11, · · · , a2Ji), J1 < J2.

(10)

where

• c0 is a constant that indicates the association strength
of gene isoforms B1,B2.

• F
(
AJi
m

)
could be a linear or nonlinear function of AJi

m.

Here, gene pairs are independent when c0 = 0, which
means the correlation between A1 and A2 should be

Table 2 Power/False negative rate in different functions with Gamma noise (The significance level α = 0.05)

A ∼ Random(0, 1) α = 0 α = 0.3 α = 0.5 α = 0.7 α = 1

B = A + 0.5N(0, 1) 0.79 0.96 0.99 0.97 0.99

B = (A + 1)2 + 0.5N(0, 1) 0.80 1 0.99 1 1

B = sin(A) + 0.5N(0, 1) 0.63 0.87 0.92 0.96 0.94

B = exp(A) + 0.5N(0, 1) 0.63 0.89 0.95 0.96 0.97
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Table 3 Power/False negative rate in different functions with Bimodal noise (The significance level α = 0.05)

A ∼ Random(0, 1) α = 0 α = 0.3 α = 0.5 α = 0.7 α = 1

B = A + 0.3N(0, 1) 0.77 0.91 0.95 0.98 0.98

B = (A + 1)2 + 0.3N(0, 1) 0.83 1 1 1 1

B = sin(A) + 0.3N(0, 1) 0.6 0.84 0.92 0.94 0.99

B = exp(A) + 0.3N(0, 1) 0.57 0.84 0.93 1 1

zero. Meanwhile, B1 and B2 are correlated because c0 �=
0 bigger c0 implying stronger correlation. Furthermore,
F

(
AJi
m

)
= AJi

m means a linear relationship between B1 and
B2 while other nonlinear F indicate nonlinear relation-
ships between B1 and B2. In our simulations, the number
of exons (k and l) are set to 50-50, 100-100, 50-200. The
sample size S and the association strength are set to be
50, 100, 200 and 0.1, 0.2, 0.3, respectively. Firstly, as for
these 27 combinations, we generate 1000 pairs of matri-
ces (B1,B2) under each combination and another 1000
pairs of matrices (A1,A2) with the same number of exons
and sample size while setting association strength equal
to zero. Once having the label of gene pairs, we could use
ROC curves and AUC values to evaluate the capabilities of
KBRV under different parameters. The effects of the num-
ber of exons, sample size and association strength on the
KBRV in linear and nonlinear scenarios were discussed
respectively. Furthermore, we test KBRV’s ability to distin-
guish between linear gene pairs and nonlinear gene pairs.
We generate 1000 pairs ofmatrices (B1l,B2l)which are lin-
early dependent under these 27 combinations and another
1000 pairs of matrices (B1n,B2n) having nonlinear rela-
tionships with the same number of exons, sample size and
association strength. F

(
AJi
m

)
in B1l and B2l are set to be

AJ1
m and AJ2

m while F
(
AJi
m

)
in B1n and B2n are set to be AJ1

m

and any nonlinear function of AJ2
m, respectively.

Applications on real datasets
Multiomics data
We applied KBRV to ovarian cancer data which are taken
from the TCGA database (https://portal.gdc.cancer.gov/
repository). This cancer data taken from 385 patients
consist of two parts: the gene expression data and the
DNA methylation data (The methylation sites within the
same gene segement are added up. To keep the multi-
omics data at the same level, we normalized the gene
expression data to [0, 1]). According to previous research,
FOXM1 transcription factor network is altered in most
ovarian cancer patients [20]. In this network, FOXM1

and its target gene are involved in cell cycle progression
and DNA damage repair. Thereby, we picked 9 common
genes in both gene expression data and DNA methylation
data that are activated in FOXM1 pathway from the total
16406 genes. Firstly, we used vector method, Maximum
Information Coefficient (MIC, α = 0.6), to calculate the
correlation between different genes through gene expres-
sion data and construct a gene regulatory network. After
that, the matrix method, KBRV, was used to calculate
the correlation between the nine 385 × 2 matrices by
integrating gene expression data and DNA methylation
data. It is worth mentioning that for each calculation, we
chose different α and combined KBRV value with per-
mutation test, which means the α̂ was determined by
argmax

α
KBRV (A,B) together with p < 0.05. After getting

the correlation matrix, regulatory edges were selected by
introducing a hard threshold. The top 20% are kept in the
network.

Exon-level data
We further applied KBRV to construct gene regula-
tory network with the exon-level RNA-Seq data from
macrophage, neutrophil andmonocyte cell lines in human
myeloid differentiation, respectively. Compared with
gene-level RNA-Seq data, exon-level RNA-Seq reveals
more biological details about gene expression, which in
turn requires us to use more advanced methods to cal-
culate because gene samples at the exon-level could be
represent as matrices rather than vectors. Here, we focus
on 18 transcription factors that are important in human
myeloid differentiation [21]. The exon-level data were
obtained through DEXSeq package and both exon-level
and gene-level data were log-transformed. Correlations
between the 18 gene vectors(1 × 21 samples) and 18 gene
matrices(J × 21 samples) were calculated in three dif-
ferent cell lines using MIC(α = 0.6) and KBRV(α̂ was
determined by both argmax

α
KBRV (A,B) and p < 0.05),

respectively. Similar to the previous part, top 10% regu-
latory edges were kept in the network after getting the
correlation matrix.

Table 4 Computational cost of permutation test with different matrix sizes (rows and columns) and number of repetition (permutation)

(r, c, nper) (50, 80, 100) (50, 80, 1000) (500, 800, 100) (500, 800, 1000)

Time (seconds) 0.0276 0.2275 2.8792 29.1308

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
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Table 5 Computational cost of statistical power with different matrix sizes (rows and columns) and number of repetition (permutation
and power)

(r, c, nper , npw) (50, 80, 100, 100) (50, 80, 1000, 100) (50, 80, 100, 1000)

Time (seconds) 3.2112 32.8902 32.4776

(r, c, nper , npw) (500, 800, 100, 100) (500, 800, 1000, 100) (500, 800, 100, 1000)

Time (seconds) 377.9874 3687.0232 3750.5515

Results
Results from simulation study
The first case in Tables 1, 2 and 3 show that KBRV has
only nearly 0.05 of the probability to arrive at the wrong
conclusion, that is, correlated, in the case where A and
B are both random matrices. When A and B are linearly
correlated, Tables 1, 2 and 3 demonstrate that KBRV with
different α could both make good judgements with dif-
ferent types of noise. The remaining rows in Tables 1, 2
and 3 show that KBRV is equally valid for nonlinear rela-
tionships. By the way, we increased the noise level from
0 to 2×Ga(1, 1). In Fig. 4, all power values decrease with
the increase of noise, which confirms that our method is
reasonable rather than having a high false positive rate.
In calculating significance and statistical power, we have
repeated each experiment 100/1000 times for each condi-
tion (Tables 4–5). In order to get more accurate results,
we recommend more experiments be conducted. How-
ever, when the matrix size is large, it takes a lot of time to
calculate the statistical power.
From Fig. 5, we could observe that KBRV are almost

zero nomatter what size matrixA and B is, indicating they
are independent. Besides, it is worth mentioning that the

KBRV value fluctuates slightly when sample size is very
small, possibly due to the huge difference in the number of
rows and columns. The calculated results reflecting spar-
sity with different parameter α are shown in Fig. 6. As we
can see, KBRV(α = 1) has the whole RV2 while containing
no RVA or RVB, so it predicts the linear relationship best,
which appears larger value in Fig. 6a and smaller value in
Fig. 6b. With the RV2 component decreasing and the RVA
plus RVB part growing, KBRV is losing its power to detect
the linear relationship. KBRV(α = 0) has the whole RVA
and RVB while containing no RV2, so it performs better in
assessing the nonlinear relationship between the matrices
A and B, which appears larger value in Fig. 6b and smaller
value in Fig. 6a. These results demonstrate that KBRV can
efficiently evaluate the correlations between two matrices
in both the linear and nonlinear case.
Figure 7a and b reveal the simulation results of the set-

ting of two linear correlated gene pairs with 50-50 exons
and sample size equals 50. Under this circumstance, it
is observed that AUCs of different KBRV for different α

were significantly increasing as the association strength
c0 growing except KBRV with α = 0. However, RV2 is a
special case of KBRV with α = 1, which performs better

Fig. 4 Changes in power with the increase of noise. The curve of statistical power pf KBRV with an increasing gamma noise. The correlation between
two matrices is a sine function
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Fig. 5 Independent matrices pair of different sizes. The curve of KBRV of 100 repeated tests with an increasing number of rows between two
independent matrices A and B

than others. The results for the nonlinear case (cosine) are
shown in Fig. 7c and d. We set the numbers of two exons
to 100-100, the association strength c0 = 0.2 and the sam-
ple size from 50 to 100. Figure 7c and d show an increasing
trend of KBRV as the sample size increase from 50 to 100
for all methods except KBRV with α = 1, which is just the
opposite of Fig. 7a and b. Based on ROC curves and AUC
values, we observe that KBRV (α = 1) outperforms others
when F

(
AJi
m

)
is a linear function ofAJi

m and KBRV (α = 0)

performs the best when F
(
AJi
m

)
is a nonlinear function of

AJi
m.
Figure 7 shows the ability of KBRV in distinguishing

independence and dependence. Next we will showKBRV’s
ability in distinguishing linear dependence and nonlinear
dependence. Figure 8a and b evaluate the effect of KBRV

in distinguishing linear and cosine relationships. Here, we
set the number of exons to 50-50, sample sizes equals
50 and the association strengths from 0.1 to 0.2. Under
these conditions, Fig. 8a and b demonstrate that AUCs
of KBRV are all significantly increasing as the association
strength c0 is growing. Most importantly, KBRV is bet-
ter than RV2 (α = 1) especially when c0 = 0.2 where
KBRV’s AUC attains 1. Figure 8c–d evaluate the effect of
the number of exons on the performance of KBRV when
F

(
AJi
m

)
= exp

(
AJi
m

)
. Here, the sample sizes of two exon-

level genes are 50 and the association strength c0 = 0.1
while the number of exons change from 50-50 to 50-
200. From (c) and (d), RV2 (α = 1) becomes smaller as
the difference between the number of exons increases.
However, KBRV(α �= 1) continues to maintain high
accuracy.

Fig. 6 Increasing linear and nonlinear correlations. Comparisons between different indexes of KBRV when the elements of two matrices A and B are
set to be a bij = aij and b bij = a2ij , respectively. A reverse trend of KBRV’s value is appeared when α takes different values in these two cases
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Fig. 7 ROC of KBRV in differing independent and dependent exon-level gene network. a-b The effect of the association strength c0 on the
performances of different KBRV under independent and linear dependent relationship. c-d The effect of sample size on the performances of
different KBRV under independent and cosine dependent relationship

Results frommultiomics data
For a heat map of the correlation matrix calculated
through MIC shown in Fig. 9a, we observed that the cor-
relations between all genes were weak. But in fact, these
genes are highly correlated in patients with ovarian can-
cer. To make the result more vivid, we turned this heat
map into a gene regulatory network with a hard threshold
in Fig. 9b. The solid lines are used to represent transcrip-
tional regulations we inferred while the purple lines are
regulations have been proven to exist. Instead of using
MIC method to calculate vector’s correlation, we applied
KBRV method to this integrated gene matrix and used a
heat map to display our new gene regulatory networks in
Fig. 10. From Fig. 10a, it can be seen that nearly all the
calculated correlations are high, which is consistent with
the fact. In addition, the advantage of KBRV is that we can
infer the type of correlation(linear or nonlinear) from α̂.
We recorded the optimal α̂ corresponding to Fig. 10a after
selecting the top 20% regulatory edges (Fig. 10b: 1 corre-
sponds to α̂ = 1, 0 corresponds to α̂ = 0, -1 corresponds
to not correlated). With the information in Fig. 10b, we
can easily construct the regulatory network. In Fig. 10c,

solid lines represent linear regulate while dashed lines
indicate nonlinear regulate. Meanwhile, proven regula-
tory relationships are highlighted in purple. As can be
seen from the above comparison, the KBRV method is
significantly superior to MIC method. Firstly, the inte-
grated gene regulatory network is more reasonable for
its high correlations compared to MIC’s results. Besides,
KBRV identifies more confirmed regulatory relationships.
Most importantly, KBRV measures the correlation while
also identifying the type of correlation, which is not pos-
sible with other methods. Furthermore, we consider the
nonlinear correlation an indication of indirect correlation.
Indirect relationship might appear as nonlinear correla-
tions because the transfer of multiple linear relationships
might be nonlinear. For example, in the latter network
we built, a nonlinear relationship between BRCA2 and
CHEK2 is detected by KBRV as BRCA2 is indirectly reg-
ulated by CHEK2 through FOXM1. What’s more, a novel
nonlinear regulatory pathway between CHEK2 and ATR
is identified. To sum up, the KBRV method integrated the
information of two data and surmount the defects of a
single data and vector method.
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Fig. 8 ROC of KBRV in differing linear dependent and nonlinear dependent exon-level gene network. a-b The effect of the association strength c0
on the performances of different KBRV under linear dependent and cosine dependent relationship. c-d The effect of number of exons on the
performances of different KBRV under linear dependent and exponential dependent relationship

Fig. 9 Heat map and its corresponding regulatory network (MIC). a Correlation heat map constructed by using gene expression data of ovarian
cancer with MIC method. b Gene regulatory network obtained from a. The solid lines represent inferred transcriptional regulations while the purple
lines are regulations have been proven to exist
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Fig. 10 Heat map and correlation type and their corresponding regulatory network (KBRV). a Correlation heat map and its correlation type
constructed by combining gene expression data and DNA methylation data of ovarian cancer with KBRV method. b Gene regulatory network
obtained from a. The solid lines represent inferred linear transcriptional regulations while the dashed lines indicate nonlinear regulate. Proven
regulatory relationships are highlighted in purple

Results from exon-level data
RUNX1, REL and STAT family are the most important
genes in human myeloid differentiation. For example,
RUNX1 plays a central role in hematopoiesis of all lineages
[22]. REL plays a critical part in inflammation, immunity,
cell proliferation, differentiation, and survival [23]. STAT1
and STAT6 are important transcription factors that medi-
ate cellular immunity, proliferation, apoptosis and differ-
entiation [24]. The regulatory networks obtained from
gene-level vectors are quite different from those drawn
from exon-level matrices. Figure 11 demonstrates the net-
work constructed by MIC in three different cell lines. It is
hard to say that the networks in (a), (b) and (c) are rea-
sonable because the three networks have nearly nothing in

common. In contrast, the networks built through KBRV
based on exon-level data is more reasonable and enlight-
ening. Figure 12a-c share MYC, RUNX1, REL, STAT1
and STAT6 and their edges in common, which means
these genes and regulatory relationships might be shared
functional modules of the three cell lines. Besides, these
genes play key roles in human myeloid differentiation as
we mentioned before. E2F8, EGR2 and VDR are unique
genes involved in the Macrophage cell line, while GFI1
plays a role in the Monocyte cell line. Besides, PU.1 and
STAT2 have unique regulatory roles in the Neutrophil cell
line. Unlike outcomes in the ovarian cancer study, most of
the regulatory relationships here are linear, only IRF1 and
NFE2 in Monocyte cell line show nonlinear regulations.

Fig. 11 Regulatory networks obtained from MIC method. Regulatory networks obtained from gene-level RNA-Seq data from macrophage a,
neutrophil b and monocyte c cell lines in human myeloid differentiation. The solid lines represent inferred transcriptional regulations
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Fig. 12 Regulatory networks obtained from KBRV method. Regulatory networks obtained from exon-level RNA-Seq data from macrophage a,
neutrophil b and monocyte c cell lines in human myeloid differentiation. The solid lines represent inferred transcriptional regulations while the
dashed lines indicate nonlinear regulate

Discussion
In this study, we proposed a novel index to detect linear
and nonlinear correlations for high dimensional data. The
proposed KBRV is a universal index, which overcomes the
shortcoming that some measures are not able to identify a
nonlinear relationship when compared to its special form
RV2. It is worth noting that KBRV is an extension of RV2
and inherited some good properties of RV2. We suggest
calling them the family of KBRV coefficient. This family of
correlation coefficients has a parameter α, which regulates
its weights for a linear and nonlinear relationship. For sim-
ulation data, α = 1 has the strongest ability to recognize
the linear relationship. Meanwhile, α = 0 has the high-
est AUC value when the relationship is nonlinear. When
it comes to real data, we recommend choosing a step size
and exhausting all the results based on both KBRV and
permutation test. After that we can figure out the best α̂,
and from α̂ we can in turn claim the type of correlation.
When considering a nonlinear correlation, indirect regu-
lation is also considered as a kind of nonlinear relationship
in our research. This method has been applied to simu-
lation data and real data and both results show that this
correlation coefficient is reliable. It is worth mentioning
that in the first set of real data, we show that multiomics
data are more illuminating than single omics data, while
in the second set of real data, the exon-level data proved
to be more revealing than the gene-level data.
However, although the numerical results of KBRV are

good, there are still some challenges. First of all, we
only get the rationality of the numerical simulation but
lack theoretical proof of this index. Besides, when this
approach is used to integrate multiomics data, it is
inevitable to face associations and differences between
different types of data. For example, RNA-seq gene

expression data have various expression units such as
TPM, RPKM, FPKM and even raw reads counts. How-
ever, the level of DNA methylation is usually expressed
by β value, which represents the ratio of the methy-
lated bead type intensity to the intensity of combined
locus. Considering that multiomics data are different in
measurement and are difficult to integrate into a sin-
gle matrix, we think it is possible to consider integra-
tive analysis of multiomics data as a data pre-processing
method to obtain standardized multiomics data matrix.
For example, robust network-based analysis provides a
novel perspective in modeling regulations between gene
expressions, copy number variations, DNA methylation
and other omics data [25]. Taking the ovarian cancer data
as an example, microRNA data for 385 ovarian cancer
patients are available from TCGA. However, we did not
use these data because they could not correspond to gene
expressions and DNA methylation data as a column in
the matrix. If we use robust network-based analysis to
determine the regulations between gene expression and
microRNA, the information from microRNA data could
then be integrated into gene expression data properly.
Appropriate inference about clinical or environmental

covariates might help elucidate the genetic basis of com-
plex diseases and improve the accuracy of our method.
As far as we know, Wu et al. have proposed many effec-
tive methods such as semiparametric bayesian variable
selection, additive varying-coefficient model, penalized
robust semiparametric approach, etc. in dealing with
gene-environment interactions [26–29]. Here, we offer
two ideas of combining environmental covariates with
genetic data when inferring regulations from the per-
spective of a matrix. Firstly, the sizes of two matrices
are quite small, especially the number of columns. Take
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Fig. 13 Gene-Environment interactions. Environment variables may have opposite effects on different omics data. a Gene expression-Environment
interaction b DNA methylation-Environment interaction

the environment into consideration, we can add some
columns representing clinical, environmental or pheno-
type variable to the matrix. These covariates could be
discrete or continuous variables, but unified normaliza-
tion is required because they are listed together with
the multiomics data. Secondly, gene-environment interac-
tions might have opposite effects in multiomics data. For
example, environmental variables might have a negative
effect on gene expression data while exerting a positive
effect on DNA methylation data (dashed line in Fig. 13).
Therefore, we should consider the different effects of envi-
ronmental variables on different omics of data when we
combine multiomics data into one matrix. By the way,
causality research and higher dimensional methods that
can integrate multiomics data and exon level data at the
same time are also extremely important and have not been
involved yet. However, quantifying the concrete form of
the nonlinear correlation for biological data using the
KBRV framework remains challenging, and it is definitely
worth further investigation in the future.

Conclusions
In this study, we brought up an efficient index for detect-
ing both linear and nonlinear relationships for high
dimensional data, named KBRV, which has a broader
application scenario than the original index, RV2. The
KBRV was used to construct regulatory networks after its
rationality was verified by simulated matrices and sim-
ulated exon-level data. As the dimensions of the data
increases, some novel methods have been brought up in
order to work out some problems that can not be solved
by conventional approaches. As for correlation studies,
the expansion from low dimensions to higher dimensions
is also indispensable. Today, most existing methods focus
on vector data, but there is a lack of research on matrix
or even tensor data. Improper use of vector methods
could lead to partial or even opposite conclusions. There-
fore, correlation methods like KBRV for detecting high

dimensional data rather than vector data have potential
value in practical application such as the construction of
gene regulatory networks, co-expression networks, etc.
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