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ABSTRACT Next-generation sequencing is an efficient method that allows for substantially more markers than previous technologies,
providing opportunities for building high-density genetic linkage maps, which facilitate the development of nonmodel species’
genomic assemblies and the investigation of their genes. However, constructing genetic maps using data generated via high-throughput
sequencing technology (e.g., genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping errors
resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors lead to inflated genetic maps. In
addition, map construction in many species is performed using full-sibling family populations derived from the outcrossing of two
individuals, where unknown parental phase and varying segregation types further complicate construction. We present a new method-
ology for modeling low coverage sequencing data in the construction of genetic linkage maps using full-sibling populations of diploid
species, implemented in a package called GUSMap. Our model is based on the Lander–Green hidden Markov model but extended to
account for errors present in sequencing data. We were able to obtain accurate estimates of the recombination fractions and overall map
distance using GUSMap, while most existing mapping packages produced inflated genetic maps in the presence of errors. Our results
demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without requiring extensive filtering of
potentially erroneous genotypes, provided that the associated errors are correctly accounted for in the model.
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THE emergence of high-throughput sequencing methods
thatmultiplex largenumbers of individuals has provideda

cost-effective approach to perform genome-wide genotyping
and discovery of genetic variation. Two of the primary multi-
plexing sequencing methods are whole genome sequencing

andreducedrepresentationapproaches, includingwhole-exome
sequencing (Hodges et al. 2007), restriction-site associated
DNA sequencing (Baird et al. 2008), and genotyping-by-
sequencing (Elshire et al. 2011), among others (Heffelfinger
et al. 2014). The introduction of these methods has led to
the rapid increase in both the number of species being se-
quenced, especially nonmodel species (Ellegren 2014), and
the number of markers available for analysis. Consequently,
these methods provide opportunities to construct more dense
genetic linkage maps compared with previous technologies,
which is useful in scenarios where alternative high-density
marker systems are infeasible (expensive to establish and val-
idate). Genetic maps are important as they facilitate the in-
vestigation of many species in terms of their genes, such as
associating phenotypes to the genome via QTL, validating
assemblies, ordering contigs in assemblies, and performing
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comparative genome analyses (Cheema and Dicks 2009; Liu
et al. 2014).

Constructing linkagemaps using sequencing data is com-
plicated by the presence of two types ofmissingdata that can
resultwhen the sequencingdepth is low.Thefirst is amissing
genotype resulting from no alleles being called, while the
second consists of a heterozygous genotype being called as
homozygous due to only one of the parental alleles being
sequenced at a particular locus (Dodds et al. 2015; Fragoso
et al. 2016). The latter type is particularly problematic as it
usually behaves like a genotyping error, which increases the
frequency of inferred recombinations and results in inflated
linkage maps (Lincoln and Lander 1992; Cartwright et al.
2007; Cheema and Dicks 2009). Typically, genotyping er-
rors resulting from low sequencing coverage are removed
via filtering, such as setting genotypes with an associated
read depth below some threshold value to missing
(Gardner et al. 2014; Mousavi et al. 2016) or using geno-
type quality scores to discard uncertain genotype calls
(Chen et al. 2014; Hyma et al. 2015; Mousavi et al.
2016). Nevertheless, this requires sequencing at a higher
depth, which results in fewer individuals being sequenced
and fewer utilized loci for a given cost, and can leave a large
proportion of the original data unused. Several algorithms
have been developed for imputing missing genotypes and
correcting erroneous genotypes in low coverage genome-
sequencing data (Spindel et al. 2013; Huang et al. 2014; Swarts
et al. 2014; Fragoso et al. 2016); however, all of these algo-
rithms are designed only for inbred populations and are not
applicable to outcrossed full-sibling (full-sib) families. Re-
cently, two software packages have been developed for per-
forming linkage mapping in full-sib families using sequencing
data. These are Lep-MAP (Rastas et al. 2013, 2016) and High-
Map (Liu et al. 2014), both of which address the computa-
tional problem associated with high-density maps but are not
specifically designed to handle low coverage sequencing
data.

Another complication is the presence of sequencing errors,
reads where the base has been called incorrectly, which also
leads to inflated genetic distances if not taken into account. In
contrast to errors caused by low readdepth, sequencing errors
can result in homozygotes being called as heterozygotes. One
approach for removing sequencing errors involves detecting
double recombinants at very short distances and either cor-
recting the genotypes (e.g., a double recombinant becomes
nonrecombinant) or setting genotypes resulting in double
recombinants as missing (van Os et al. 2005; Wu et al. 2008;
Cheema and Dicks 2009; Liu et al. 2014). The problem with
correcting double recombinants is the possibility of false pos-
itives, particularly if the chromosomal order is inaccurate
(Wu et al. 2008), while erroneous genotype calls on the out-
side loci cannot be detected. An alternative is to account for
these errors by including additional parameters in the model
(Cartwright et al. 2007; Rastas et al. 2013), although estima-
tion of these parameters is not always straightforward when
the error rate is unknown.

Linkagemapping inplantshas oftenbeenapplied to inbred
populations derived from the cross of two fully homozygous
parents (e.g., recombinant inbred lines, double haploids)
(Grattapaglia and Sederoff 1994; Maliepaard et al. 1997),
although this is dependent upon the breeding system of the
species. For many plant species and most animal species,
self-incompatibility, severe inbreeding depression, or long
generation times prevent the production of inbred lines,
where a commonly used alternative mapping population is
an outbred full-sib family derived from the crossing of two
unrelated individuals (Schneider 2005; Singh and Singh
2015). Examples where outbred populations have been par-
ticularly utilized in linkage mapping range from forest trees
to forages (Devey et al. 1994; Grattapaglia and Sederoff
1994; Plomion et al. 1995; Wilcox et al. 2001; Butcher
et al. 2002; Faville et al. 2004; Griffiths et al. 2013). How-
ever, building linkage maps in outcrossed populations is
complicated by loci having different segregation types
(STs; e.g., the number of alleles segregating in each parent)
and unknown parental phase (Maliepaard et al. 1997; Lu
et al. 2004). An early approach for performing linkage map-
ping in these populations was the pseudotestcross strategy
(Grattapaglia and Sederoff 1994), which maps the paternal
and maternal meioses independently. An alternative ap-
proach, which uses all available information, is to model
both meioses simultaneously using a multipoint likelihood
model, provided there is a sufficient number of loci segre-
gating in both parents (Van Ooijen 2011). One such model is
the Lander–Green hidden Markov model (HMM) for general
pedigrees (Lander and Green 1987). Although applicable to
full-sib family populations, computation of the Lander–
Green HMM is infeasible for moderate-to-large pedigrees
(Thompson 2000). Several variants of this model derived
specifically for full-sib family populations in diploid species
have been suggested (Ling 2000; Wu et al. 2002; Tong et al.
2010), which reduces the computational complexity by
exploiting the conditional independence between individu-
als given the parental phase.

In this article, we describe a new statistical method that
adjusts for bias in map length estimation due to errors in
genotypic data derived from sequencing. Ourmethod is based
on the Lander-Green HMM for full-sib families in diploid
species (Ling 2000; Wu et al. 2002; Tong et al. 2010) that
is applicable to multifamily and sex-specific situations, but
includes an additional component to account for errors asso-
ciated with sequencing data. The performance of the meth-
odology presented here is tested and compared with existing
full-sib family software packages, using simulations and a
real sequencing data set.

Materials and Methods

ST and parental phase

In full-sib families, the combination of alleles found in the
parental genotypes, referred to as ST, varies from locus to
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locus. A complete classification of all STs in a full-sib family
for diploid species has been given by Maliepaard et al.
(1997). For sequencing data in diploid species that typically
consists only of SNPs, the number of different alleles found
at a given locus in the parents is usually two. Consequently,
the relevant STs are AB3AB; AB3AA; AB3BB; AA3AB,
and BB3AB; where A denotes the reference allele, B de-
notes the alternate allele (maternal 3 paternal), and AA;
AB, and BB denote the reference homozygous, heterozy-
gous, and alternate homozygous genotypes, respectively.
Using the standard nomenclature of Groover et al. (1994),
we refer to the STs AB3AB as both-informative (BI),
AB3AA and AB3BB as maternal-informative (MI), and
AA3AB and BB3AB as paternal-informative (PI). To dis-
tinguish between the twoMI and PI STs, we refer toAB3AA as
MIA, AB3BB asMIB, AA3AB as PIA, and BB3AB as PIB. The
STs of AA3AA; AA3BB; BB3AA, and BB3BB are also
possible, although they are not usually classified as they pro-
vide no information of recombination in either parent, and
are hence referred to as uninformative (U). Uninformative
loci are included in this classification since it is possible for
a locus to be uninformative in one family but informative in
another.

We let Zfjk1 denote the allele on the paternally derived
chromosome and Zfjk0 denote the allele on the maternally
derived chromosome at locus j for parent k in family f, for
f ¼ 1; . . . ; F and j ¼ 1; . . . ;M: F is the total number of fami-
lies, M is the total number of loci, k ¼ 1 for the paternal
parent, and k ¼ 0 for the maternal parent. The ordered pa-
rental genotype pair (OPGP) is defined as the unique combi-
nation of Zfj11; Zfj10; Zfj01, and Zfj00: Across the four STs of BI,
PI, MI, and U, there are 16 distinct OPGPs (Table 1). Speci-
fication of the OPGP for all loci is equivalent to determining
the parental haplotypes and consequently the allelic phase of
the parents.

Data and models

Webeginbyassuming that therearenoerrorspresent. In sucha
case, the data are denoted by Gfij; the true genotype call (AA;
AB, or BB) for individual i in family f at locus j, where
i ¼ 1; . . . ;Nf and Nf is the number of individuals in family f.
We denote the vector (lengthN) of true genotypes at locus j by
G��j ¼ ðG11j; . . . ;G1N1j;G21j; . . . ;GFNFjÞT ; where N ¼PF

f¼1Nf

and the superscript T denotes the transpose. The latent inher-
itance vectors are denoted Sfij ¼ ðSfij1; Sfij0ÞT ; where Sfij1 is the
inheritance from the paternal parent and Sfij0 is the inheritance
from the maternal parent. The value of Sfijk is 0 if the allele is
derived from the parent’s maternal chromosome and 1 if the
allele is derived from the parent’s paternal chromosome. We
denote the inheritance vector (length 2N) for all individuals at

locus j by S��j ¼
�
ST11j; . . . ; S

T
1N1j; S

T
21j; . . . ; S

T
FNFj

�T
:

Lander–Green HMM: For multilocus analysis in general
pedigrees, Lander and Green (1987) proposed, using the
HMM:

PðGÞ ¼
X
S

PðS��1ÞPðG��1jS��1Þ3
YM
j¼2

PðS��jjS��j21ÞPðG��jjS��jÞ;

(1)

where S ¼ �ST��1; . . . ; ST��M�T : In HMM theory, P
�
S��jjS��j21

�
is

known as the transmission probability, P
�
G��jjS��j

�
as the emis-

sion probability, and P
�
S��1
�
as the initial distribution.

HMM for full-sib families: In its original form, the Lander–
Green HMM likelihood can be computed in OðN2MÞ steps
using the forward-backward algorithm of Baum et al.
(1970). Computing the Lander–Green HMM likelihood
quickly becomes infeasible for pedigrees of moderate-to-
large sizes. In full-sib family populations, individuals within
and between families are conditionally independent given
the OPGPs (e.g., parental phases). The HMM for full-sib fam-
ily populations is

PðGÞ ¼
YF
f¼1

YNf

i¼1

"X
Sfi�

PðSfi1ÞPðGfi1jSfi1;Zf1Þ

3
YM
j¼2

PðSfijjSfij21ÞPðGfijjSfij;ZfjÞ
#
; (2)

with Sfi� ¼
�
STfi1; . . . ; S

T
fiM

�T and Zfj ¼
�
Zfj11; Zfj10; Zfj01; Zfj00

�T
:

Using Equation 2, the computational time is reduced to
OðNMÞ; provided that the OPGPs are known for all families.

Let rj1 and rj0 denote the paternal and maternal recombi-
nation fraction, respectively, between locus j and locus jþ 1;
where these recombination fractions are constrained to the
interval ½0; 0:5�: For Equation 2, the transition probabilities
are

PðSfijjSfij21Þ¼ PðSfij1jSfij21  1ÞPðSfij0jSfij21  0Þ; (3)

where

Table 1 The OPGPs for both-informative, paternal-informative,
maternal-informative, and uninformative biallelic loci in a full-sib
family

ST OPGP Zfj11 Zfj10 Zfj01 Zfj00

BI 1 A B A B
2 B A A B
3 A B B A
4 B A B A

PIA 5 A B A A
6 B A A A

PIB 7 A B B B
8 B A B B

MIA 9 A A A B
10 A A B A

MIB 11 B B A B
12 B B B A

U 13 A A A A
14 A A B B
15 B B A A
16 B B B B
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PðSfijkjSfij21  kÞ ¼
� ð12 rj21  kÞ; Sfijk ¼ Sfij21  k;
rj21  k; Sfijk 6¼ Sfij21  k;

(4)

and the emission probabilities are

PðGfij ¼ gjSfij ¼ ðs1; s2Þ;ZfjÞ ¼
�
1; Zfj1s14Zfj0s2 ¼ g;
0; otherwise;

(5)

where 4 denotes the concatenation of two alleles to form a ge-
notype such that A4B ¼ B4A ¼ AB: When the genotype is
missing, the emission probability is P

�
GfijjSfij;Zfj

� ¼ 1 for all in-
heritance vectors.

To compute the likelihood of the full-sib family HMM,
forward recursion is used. Define afijðSfijÞ as the forward
probability which satisfies the relations

afi1ðSfi1Þ¼ pfiPðGfi1jSfi1;Zf1Þ; (6)

where pfi ¼ PðSfi1Þ; and

afijðSfijÞ ¼
X
Sfij21

afij21ðSfij21ÞPðSfijjSfij21Þ

3PðGfijjSfij;ZfjÞ (7)

for j ¼ 2; . . . ;M: Usually, the initial distribution is taken to be
2N independent Bernoulli trials (Ling 2000; Tong et al.
2010), so that pfi ¼ 1=4 for all f ; i: The likelihood of the
HMM for individual i in family f is

Lfi ¼
X
SfiM

afiMðSfiMÞ: (8)

As individuals within and between families are conditionally
independent given theOPGPs of all the parents, the likelihood
for multiple full-sib families is

L ¼
YF
f¼1

YNf

i¼1

Lfi: (9)

In situations where some loci are uninformative in thematernal
or paternal parent across all families, a slight adjustment to the
parametrization of the model is required. If the paternal (ma-
ternal) genotype at locus jþ 1 is homozygous in every family or
the paternal (maternal) genotypes at all loci from locus 1 to j are
homozygous in every family, then the recombination fraction rj1
(rj0) cannot be estimated and is excluded from the model. Un-
der this parametrization, the sex-specific recombination fraction
rj1 (rj0) is now interpreted as the probability of a recombination
in the paternal (maternal) parent between locus jþ 1 and the
previous locus that is segregating in the paternal (maternal)
parent. The model can also be specified with non sex-specific
recombination fractions (i.e., rj1 ¼ rj0), in which case this ad-
justment to the parametrization is not required.

Incorporating errors in the Lander–Green HMM: When
there is error present in the sequencing data, the genotypesGfij

are latent. The observed data are the number of reads for the
reference allele A, and alternate allele B. We denote the number
of reads for the reference allele observed for individual i in
family f at locus j by Yfij; where Yfij is an integer value between
0 and dfij; and dfij is the sequencing depth at locus j for individual
i in family f. The sequencing depth, dfij; is equal to the sumof the
number of reads for the reference and alternate alleles. We de-
note the vector (lengthN) of reference allele counts at locus j by

Y ��j ¼
�
Y11j; . . . ; Y1N1j; Y21j; . . . ; YFNFj

�T
: If Y ��j is conditionally in-

dependent between loci given G��j; which is a reasonable as-
sumption if only a single locus on each read is chosen for
linkage, then the extended HMM for sequencing data becomes

PðYÞ ¼P
S
PðS��1Þ

 P
G��1

PðY ��1jG��1ÞPðG��1jS��1Þ
!

3
QM
j¼2

PðS��jjS��j21Þ
 P

G��j
PðY ��jjG��jÞPðG��jjS��jÞ

!
:

(10)

The transmission probabilities in Equation 10 are the same as
in Equation 1. The emission probability, conditional on the
sequencing depth dfij; is

P
G::j
PðY ��jjG��jÞPðG��jjS��j

�
:

Full-sib HMM for sequencing data: If thenumberof reference
alleles observed in the sequencing data, Yfij; is conditionally in-
dependent between individuals given the true genotypes, Gfij;

then the full-sib family HMM for sequencing data is

PðYÞ ¼
YF
f¼1

YNf

i¼1

"X
Sfi�

PðSfi1Þ

3

 X
Gfi1

P
�
Yfi1jGfi1

�
P
�
Gfi1jSfi1;Zf1

�!

3
YM
j¼2

PðSfijjSfij21Þ

3

 X
Gfij

P
�
YfijjGfij

�
P
�
GfijjSfij;Zfj

�!#
: (11)

The only change in Equation 11 compared with Equation 2 is
the emission probabilities, which requires specifying the con-
ditional probabilities PðYfijjGfijÞ: Suppose that Yfij arises from a
random binomial sample of the alleles found in Gfij (Dodds
et al. 2015) and suppose that sequencing errors occur inde-
pendently between reads, then

pAA ¼ PðYfij ¼ ajGfij ¼ AAÞ ¼
 
dfij

a

!
ð12eÞa   edfij2a

pAB ¼ PðYfij ¼ ajGfij ¼ ABÞ ¼
 
dfij

a

!
ð12Þdfij

pBB ¼PðYfij ¼ ajGfij ¼ BBÞ ¼
 
dfij

a

!
ð12eÞdfij2a   ea:

(12)
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See Supplemental Material, File S1 for derivation of these
probabilities. Under these assumptions, the emission proba-
bilities for Equation 11 areX

Gfij

PðYfijjGfijÞPðGfijjSfij ¼ ðs1; s2Þ;ZfjÞ¼ pZfj1s14Zfj0s2
: (13)

Consequently, the likelihood of the HMM for sequencing data
corresponds to Equation 9, with the emission probability
P
�
GfijjSfij;Zfj

�
replaced by

P
Gfij
PðYfijjGfijÞP

�
GfijjSfij;Zfj

�
:

Inferring OPGPs

The likelihoods for full-sib families derived in the previous
sections assume that the OPGPs (or parental phases) are
known. In practice, this information is unknown, although
the OPGPs can, in some cases, be inferred from the grandpa-
rental genotype information. Nevertheless, if there is no
grandparental information, then inferenceof theOPGPsusing
progeny genotypes (assuming parents are known and accu-
rately genotyped) is required.

We initialize the value of Zfj for each locus to a default
value, that is, we initialize Zfj ¼ ðA;B;A;BÞT if the locus is
BI, Zfj ¼ ðA;B;A;AÞT if the locus is PIA, Zfj ¼ cðA;B;B;BÞT if
the locus is PIB, Zfj ¼ cðA;A;A;BÞT if the locus is MIA, and
Zfj ¼ cðB;B;A;BÞT if the locus is MIB. Inference of the OPGPs
for family f can be achieved by relaxing the constraint on rj1
and rj0 such that rj1; rj0 2 ½0; 1� andmaximizing the likelihood

Lf ¼
YNf

i¼1

X
SfiM

afiMðSfiMÞ; (14)

where afiM
�
SfiM

�
is defined as in Equations 6 and 7, and the

emission probability is P
�
GfijjSfij;Zfj

�
for inference under

Equation 2, but
P

Gfij
P
�
YfijjGfijÞPðGfijjSfij;Zfj

�
for inference un-

der Equation 11. The OPGP of locus j ¼ 2; . . . ;M can be
inferred relative to the previous OPGPs based on whether the
maximum likelihood estimates of rj21  1 and/or rj21  0 are greater
or less than 0.5, where the OPGP for the first locus is set to a
baseline value depending on its ST (see File S1 for details).

Implementation

An implementation of the newmethodology presented in this
article can be found in the GUSMap (Genotyping Uncertainty
with Sequencing data and linkage Mapping) software, which
is freely available as a package for the programming language
R (R Core Team 2017) and can be downloaded from https://
github.com/tpbilton/GUSMap. Maximum likelihood estimates
can be obtained using the expectation-maximization algo-
rithm (Dempster et al. 1977) or directly, using numerical
optimization (see File S1 for details). In this article, the
expectation-maximization algorithm was used in all analyses.

Software comparison

Using simulated and real data, the performance of GUSMap
v0.1.1 (GM)was compared to the four linkagemapping software

packages:CRI-MAP2.507 (CM) (Green et al.1990), JoinMap4.1
(JM) (Van Ooijen 2011), Lep-MAP2 (Rastas et al. 2016), and
OneMap v2.0-4 (OM) (Margarido et al. 2007), all of which are
commonly used for full-sib family populations. In general, the
default parameter settings were used, except for JM and Lep-
MAP2. In JM, the threshold for determining linkage was set to
zero in order for a completemap tobe computed in every data set
and the maximum likelihood algorithm was used. For Lep-
MAP2, detection of duplicate loci was removed (argument
removeDuplicates=0). In addition, Lep-MAP2 includes estima-
tion of an error parameter for each locus and was implemented
using two sets of parameter options. The first corresponds to the
model that includes error parameters, referred to as LM2e, while
the second corresponds to the exclusion of all error parameters
(arguments learnErrorParameters = 0 and initError = 0) and is
referred to as LM2. For all packages, non sex-specific recombi-
nation fractions (rj1 ¼ rj0) were computed.

With sequencing data, some genotype calls may result in
apparentMendelian errors, which occurwhen a genotype call
for a PIA or MIA locus is homozygous for the alternate allele,
or a genotype call for a PIB or MIB locus is homozygous for the
reference allele. Genotype calls determined to be aMendelian
error were set as heterozygous, since the packages CM, JM, and
OM either cannot handle data sets with these errors present or
output warning messages. Mendelian errors were not corrected
withGMas they are accounted for in theHMM. In addition, some
heterozygous genotype calls in the sequencing data were sup-
ported by over nine reads for one allele but only a single read
for the other allele. As these genotype calls are likely to be
sequencing errors, they were set to missing for the standard
packages, but not for GM, as they provide information used to
estimate the sequencing error parameter e.

Simulation

Sequencingdatawere simulatedusingthefollowingprocedure.
Inheritance vectors for progeny were generated based on the
true parental recombination values, assuming no interference
andequal probability of thefirst locus beingderived fromeither
parent. These inheritance vectors were converted to genotype
calls for a prespecified set of OPGPs. From these genotype calls,
simulated sequencing data sets were generated as follows: a
sequencing depth at each locus in each individual was gener-
ated by simulating realizations from a negative binomial dis-
tribution with mean mdj and dispersion parameter of 2:

Pðdfij ¼ dÞ ¼ Gðdþ dÞ
d!GðdÞ

�
d

mdj þ d

�d� mdj

mdj þ d

�d

; (15)

where d ¼ 2;mdj is themean sequencing depth for locus j, and
Gð�Þ denotes the gamma function. A sample of dfij alleles are
found by randomly sampling the alleles of the true genotype,
Gfij; with replacement, where a miscall of the sampled allele
(e.g., a B allele called as A and vice versa) occurred with
probability e.

Two sets of simulationswere conducted. In thefirst set, the
performance of the five software packages is examined and
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compared under different mean read depths and sequencing
error rates. This set consisted of simulating a 1000 single full-
sib families (F ¼ 1) with 100 offspring (N1 ¼ 100), 12 loci
(M ¼ 12), and a fixed recombination rate of 1% in both par-
ents (rj1 ¼ rj0 ¼ 0:01). The STs and OPGPs of the loci are
given in Table S1 in File S2. Different combinations of mean
read depth mdj; and sequencing error e were used, where the
mean read depth was either low (mdj ¼ 2), moderate
(mdj ¼ 10), or high (mdj ¼ 20), and the sequencing error rate
was either absent (e ¼ 0), small (e ¼ 0:002), or large
(e ¼ 0:01). To remove errors associated with low sequencing
depth, the simulated data were filtered such that all genotype
calls with an associated read depth below some thresholdwere
set to missing. The threshold used was 11 for the high depth
setting (mdj ¼ 20), six for the moderate depth setting
(mdj ¼ 10), and was not applied for the low depth setting
(mdj ¼ 2) since an insufficient number of nonmissing ge-
notypes would remain. This filtering step was not performed
for GM as it models undercalled heterozygous genotypes.

The second set of simulations investigates the optimal
sequencing depth for a given sequencing effort (defined as
the number of individuals times the number of loci times the
mean read depth). The parameters used in this set corre-
sponded to those in the previous set, with the exception that
the sequencing error rate was fixed at 0.2% (e ¼ 0:002), the
number of individuals was varied, and the mean read depth
was set such that an average sequencing effort of 10,000 was
maintained. Recombination fractions were estimated using
GM, assuming a known OPGP.

The code for implementing the simulations is found in File
S3. GM, CM, LM2, LM2e, and OM were all run on a Linux
desktop computer with four Intel Core i7-870 central pro-
cessing units running at 2.93 GHz frequency, while JM was
run on a Windows 10 Enterprise desktop computer with
four Intel Core i7-3770 central processing units running at
3.40 GHz frequency. As JM has no scripting functionality, it
was automated using a custom C# script coupled with a
coded user interface test, a program which can automate
mouse clicks and keyboard strokes on Windows operating
systems.

M�anuka data

A single full-sib biparental family (n ¼ 180) of m�anuka (Lep-
tospermum scoparium, J.R. Forst. and G. Forst.; Myrtaceae) de-
rived from a reciprocal pair-cross of heterozygous individuals,
was genotyped along with the parents, using a genotyping-by-
sequencing approach (Elshire et al. 2011). Samples consisted of
young expanding leaves collected from 3-month-old seedlings
grown in the glasshouse. Two genotyping-by-sequencing librar-
ies were prepared based on the Elshire method (Elshire et al.
2011), using a double digest with the restriction enzymes
ApeKI/MspI and sequenced at AgResearch, Invermay, Animal
Genomics laboratory. A size selection step was performed on
the DNA such that the genomic part of each read was between
27 and 377 bp. The samples were sequenced on an Illumina
HiSeq 2500 v4 chemistry producing 13 100 single end reads.

Each genotyping-by-sequencing library was sequenced on two
lanes of a flow cell generating�29.2 Gbp of raw sequence data
per lane. The parents were run on both lanes to obtain higher
sequencing depths, while each progeny was run on one of the
two lanes. Quality control was performed using DECONVQC
(https://github.com/AgResearch/DECONVQC)andKGD(Dodds
et al. 2015). Three progeny samples were discarded, one due
to having a sample call rate ,0.05 and two others due to
being identified as duplicate samples. Sequence reads were
mapped using Bowtie2 version 2.1.0 (Langmead and Salz-
berg 2012) and SNP variants were called using Tassel3 ver-
sion 3.0.173 (Bradbury et al. 2007).

To compare GM to the other packages, only variants called
on chromosome 11 were retained for further analysis, with
additional filtering performed as follows. SNPs with a minor
allele frequency,0.05 or 20% or more missing genotypes (e.
g., a read depth of zero) were discarded (6205 in total). The
ST of each SNP was inferred based on the parental genotypes
provided that the read depth for both parents was.5, where
603 SNPs were discarded because the ST could not be
inferred. A segregation test was performed on each SNP using
the chi-square test, where a P-value of 0.05 was used and the
expected counts were adjusted for low read depths (see File
S1 for details). This resulted in another 964 SNPs being dis-
carded. To ensure that each read only contained a single
variant, adjacent SNPs were placed into bins if the distance
separating them was ,180 bp, with one SNP from each bin
retained for the final analysis by random selection. A further
401 SNPs were removed leaving 680 SNPs with 270 PI,
294 MI, and 116 BI loci. These data are available in the R
package GUSMap. The percentiles of the distribution of the
mean depth across SNPs and individuals are given in Table S2
in File S2. The level of filtering used here is typical of se-
quencing data (with the exception of no depth filtering)
and was chosen to aid comparison between GUSMap and
the other four packages.

To assess SNP ordering on chromosome 11, heatmaps of
two-point recombination fraction estimates between all SNPs
segregating in the same parent were produced. GM was used
to compute the two-point estimates (with e ¼ 0), where the
phase between the SNP pair was taken as the one which
maximized the likelihood value. Linkage maps were com-
puted using two independent sets of SNPs: a low depth set
consisting of all the SNPs with a mean read depth below six
and a high depth set which was obtained by setting all geno-
type calls with a read depth below 20 tomissing and selecting
all the SNPs, such that a call rate of at least 80% was main-
tained. In total, there were 95 low depth SNPs and 54 high
depth SNPs.

Data availability

The m�anuka data set used in this article is available in the
software package GUSMap (https://github.com/tpbilton/
GUSMap). Code for generating the simulated data are found
in File S3. Supplementary methods are given in File S1 and
supplementary tables and figures are given in File S2.
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Results

Simulations

The distribution of the overall map distance estimates obtained
using thevarious softwarepackages in thefirst set of simulations
is given in Figure 1, while the distribution of the recombination
fraction estimates for each simulation are given in Figures S1–
S9 in File S2. Across all simulations, LM2, OM, and CM per-
formed similarly and at high depth with no sequencing error,
gave relatively unbiased estimates.However, atmoderate depth
with no sequencing error, the overall map distance estimates
from LM2, OM, andCMwere slightly larger than the true value,
which suggests that the cut-off of six has not removed all errors
associated with low sequencing depth. The bias in the map
distance and recombination fraction estimates increased as
the level of sequencing error increased for the high and mod-
erate depth scenarios. In comparison, JM produced maps that
were on average slightly longer and more biased across all the
low andmoderate depth simulations. These inflatedmaps seem
to be driven by biases in the recombination fraction estimates
for r4 and r5 (see Figures S1–S6 in File S2), particularly when
the sequencing error was small or absent. These parameters all
include one locus in the region between locus 4 and locus 6,
where a PI locus is between twoMI loci. As JMuses only a three-
point approach, the lack of informativeness between adjacent
loci in this region may explain the observed bias.

LM2e was able to produce accurate estimates of the re-
combination fractions and overall map distance when the
sequencing error was absent or low for the moderate and
high read depth scenarios. Nevertheless, when the sequenc-
ing error was large, LM2e produced biased estimates of the
overall map distance, which was driven by large biases in the
recombination fraction estimates that include an outside lo-
cus (see Figures S3 and S6 in File S2). At low depth, the four
existing software packages all gave very map distance esti-
mates across all of the various sequencing error rates, which
was expected given the large number of errors in the data. Of
these methods, LM2e performed the best although its map
distance estimates were still �4–5 times larger than the true
value (Figure S10 in File S2). In addition, the recombination
fraction estimates for LM2e at low depth were biased (see
Figures S7–S9 in File S2), although for the middle sections
of the map the bias was in both directions resulting in less
inflation of the overall map distance but a distortion of the
SNP distribution across the linkage map. In contrast, GMwas
the only package which was able to give accurate estimates of
the overall map distance and recombination fractions across
all simulation scenarios.

Thedistributionof the sequencing error estimates obtained
from GM are given in Figure 2. For the high and moderate
depth simulations, the estimates were relatively accurate,
while there was a small bias for the low depth simulations.
The variability in the estimates increased as the mean read
depth decreased, which was expected given there was more
variability in the data at low depths.

Figure 3 gives the distribution of computation time re-
quired for each package across all scenarios of the first set
of simulations. Of all the packages, LM2 was the fastest, re-
gardless of whether the error parameters were included,
while CM, GM, and OM were �3, �5, and �45 times slower
than LM2, respectively. As JM is a nonscripting program, pro-
viding a sensible measure of computation time is difficult. For
these simulations, the time recorded was only for the step to
compute the map, which on average required four times
more time than LM2, but did not include the extensive user
interaction time needed to import the data and create the
required nodes.

The percentage of data sets in which the vector of OPGPs
was correctly inferred in thefirst set of simulations is displayed
in Table 2. For the moderate and high depth simulations,
all packages apart from JM were able to correctly infer the
OPGPs, regardless of the amount of sequencing error present.
For the low depth simulations, only GM and LM2e were able
to correctly infer phase across all the simulations, while OM
rarely inferred phase correctly and LM2 incorrectly inferred
phase for a few data sets. There were a small number of
phasing errors for JM across the various scenarios, with the
frequency of these errors increasing as the number of errone-
ous genotypes increased. For CM, phase inference was not

Figure 1 Distribution of the map distance estimates for the first set of
simulations across varying mean read depths (rows) and varying sequencing
error rates (columns). The solid point represents the mean; the vertical solid
line represents the interquartile range; the vertical dashed line represents
the range between the 2.5th and 97.5th percentiles; the five horizontal
solid lines represent, in ascending order, the 2.5th percentile, lower quan-
tile, median, upper quantile, and 97.5th percentile; and the horizontal black
dotted line represents the true parameter value. Map distances are in cen-
timorgans and were computed using the Haldane mapping function.

Genetic Maps from Sequencing Data 71

http://www.genetics.org/highwire/filestream/441890/field_highwire_adjunct_files/1/FileS2.pdf
http://www.genetics.org/highwire/filestream/441890/field_highwire_adjunct_files/1/FileS2.pdf
http://www.genetics.org/highwire/filestream/441890/field_highwire_adjunct_files/1/FileS2.pdf
http://www.genetics.org/highwire/filestream/441890/field_highwire_adjunct_files/1/FileS2.pdf
http://www.genetics.org/highwire/filestream/441890/field_highwire_adjunct_files/1/FileS2.pdf


required since it implements the Lander–Green HMM for
general pedigrees.

For the second simulation set, the sum of the mean square
errors of the recombination fractionestimates verses themean
depth is given in Figure 4. This plot suggests that the optimal
sequencing depth was around three or four as the smallest
mean square error occurred around these depths.

M�anuka data

Heatmaps of two-point recombination fraction estimates for
SNPs located on chromosome 11 are given in Figure S11A
(paternally segregating SNPs) and Figure S11B (maternally
segregating SNPs) in File S2. A number of SNPs appeared
either to be incorrectly ordered on the chromosome or lo-
cated on the wrong chromosome and were discarded from
the analysis (164 in total). Heatmaps of the remaining SNPs
(Figure S11, C and D in File S2) suggest that the order of
these SNPs was fairly accurate. For this analysis, we assume
that this order is correct.

Linkage maps of chromosome 11 were computed for both
the low depth and high depth set of SNPs using GM and the
standard software packages. These linkage maps are given in
Figure S12 in File S2 (all maps) and Figure 5 (maps that
were ,150 cM), with the overall map distance estimates
given in Table 3. For the low depth set, the maps obtained
from LM2, OM, CM, and JM were between eight and nine

times longer compared to the high depth set. These inflated
map estimates were expected given the substantial propor-
tion of undercalled heterozygous genotypes present at low
depth and is consistent with the simulation results. Com-
pared to GM and LM2e at high depth, LM2e produced a
map that was�20 cM longer when using the low depth SNPs,
with large distances between SNPs at the chromosome ends.
For the high depth setting, the maps produced by LM2e and
GM were similar in length and shorter than the maps obtain
using LM2, OM, CM, and JM by �30 cM. This suggests that
there was sequencing error present in this data set, where
both LM2e and GM are accounting for these errors. The over-
all map distance estimated using GM was consistent across
both SNP sets at �76 cM, with estimated sequencing error
rates of 0.32% for the low depth SNPs and 0.20% for the high
depth SNPs. Overall, these results resemble those observed in
the simulations and suggests that GM has accounted for most
of the errors present in both the low and high depth settings.
In terms of phasing, all packages inferred the same phase
under both SNP sets, apart from CM which does not require
parental phase to compute the recombination fractions.

Discussion

We have developed a new statistical method for constructing
genetic maps from a set of ordered loci on outcrossed full-sib
families in diploid species that have been genotyped using

Figure 2 Distribution of sequencing error estimates obtained from GM
for various combinations of mean read depths and sequencing error
rates. The solid point represents the mean; the vertical solid line repre-
sents the interquartile range; the vertical dashed line represents the range
between the 2.5th and 97.5th percentiles; the five horizontal solid lines
represent, in ascending order, the 2.5th percentile, lower quantile, me-
dian, upper quantile, and 97.5th percentile; and the horizontal black
dotted lines represent the true parameter values.

Figure 3 Distribution of log transformed computational time (in seconds)
used on each data set across all nine simulation scenarios for the first set
of simulations and each software package. The solid point represents the
mean; the vertical solid line represents the interquartile range; the vertical
dashed line represents the range between the 2.5th and 97.5th percen-
tiles; and the five horizontal solid lines represent, in ascending order, the
2.5th percentile, lower quantile, median, upper quantile, and 97.5th
percentile.
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multiplexing sequencing methods. Our methodology uses a
HMM approach to overcome the issues associated with map-
ping in full-sib families and toaccount for errors resulting from
low sequencing depth and miscalled bases. In addition, our
methodology is applicable to multi-family and sex-specific
situations and has been implemented in the software package
GUSMap.

Simulation results show that GUSMap was able to accu-
rately estimate the recombination fractions and overall map
distance for varying sequencing error rates and mean read
depth scenarios. In contrast, most of the other software
packages were unable to produce reasonable results when
there were errors present in the data, resulting in biased
estimates. Specifically, the overall map distances obtained
were inflated, which is known to occur in linkage mapping
when genotypes errors are present and not taken into account
(Lincoln and Lander 1992; Cartwright et al. 2007). Of all the
standard software programs, the implementation of Lep-
MAP2 that included error parameters was least sensitive to
map inflation and able to provide reasonable results when
the number of erroneous genotypes was not too large. How-
ever, in low coverage settings, it still contained substantial
bias in the map distance estimates and distortion in the SNP
distribution across the map. Maps produced by CM, OM, and
Lep-MAP2 without an error parameter were similar since
these packages are essentially implementing the samemodel.
In comparison, JM tended to produce maps that were slightly
longer in length.

Them�anuka analysis suggests that GUSMap performswell
under real-life low depth sequencing scenarios. This observa-
tion is based on the fact that GUSMap produced consistent
estimates of the overall map distance from two independent
set of SNPs with different sequencing coverage, and gave a
similar map length compared with LM2e at high depth. In
contrast, the other packages all produced hugely inflated ge-
netic maps, except for LM2e, although there still appeared to
be some inflation under the low depth setting. This analysis
shows that GUSMap is able to reduce map inflation caused by
errors in the data and provide better linkage maps and esti-
mates of overall map distance, particularly in low coverage
scenarios.

Of the software packages considered in this paper, only
Lep-MAP2 and GUSMap account for errors using information

provided by the observed data. For Lep-MAP2, estimation of
these errors seems to be based on detecting double recombi-
nants. Thus, the error parameters for the end loci are always
zero, since double recombinants cannot be counted, resulting
in bias for recombination fraction estimates that include an
outside locus when these loci contain erroneous genotype
calls. Furthermore, for situations when many errors are pre-
sent in thedata, suchas lowcoveragedata, determiningwhich
genotypes are incorrect based on double recombinants is
difficult. GUSMap, on the other hand, uses the allele count
information to model errors due to missing parental alleles
and sequencing errors. In particular, it is able to differentiate
between the two error types, allowing it to produce accurate
maps in low coverage scenarios. What is more, GUSMap can
account for errors associated with low read depths in a two-
point analysis, which is not the case when error estimation is
based on detecting double recombinants. This is useful for
producing heatmaps of two-point recombination fraction
estimates to examine chromosomal ordering. GUSMap also
uses only a single parameter to model sequencing error,
whereas LM2e specifies a separate error parameter for each
locus. Consequently, GUSMapmakes the assumption that the
sequencing error rate is constant across individuals and loci.
In practice, this assumption may not hold, although the
m�anuka results suggest that it may be reasonable in some
situations.

Table 2 Percentage of simulated data sets in which the vector of
OPGPs was correctly inferred

Mean depth Sequencing error
Software package

mdj
e GM LM2e LM2 OM JM

20 0 100.0 100.0 100.0 100.0 99.9
0.002 100.0 100.0 100.0 100.0 100.0
0.01 100.0 100.0 100.0 100.0 98.8

10 0 100.0 100.0 100.0 100.0 99.9
0.002 100.0 100.0 100.0 100.0 100.0
0.01 100.0 100.0 100.0 100.0 99.4

2 0 100.0 100.0 99.9 2.8 94.0
0.002 100.0 100.0 99.6 3.6 94.8
0.01 100.0 100.0 99.6 4.5 93.2

Figure 4 Sum of recombination fraction estimates mean square errors
for fixed sequencing effort. Recombination fraction estimates were com-
puted using GM, where the OPGPs was known and the sequencing effort
was fixed at 10,000 reads. The parameters used to generate the data sets
corresponds to the first set of simulations, with the exception that the
mean depth and number of individuals were set to maintain a sequencing
effort of 10,000 reads. The sum of the mean square errors was calculated
using

P11
j¼1MSEð̂rjÞ: The number of individuals range from 833 for a

mean depth of 1 to 55, for a mean depth of 15.15.
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Simulation results suggest that GUSMap is able to provide
reasonably accurate estimates of the sequencing error rate,
although there was a small bias at low depth. For the m�anuka
data, the estimates from GUSMap suggest that between 0.2
and 0.3% of the reads in the filtered data were sequencing
errors, although there was discrepancy in the sequencing
error rates estimated between the two SNP sets. This discrep-
ancy could be due to natural variation since the sequencing
error estimates at low depth are highly variable. Alterna-
tively, the high depth SNPs with large sequencing errors
may have been removed through the filtering process as de-
tection of these SNPs would be easier since the sequencing
errors are not confounded with errors resulting from low
depth.

Nearly all full-sib family software packages require infer-
ring parental phase. Phasing errors can result in estimates that
are close to or equal to 0.5. GUSMap and Lep-MAP2 were
mostly able to correctly infer phase across all the simulations.
Both of these packages use a similar phasing approach in that
they infer phase based on sex-specific recombination fractions
estimated on the interval ½0; 1� using a multipoint likelihood
containing all the loci. In contrast, OM failed to correctly infer
phase in the low depth simulations, which suggests that
phase inference based on maximizing the likelihood value

is unreliable in the presence of severemodel misspecification.
JM also failed to infer phase in some data sets, which suggests
that phasing using a multipoint approach can be superior to
using a three-point approach. The ability to correctly infer
phase also depends on a number of factors; namely, the den-
sity of the markers, the family size, and for sequencing data,
the average sequencing depth. Simulation results (Figure
S14 in File S2) suggest that GUSMap is able to infer phase
for low coverage data provided the maps are at moderate-to-
high density, the mean read depth is at least two, and there
are at least 25 progeny in the family.

A number of assumptions have been made in the method-
ology we have outlined. First, the order of the loci is assumed
to be known beforehand, which is often not the case with
sequencing data, particularly for de novo assemblies. One
approach to ordering loci is to evaluate the likelihood under
different chromosomal orders, where the best order is the
one that gives the highest likelihood value. This approach is
feasible for improving order locally, provided that the initial
order is fairly accurate, but is impractical for ordering large
number of loci that are randomly ordered. A reasonable ini-
tial order could be computed by combining two-point esti-
mates obtained fromGUSMapwith existing ordering algorithms.
More research is required to investigate loci ordering in low
coverage settings. Another assumption is that all the parental
genotypes are known for all loci, so that the STs can be de-
termined unequivocally. In practice, all the parents will be
sequenced using multiplexing methods and therefore are
subject to the same type of genotyping errors as the progeny.
One way to circumvent this issue is to sequence the parents
multiple times to obtain higher sequencing depths, although
this still results in some loci having insufficient depths to
accurately infer the ST. Alternatively, if there is a sufficient
number of individuals in each family, the ST of each locus
could be inferred from progeny genotypes using a segrega-
tion test. Other assumptions include independence of the
reads observed in the sequencing data between loci, which
is a reasonable assumption provided there is only a single
locus on each read, and the sampling of the alleles from the
true genotype is random. For the latter assumption, the prob-
abilities in Equation 12 can be adjusted to reflect any prior
knowledge of the sampling of the true genotypes (e.g., pref-
erential sampling of alleles). This methodology is limited to
autosomal biallelic loci in diploid species or functionally dip-
loid species (e.g., allopolyploids). Extension of this method-
ology to allosomal (sex-linked) loci and multiallelic loci
(e.g., microsatellite markers) would require deriving the correct
emission probabilities in Equation 12 for the HMM.

Figure 5 Subset of linkage maps for SNPs on chromosome 11 of m�anuka
computed using the various software packages. Low depth refers to the
maps produced using SNPs with a mean read depth below 6, while high
depth refers to maps produced using SNPs with ,20% missing data after
setting genotypes with a read depth below 20 to missing. Map distances
are in centimorgans and were computed using the Haldane mapping
function. The rounded rectangles represent the chromosomes and the
horizontal lines represent the SNPs. Different sets of SNPs are used in the
low and high depth sets. See Figure S13 in File S2 for a plot of the genetic
distance verses the physical distance for each these maps.

Table 3 Overall map distance estimates (centimorgan) for
chromosome 11 of m�anuka

SNP set GM LM2e LM2 OM CM JM

Low depth 76.1 104.8 990.0 989.1 977.1 950.7
High depth 75.3 79.9 108.2 108.7 108.7 117.9

Map distances were computed using the Haldane mapping function.
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GUSMap provides researchers with a tool to compute ge-
netic maps from a set of ordered loci using sequencing data
and overcomes a number of issues related to this data. First, it
is able to handle varying sequencing depths across SNPs,
which is typical of sequencing data, allowing more SNPs to
be utilized that would otherwise be discarded in a high depth
analysis. Second, SNPs called in the bioinformatics process
must meet aminimal set of filtering criteria, which is aimed at
removing erroneous genotypes and fictitious SNPs. GUSMap
removes the need for filtering genotyping calls based on read
depth information or skewed apparent segregation and cor-
recting erroneousgenotypes throughdetectingdouble recom-
binants. This allows researchers to use low coverage data,
especially when cost constraints may prohibit the production
of sufficiently high coverage data, to construct genetic maps.
Another advantage of GUSMap is its use of a statistical ap-
proach to model errors, which allows it to be combined with
existing statistical techniques to make inference on model
parameters, such as quantifying the rate of sequencing
errors, and assessing modeling assumptions. Although
the methodology of GUSMap is derived specifically for out-
bred full-sib populations, it can also be applied to inbred
backcross populations, since the ST of all the loci are either
PI orMI, and inbred F2populationswhere the STof all the loci
are BI.
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