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Abstract This paper presents an accurate nonlinear clas-

sification method that can help physicians diagnose seizure

in electroencephalographic (EEG) signal characterized by a

disturbance in temporal and spectral content. This is

accomplished by applying four steps. First, different EEG

signals containing healthy, ictal and seizure-free (inter-ic-

tal) activities are decomposed by empirical mode decom-

position method. The instantaneous amplitudes and

frequencies of resulted bands (intrinsic mode functions,

IMF) are then tracked by the direct quadrature method

(DQ). In contrast to other approaches, DQ cancels the

effect of amplitude modulation on frequency calculation.

The dissociation between instantaneous amplitude and

frequency information is therefore fully achieved to avoid

features confusion. Afterwards, the Shannon entropy val-

ues of both sets of instantaneous values (amplitudes and

frequencies)—related to every IMF—are calculated.

Finally, the obtained entropy values are classified by ran-

dom forest tree. The proposed procedure yields 100%

accuracy for (healthy)/(ictal) and 98.3–99.7% for (healthy)/

(ictal)/(interictal) classification problems. The suggested

method is hence robust, accurate, fast, user-friendly, data

driven with open access interpretability.

Keywords EEG � Forest tree � Ictal � Direct quadrature �
Decomposition � Entropy � Instantaneous

1 Introduction

Electroencephalography (EEG) is a medical technique that

reads scalp electrical activity generated by brain structures.

It is an accurate tool for identification of various types of

abnormalities in brain. Epilepsy seizure is one of those

complex abnormalities detected by EEG. It is a disturbed

electrochemical release in a large cell population. That

affects the quality of life of the patient, causing social

impairment and a higher risk of death [1]. The spectral and

temporal content analysis of EEG signals provides helpful

information about the nature of seizure. However, the tool

of analysis applied to EEG must be adapted to the char-

acteristics of non-stationary non-linear brain activities.

Several approaches have been applied to EEG signals

with the intention of identification of normal, ictal and

inter-ictal activities; the latter of which being seizure-free

segments occurring between seizure (ictal) fragments. The

studies utilize time-domain, frequency-domain, time–fre-

quency and spatial features [2, 3]. In [4], a difference in the

synchronization level has been observed between EEG

seizure and seizure-free intervals. The seizure EEG signals

were found to be less random, more nonlinear-dependent,

more stationary with comparatively different amplitude

level [5–9]. Consequently, every tool utilised for seizure

pattern recognition should have the capability to take these

main variations into account. In [10], empirical mode

decomposition (EMD) [11] has been employed to extract

the inherent sub-bands (intrinsic mode functions, IMF) of a

number of EEG signals. The mean frequencies of the

resulted IMFs are then computed from the Fourier–Bessel
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series and used as the main features of classification. In the

works of [1, 12–21], EMD has also been used as the first

step. Nonetheless, the exploited features are different. The

authors exploited a variety of parameters related to the

obtained IMFs: the mean frequencies calculated by Hilbert

Transform, the local patterns, the variation coefficients, the

fluctuation indices, the entropy measures, the area calcu-

lated from the analytic signals, difference plots and phase

space representations. In [22], EEG sub-bands have been

realized by filtering. Approximate entropy values are sub-

sequently calculated. In [23–26], Wavelet Transform (WT)

has been the chosen method for sub-bands calculation. In

[27–29], entropy values of EEG components, found by

WT, were selected as classification features. In [30], frac-

tional energy on specific Short-Fourier Transform windows

has been the feature used for seizure classification. In [31],

approximate entropy of EEG amplitude values has been

calculated and classified using neural networks. The

authors of [32] exploited the properties of Fast Fourier

Transform to classify epileptiform EEG using decision tree

classifier. In [33], fractional energy values of EEG com-

ponents, found by pseudo-Wigner–Ville distribution, have

been classified via neural networks. In [34], Lyapunov

exponents of EEG signals have been utilized as features

serving for seizure pattern recognition. The last step in all

of the previous studies is the statistical processing of

extracted features in order to attempt seizure pattern

recognition. Various methods have been applied: nearest

neighbour classifiers, decision trees, neural networks,

support vector machines, and adaptive neuro-fuzzy systems

[33].

The processing of seizure segments necessitates a tool

that can adapt to EEG non-stationary and non-linear

characteristics and does not imply pre-models [10, 13, 14].

Fourier Transform assumes stationary characteristics.

Short-Fourier (SFT) and Wavelet Transforms (WT) assume

linear properties as indicated by the first author of the

present work in [35]. Furthermore, involving a specific

mother wavelet in EEG processing implies a pre-model for

analysis and spectral/time resolution. Investigations based

on SFT and WT should therefore be complex enough in

order to compensate the points of weakness and to turn into

data-driven. On the other hand, nonlinear empirical mode

decomposition can adaptively and intuitively represent

non-stationary signals as sums of zero-mean locally sym-

metric mono-components AM–FM components (IMFs)

[11]. The extracted components are speculatively associ-

ated with specific physiological aspects of the phenomenon

investigated. EMD method is data driven, intuitive, not

time consuming, does not need a predefined model and

does not involve concepts of frequency or time resolution.

As indicated, a number of studies have exploited the

advantages of EMD for EEG seizure analysis. The highest

obtained accuracy values were found when both local

temporal and spectral features were utilized [12]. However,

the effect of temporal amplitude modulation on extracted

spectral features leaded to a reduction of accuracy. In the

present paper, direct quadrature (DQ) method is applied to

EEG IMFs in order to extract instantaneous amplitudes and

frequencies features. In contrast to other approaches, DQ

cancels the effect of amplitude modulation on frequency

calculation. The dissociation between instantaneous

amplitude and frequency information is therefore fully

achieved to avoid features confusion. Shannon entropy

values of resulted instantaneous values are subsequently

calculated.

Open-interpretability and fast processing are essential

characteristics that should be included by every EEG sei-

zure analyzer. The highest classification accuracy values

have been obtained in previous works [25, 33] when neural

networks were exploited. However, the inherent classifier

pathways in neural networks are relatively ‘‘Black boxes’’

with slow algorithms. Forest random tree is therefore uti-

lized in the present work for features classification. In

contrast to neural networks, transparency of tree classifier

is important advantage that can help physicians understand

the underlying mechanisms in seizure. Furthermore, fast

treatment is a promising benefit for eventual seizure

prediction.

2 Materials and Methods

The overall procedure of the present work is illustrated in

Fig. 1. EEG signals (normal, ictal and inter-ictal) are

decomposed by EMD. Resulted IMF are then analyzed by

direct quadrature method in order to calculate instanta-

neous amplitudes and frequencies. Shannon entropy of

issued instantaneous values are then classified by random

forest tree. Finally, classification results are statistically

assessed. In the following sections, details about used EEG

dataset, decomposition, direct quadrature elements, entropy

calculation, feature classification and statistical assess-

ments, respectively, are presented.

2.1 Dataset

The EEG dataset presented in [36] is used. The data set

includes single channel EEG from healthy and epileptic

subjects. The data has five subsets denoted as A_Z, B_O,

C_N, D_F and E_S, each containing 100 single channel

recordings, each one having 23.6 s in duration. The sam-

pling frequency of the data is 173.61 Hz. The subsets A_Z

and B_O have been recorded extra-cranially. They have

been acquired using surface EEG recordings of five healthy

volunteers with eyes open and closed respectively. Subsets
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D_F and C_N have been measured in seizure-free intervals

from five patients in epileptic zone and from hyppocampal

formation of opposite hemisphere of the brain, respec-

tively. The subset E_S contains seizure activity selected

from all recording sites exhibiting ictal activity [12]. The

data bandwidth is [0.5–85] Hz. In the present paper, the

subsets A_Z, C_N, D_F and E_S are used.

2.2 Decomposition

EMD, developed in [11], is a method applied to extract all

the oscillatory modes (IMF) embedded in a signal in non-

stationary or non-linear conditions. It is data driven, has no

difficulties associated with resolution issues and its

extracted modes are related to inherent processes. In every

extracted IMF, the maximum allowed difference between

the number of extrema and the number of zero crossings is

one. Besides, the local average of the upper and lower

envelopes is zero. These properties permit subsequent

calculation of instantaneous frequency and amplitude. The

sifting process for extracting IMFs from a signal consists

of: first, the identification of all of the maxima and minima.

Second, the generation of upper and lower envelopes by

cubic spline interpolation and the calculation of point-by-

point mean from the envelopes. Third, the extraction of the

detail which is the result of subtraction of the obtained

point-by-point mean from the signal. The detail should

satisfy the two previously mentioned IMF properties in

order to be considered as an IMF. Fourth, the replacement

of the original signal with the residual (signal-detail); it is

to be considered as the signal for the subsequent IMF

calculation. However, if the detail does not meet the

requirements, the steps 1–3 should be repeated (iterated)

and applied to the detail until it satisfies the two criteria.

Finally, the original signal can be expressed as the sum-

mation of all of the resulted amplitude modulated-fre-

quency modulated (AM–FM) details and the final residual.

In the present paper, decomposition of used EEG signals

has been realized by MATLAB. The maximum number of

sifting iterations is 2000.

2.3 Direct Quadrature

The DQ [37] principle is based on the separation of the two

effects of amplitude and frequency modulation. Normal-

ization helps remove the effect of amplitude modulation in

order to measure the correct instantaneous frequency by the

Hilbert transform. Amplitude normalization is performed

relative to the envelope of the IMF considered as given by

the following equation:

f1ðkÞ ¼
IMFðkÞ
e1ðkÞ

; f2ðkÞ ¼
f1ðkÞ
e2ðkÞ

� � � fnðkÞ ¼
fn�1ðkÞ
enðkÞ

ð1Þ

where n is the number of normalizations performed. The

term IMF (k) represents the kth sample of IMF. fn (k) is the

frequency modulated component. en (k) is the envelope

passing through the maxima of absolute values of fn-1 (k)

and conducted by the same approach used to calculate the

envelope in EMD. The selected number of successive

normalizations n in the present work is 5. Hilbert transform

can then be calculated in order to find the correct instan-

taneous frequency and amplitude [12]. The proposed

method is applied by MATLAB to all IMFs resulted from

every EEG signal decomposition. Instantaneous frequency

and amplitude values can be found by Hilbert transform

[38, 39] as the instantaneous pulsation and amplitude of the

complex analytic signal. The imaginary part of the analytic

signal can be calculated by the following formula:

yðtÞ ¼ 1

p
lim
2!0þ

Zt�2

t�1=2

xðsÞ
t � s

dsþ
Ztþ1=2

tþ2

xðsÞ
t � s

ds

0
B@

1
CA ð2Þ

where x(t) is the resulted IMF and is considered as the real

part.

2.4 Shannon Entropy

Shannon entropy is given by:

Fig. 1 Suggested steps of EEG signals classification
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H ¼ �
X
i

pi logb pi ð3Þ

where pi is the probability of a value i showing up in a stream

of data. Shannon entropy values of the resulted instantaneous

frequencies and amplitudes, of the IMFs issued from all used

EEG signals, have been calculated by MATLAB.

2.5 Classification and Validation

The classification has been realized by Forest Random tree

[40] and k-fold stratified cross-validation approaches via

WEKA (Waikato Environment for Knowledge Analysis)

software. A random tree considers randomly a number of

chosen attributes at each node. In k-fold cross-validation,

the original sample is randomly partitioned into k equal

sized subsamples. Of the k subsamples, a single subsample

is retained as the validation data for testing the model, and

the remaining k - 1 subsamples are used as training data.

The cross-validation process is then repeated k times

(the folds), with each of the k subsamples used exactly

once as the validation data. The k results from the folds can

then be averaged (or otherwise combined) to produce a

single estimation. In stratified k-fold cross-validation, the

folds are selected so that the mean response value is

approximately equal in all the folds. The main reason for

using cross-validation instead of using the conventional

validation (e.g. partitioning the data set into two sets of

70% for training and 30% for test) is that the root mean

square error on the training set in the conventional vali-

dation is not a useful estimator of model performance and

thus the error on the test data set does not properly repre-

sent the assessment of model performance [41]. Cross-

validation combines (averages) measures of fit (prediction

error) to correct for the optimistic nature of training error

and derive a more accurate estimate of model prediction

performance [42]. Cross validation yields a confusion

matrix that indicates true positive, true negative, false

positive, false negative rates for every class. The following

three types of pattern recognition have been carried out:

2.5.1 Healthy/ictal Recognition

A number of 200 signals from A_Z and E_S (100 signals

from every dataset) have been used. As every signal has

been decomposed into N IMFs, the total number of IMFs is

200 * N. Every IMF has its related calculated instanta-

neous frequencies and amplitudes for which entropy values

are calculated. The features matrix has therefore a dimen-

sion of (200 * 2 * N). The matrix entries have been clas-

sified into two classes: normal and ictal. Classification is

achieved by Forest Random tree with 40 unlimited depth

trees and tenfold cross-validation.

2.5.2 Healthy/Ictal/Inter-ictal (F) Recognition

A number of 300 signals from A_Z, E_S and D_F (100

signals from every dataset) have been used. As every signal

has been decomposed into N IMFs, the total number of

IMFs is 300 * N. The features matrix has therefore a

dimension of (300 * 2 * N). The sub-matrices related to

numbers of investigated IMFs scales ranging from 1 to

N - 1 have also been examined. Each sub-matrix has been

classified into three classes: normal, ictal and inter-ictal

(epileptic zone). Classification is achieved by Forest Ran-

dom tree and tenfold cross-validation with 30 unlimited

depth trees.

2.5.3 Healthy/Ictal/Inter-ictal (F), Inter-ictal

(N) Recognition

A number of 400 signals from A_Z and E_S, D_F and C_N

have been used. As every signal has been decomposed into

N IMFs, the total number of IMFs is 400 * N. The features

matrix has therefore a dimension of (400 * 2 * N). The

matrix entries have been classified into three classes: nor-

mal, ictal and inter-ictal (epileptic zone) with inter-ictal

(opposite hemisphere). Classification is achieved by Forest

Random tree with 30 unlimited depth trees and 20-fold

cross-validation.

2.6 Attribute Selection

The contribution weight of features is studied by WEKA to

find the most significant features. CFS supervised attribute

subset evaluator (selector) has been used with simple

genetic search. Crossover probability, number of genera-

tions and mutation probability values are 0.6, 20 and 0.033,

respectively. Attribute selector evaluates the worth of a

subset of attributes by considering the individual predictive

ability of each feature along with the degree of redundancy

between them. Subsets of features that are highly correlated

with the class while having low inter-correlation are pre-

ferred. It identifies locally predictive attributes and itera-

tively adds attributes with the highest correlation with the

class as long as there is not already an attribute in the

subset that has a higher correlation with the attribute in

question. It treats missing as a separate value. The attribute

selection mode is a tenfold stratified cross validation.

2.7 Classification Assessment

Statistical assessment has been conducted by MedCalc

based on resulted confusion matrix—issued from cross

validation—in order to evaluate the obtained classification

results. The calculated statistical descriptors are: accuracy,

sensitivity, specificity, positive likelihood ratio, negative
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likelihood ratio, class prevalence, positive predictive

value and negative predictive value using the formula of

the Bayes’ theorem as follows below, where a: true

positive, b: false negative, c: false positive and d: true

negative. In the case of our studied classification problem,

the unit of a, b, c and d is ‘EEG signal’. For example, if

‘a’ is 5, it means that 5 EEG signals are correctly clas-

sified in a specific class.

Fig. 2 IMFs issued from EMD decomposition of a signal from the inter-ictal dataset F
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Sensitivity:
a

aþ b
ð4Þ

Specificity:
d

cþ d
ð5Þ

Positive Likelihood Ratio:
Sensitivity

100� Specificity
ð6Þ

The PLR value is undefined when specificity is 100%. In

this case, the cell related to positive likelihood ratio value

(in the tables of results section) will not be filled.

Negative likelihood ratio:
100� Sensitivity

Specificity
ð7Þ

Class prevalence:
aþ b

aþ bþ cþ d
ð8Þ

Positive predictive value:
a

aþ c
ð9Þ

Negative predictive value:
d

bþ d
ð10Þ

The above values are dimensionless. However, in the

results section, they will be presented after multiplication

by 100%.

The statistical evaluation of the classification is

achieved for every class. Evaluation for a certain class is

Fig. 2 continued
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conducted if it is considered as the target. Multiple values

for every statistical descriptor have therefore been calcu-

lated; every value corresponds to the evaluation of one

class.

3 Results and Discussion

Figure 2 illustrates an example of IMFs issued from EMD

decomposition. It shows IMFs resulted from EMD of a

signal in the dataset F (inter-ictal). The first IMFs include

noise and fast waves. The last IMFs include baseline and

slow waves. As indicated above, the synchronization and

amplitude levels in normal EEG differ from epileptic sig-

nals. This information is inherent in IMFs temporal and

spectral contents. Consequently, in the present work, all

IMFs scales are taken into account in subsequent

classification in order to examine the maximum temporal

and spectral information level. It is noteworthy that not all

of the decomposed investigated signals gave the same

number of IMFs. Inter-ictal signals yielded higher number

of scales than ictal and normal ones. However, all signals

achieved a number within the range (8–14). Fourteen is

therefore considered the maximum number taken into

account. For signals yielding a number less than 14,

entropy values based on empty IMFs are considered as

missing values. Random Forest classifier is one of the

classifiers that have the capability to deal with this case.

Table 1 illustrates a sample of entropy values of

instantaneous frequencies and amplitudes for the different

classes. For space reasons we have limited the values to the

tenth scale. The calculated values are based on the analytic

signals of IMFs after applying the DQ normalization.

Absolute value of entropy decreases in slow wave IMFs.

3.1 Healthy/ictal Recognition

All of the normal and ictal instances have been correctly

classified by the proposed method. The overall accuracy is

therefore 100%. Hence, the sensitivity and the specificity

attain 100%. Table 2 summarizes the outcomes of the

normal/ictal classification.

The obtained accuracy is equal to the highest value

achieved in previous literature [33] using the same EEG

database as indicated in Table 3. However, EMD is

Table 1 A sample of entropy values of instantaneous frequencies and amplitudes for the different IMFs scales and classes

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

-26.234 -14.3255 -8.18907 -5.11555 -3.15719 -1.81752 -1.12649 -0.33245 -0.30425 -0.14302

-23.6085 -14.6468 -9.34704 -4.75152 -2.7267 -1.25881 -0.4931 -0.26888 -0.18206 -0.1572

-22.8174 -18.7521 -14.9188 -14.1352 -11.0446 -10.5738 -5.96037 -3.99148 -2.25113 -1.2081

-20.4639 -18.2399 -15.9141 -10.4648 -6.53297 -3.61999 -1.45707 -0.97 -0.51422 -0.30243

-25.3151 -15.5234 -9.29302 -4.96115 -2.31489 -1.21359 -0.78082 -0.36471 -0.2023 -0.04874

-24.9437 -15.5585 -7.24111 -3.84451 -1.79333 -1.04621 -0.76207 -0.44181 -0.1288 -0.09514

-22.5967 -21.9553 -17.1007 -11.0622 -8.5602 -5.17107 -4.63393 -2.58222 -1.33832 -0.34815

-23.6338 -17.9279 -15.3715 -14.3116 -12.8275 -8.51 -6.3042 -5.29912 -3.10582 -1.74943

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 Class

71368.86 71007.91 53754.05 32828.75 30706.41 37756.02 24524.49 52334.87 5444.807 126.258 Z

32526.03 51986.55 44845.64 30453.76 51823.66 23067.69 28387.14 4056.14 972.621 394.9333 Z

72229.34 107433.4 123461.3 141203.6 146387 435535 230574.3 270079.7 236765.2 146016.8 S

189750.4 197923.9 278276.6 137677.7 169858.9 540342.7 554660.1 338404.3 73540.52 52238.02 S

28510.76 59321.6 101214.8 97729.42 111044.7 66491.44 41487.43 8714.457 4192.907 -398.189 N

17755.41 57205.45 105249.3 99832.31 125892.3 81531.92 45756.17 22189.21 17725.25 2014.66 N

138158.4 304258.2 1166573 149820.7 945386.2 334827.7 546834.7 1032657 676868.5 683494.8 F

110005 53915.71 95477.99 124394.5 428052.5 176370.3 219241.8 470578.1 411193.3 737564.9 F

Z healthy, S ictal, F inter-ictal (seizure zone), N inter-ictal (opposite hemisphere), f, a entropy of instantaneous frequency and amplitude

Table 2 Results of classification (normal/ictal EEG)

Statistic (overall accuracy = 100%) Class: normal Class: ictal

Sensitivity 100% 100%

Specificity 100% 100%

Positive likelihood ratio

Negative likelihood ratio 0 0

Class prevalence 50.00% 50.00%

Positive predictive value 100% 100%

Negative predictive value 100% 100%

Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest… 849
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nonlinear, empirical, intuitive and simpler than the exploited

methods that have leaded to accuracy up to 100%. Wigner–

Ville distribution used in [33] achieved 100% but was not

perfectly adapted to non-linear situations. The manipulation

of time windows, frequency sub-bands and resolution was

therefore lengthy, imposed and not data driven. Trial-and-

error based resolution and scale selection was also a disad-

vantage. In addition, the methods previously investigated in

literature and leading to high accuracy of normal/ictal clas-

sification yield noticeably a lower accuracy when they are

applied to normal/ictal/inter-ictal classification [43].

Although the works in [10, 12] bring into play the strong

characteristics of EMD, they achieved lower accuracies

than 100% due to the effect of temporal amplitude modu-

lation of IMFs on spectral information calculation. In the

present paper, the elimination of this disadvantage helped

increase the accuracy to 100%.

3.2 Healthy/Ictal/Inter-ictal (F) Recognition

According to the resulted confusion matrix, in the second

classification problem, all normal and ictal instances are

correctly classified. 99 out of 100 inter-ictal signals are

accurately classified, as indicated in Table 4. The missed

instance has been misclassified as ictal. The overall accu-

racy is therefore 99.7%. It is higher than the accuracy

values found out by other approaches utilizing the same

dataset, as indicated in Table 5. This is due to the fact that

Direct Quadrature method is a reliable technique that helps

acquire pertinent amplitude and frequency features without

overlap or redundancy. The temporal and spectral infor-

mation inherent in seizure spikes is consequently repre-

sented decently by features vector.

Table 6 shows the achieved classification accuracies

versus number of investigated IMFs. The outcomes

demonstrate that the accuracy depends on the number of

exploited IMFs. The highest accuracy is achieved when 14

IMFs are taken into account. This might explain the lower

accuracies achieved in literature utilizing smaller number

of IMFs [10, 12, 33]. However, close accuracy (99.3%) is

obtained when the number of selected IMFs is 5. The

outcome of normal/ictal classification varies slightly versus

numbers of IMFs higher than 5. According to the results,

the IMFs containing lower frequencies are also relatively

informative about features distinguishing between normal,

ictal and inter-ictal. In a previous work conducted by the

Table 3 Results of classification (normal/ictal EEG) in literature using the same EEG database

The datasets Method Achieved

accuracy (%)

Normal and ictal Neuro-fuzzy methods applied to entropy [44] 92.2

ANOVA applied to higher order statistics and complexity measures [45] 92.7

Clustering applied to Hilbert transform [12] 94

Expert model applied to discrete wavelet transform [26] 95

Evaluated results of sample entropy (SampEn) and distribution entropy

(DistEn) for EEG segments [46]

96

PCA, KNN and SVM classification applied to statistical features [47] 96

Artificial neural network applied to nonlinear features [48] 97.2

Hyperbolic tangent—tangent plot [49] 97.4

Decision tree applied to Fourier transform [32] 98.7

Recurrent neural network applied to T–F features [2, 31] 99.6

Artificial neural network applied to T–F Wigner–Ville features [33] 100

Table 4 Results of

classification (normal/ictal/

inter-ictal EEG)

Statistic (overall

accuracy = 99.7%)

Class:

normal

Class:

ictal

Class: inter-ictal

(epileptic zone)

Sensitivity 100% 100% 99%

Specificity 100% 99.5% 100%

Positive likelihood ratio 200

Negative likelihood ratio 0 0 0.01

Class prevalence 33.33% 33.33% 33.33%

Positive predictive value 100% 99.01% 100%

Negative predictive value 100% 100% 99.5%
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first author [12], only the first four IMFs were taken into

account. However, the obtained accuracy was lower (94%).

According to the applied CFS attribute evaluator with

genetic search, the features having high predictive ability

are f1, f2, a1, a2, a3, a4 and a5. Relative contribution of

every feature is illustrated in Fig. 3. The found weights of

contribution of features are consistent with the findings in

Table 6.

Significance of high-contribution features can also be

illustrated in Fig. 4a–e that present the 2-D distribution

(frequency entropy, amplitude entropy) for the scales 1, 2,

3, 4 and 5, respectively. Basically, three primary clusters

can be seen in every scale.

It can be illustrated from Fig. 4a–e that, in all scales

from 1 to 5, the amplitude entropy cluster centre of the

IMFs resulted from ictal signals is higher than those of

normal and inter-ictal. However, the difference is not

obvious between the values of amplitude entropy of normal

and inter-ictal clusters. These findings are consistent with

Fig. 3 where the weights of a1–a5 are relatively high. On

the other hand, in the high frequency scales 1–3, centres of

frequency entropy values differ between clusters of normal

and inter-ictal IMFs as well as between clusters of ictal and

inter-ictal IMF. These findings are consistent with Fig. 3

where the weights of f4 and f5 are small compared to f1, f2

and f3. The results illustrated for all clusters are also

compatible with the pace of increasing of accuracies, ver-

sus number of IMFs, presented in Table 6.

3.3 Healthy/Ictal/Inter-ictal (F), Inter-ictal

(N) Recognition

The EEG recordings from seizure-free intervals can also be

used to study the changes in the underlying dynamics of the

Table 5 Results of classification (normal/ictal/inter-ictal EEG) in literature using the same EEG database

The datasets Method Achieved

accuracy (%)

Normal, ictal and inter-ictal (seizure zone) Neurofuzzy network applied to discrete wavelet transform [50] 85.9

Genetic programming, K-nearest neighbour classifier [51] 93

Lyapunov exponents, artificial neural network [52] 95

Recurrent neural network applied to Lyapunov exponents [34] 96.8

Wavelet transform, K-nearest neighbour classifier [53] 97

SVM applied to fractal features [54] 97.1

Exploiting temporal correlation of EMD IMFs [55] 98.1

Naı̈ve Bayes applied to second order difference plot (SODP) [56] 98.7

Statistical pattern recognition applied to wavelet transform [57] 99

Artificial neural network applied to time frequency features [33] 99.2

Normal, ictal, inter-ictal (seizure zone) and inter-

ictal (opposite hemisphere)

Combined DWT and EMD applied to Morlet kernel [58] 88.4

Hyperbolic tangent—tangent plot [49] 92.8

Wavelet decomposition was done up to fourth level, followed by the

calculation of inter quartile range (IQR) [59]

95.6

Stochastic relevance analysis of short–time EEG rhythms [60] 96.6

Artificial neural network classifier with spectral features [61] 97

Artificial neural network applied to time frequency features [33] 97.7

Table 6 Result of classification (normal/ictal/inter-ictal (F) EEG)

versus number of IMFs taken into account in classification

Number of IMFs Achieved accuracies

Healthy Ictal Inter-ictal (F) Overall

1 93 96 88 92.3

2 97 97 93 95.7

3 99 97 97 97.7

4 100 98 95 97.7

5 100 100 98 99.3

6 98 98 99 98.3

7 100 97 99 98.7

8 100 99 97 98.3

9 98 98 98 98

10 100 99 93 97.3

11 100 99 95 98

12 100 100 95 98.4

13 100 98 94 97.4

14 100 100 99 99.7
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cortex affected by epilepsy. The achieved accuracy of

healthy/ictal/inter-ictal (F), inter-ictal (N) classification is

98.3% as shown by Table 7. Used method is Random

forest of 30 trees, each constructed while considering five

random features. The obtained accuracy is higher than the

accuracy values found out by other approaches utilizing the

same dataset, as indicated in Table 5. According to the

resulted confusion matrix, 99 normal instances have been

correctly classified. One normal instance has been mis-

classified as inter-ictal. 97 ictal instances have been cor-

rectly classified. Three ictal instances have been

misclassified as inter-ictal. 197 inter-ictal instances have

been correctly classified. Two inter-ictal instances have

been misclassified as normal. One inter-ictal instance has

been misclassified as ictal.

The present work has many advantages. It leads to fast,

low computational cost and user-friendly processing. The

proposed method leads to high accuracy in comparison to

other methods in literature. Furthermore, the obtained

accuracy does not fall abruptly when the classification

problem includes more than two classes or EEG issued

from different seizure zones. The method is therefore more

robust and easy-to-use than several techniques, as shown in

the previous sections.

EMDapplication toEEGdoes not imply the knowledge of

a priori temporal/spectral information about the signals. It is

intuitively driven by the nature of the decomposed EEG time

series [62]. Consequently, it does not analyze ictal, inter-ictal

and normal segments by the same ‘‘Model’’. On the other

hand, conventional time–frequency decomposition tools

involve a priori assumptions that lead to pre-models insen-

sitive to differences between epileptic signals.

EMD is not critically parameter dependent. Moreover,

spectral resolution and number of achieved scales of

decomposition are empirically defined, based on the

inherent physiology of analyzed EEG. On the other hand,

scales in Wavelet or Fourier derived transforms should be

pre-defined. Pre-definition of scales might result in missing

or skipping important information/features.

In the present work, not all issued IMFs are purely

mono-components. Amplitude and frequency modulation

induce therefore a difficulty of instantaneous analysis.

However, Direct Quadrature method overcomes the prob-

lem by the normalization system. Robust and precise cal-

culation of features, based on accurate instantaneous

values, is the main advantage of the suggested procedure.

The used random forest tree classifier is a fast tool with

the advantage of open-access interpretability. Neural net-

works NN used in studies yielding relatively good accu-

racies are slower ‘‘black boxes’’ that do not permit easy

interpretation of inherent physiological processes. Fur-

thermore, NN imply the determination of a number of

sensitive parameters values on which outcome is highly

dependent.

The results of feature selection illustrate the weight of

every IMF in the overall analysis as well as the significance of

related temporal and spectral features. The outcome of

selection yields a useful hint for further investigation of

physiological processes inherent in epileptic signals, since

every IMF has its own characteristics related to specific

activities of neural/neuronal centres. In addition, the present

work indicates the importance of the scales, higher than 4, that

are not sufficiently considered or studied in literature [55].

Fig. 3 Relative contribution of

every feature

cFig. 4 a 2-D distribution of entropy values for IMFs of scale 1 (blue

normal, red ictal, green inter-ictal). X-axis frequency entropy. Y axis

amplitude entropy. b 2-D distribution of entropy values for IMFs of

scale 2 (blue normal, red ictal, green inter-ictal). X-axis frequency

entropy. Y-axis amplitude entropy. c 2-D distribution of entropy

values for IMFs of scale 3 (blue normal, red ictal, green inter-ictal).

X-axis frequency entropy. Y-axis amplitude entropy. d 2-D distribu-

tion of entropy values for IMFs of scale 4 (blue normal, red ictal,

green inter-ictal). X-axis frequency entropy. Y-axis amplitude

entropy. e 2-D distribution of entropy values for IMFs of scale 5

(blue normal, red ictal, green inter-ictal). X-axis frequency entropy.

Y-axis amplitude entropy
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The preliminary clustering, in the present work, can lead

to initial understanding of the differences, either in

amplitude or frequency content (or eventually both of

them), between components of normal, ictal and inter-ictal

activities; this can assist practitioners in identifying the

related physiological variations.

A hidden additional advantage of the proposed method

is the preliminary potential of distinguishing the seizure

Fig. 4 continued

Table 7 Results of classification (normal/ictal/inter-ictal (F), inter-ictal (N) EEG)

Statistic (overall accuracy = 98.3%) Class: normal Class: ictal Class: inter–ictal (epileptic zone ? opposite hemisphere)

Sensitivity 99% 97% 98.5%

Specificity 99.33% 99.67% 98.0%

Positive likelihood ratio 148.5 291 49.25

Negative likelihood ratio 0.01 0.03 0.02

Class prevalence 25% 25% 50%

Positive predictive value 98.02% 98.98% 98.01%

Negative predictive value 99.67% 99.01% 98.49%
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zone and the opposite inter-ictal hemisphere. Results (not

shown) indicate classification accuracy of normal/ictal/in-

ter-ictal (seizure zone)/inter-ictal (opposite hemisphere) up

to 85%. This can partially lend a hand for detecting zones

of seizure. However, more investigations should be carried

out in order to improve this result and examine its

applicability.

Although the proposed classification has many advan-

tages, it has been shown that mode mixing and mode inter-

mittency are the major limitations to the use of EMD [35].

Mode mixing indicates that oscillations of different time

scales coexist in a given IMF, or that oscillations with the

same time scale are assigned to different IMFs, leading to a

misunderstanding of the real process. Since EMD has the

disadvantage of occasional mode mixing, this might affect

slightly the calculation of instantaneous values. The ampli-

tude and frequency ratios between the components of the

signal should be taken into account when mode mixing is

studied, which is not always easy. Furthermore, solutions

proposed in literature to avoid intermittency are either time

consuming like the Ensemble Empirical Mode decomposi-

tion EEMD or unstable like the use of masking signals [37].

However, according to the obtained results, the achieved

accuracy is not severely harmed by themixing. Thismight be

due to the fact that mixing occurs usually between consec-

utive IMFs that carry quasi-similar neural processes or

activities from the same neural source. Since the solutions of

mode mixing are time consuming or unstable, as indicated

above, the performance of the suggested method should be

carefully studied before application in cases of real-time

seizure prediction.Modemixing can occur in EEG segments

related to transition between two different states.

The fact that a part of the calculations is based on

missing values is probably considered as a disadvantage.

This can be avoided by decomposing all studied signals

into a fixed number of IMFs scales. This leads to coun-

terpart IMFs in the same octave, which might make more

robust clustering and classification of features. Multivariate

Empirical Mode Decomposition can be one of the solutions

that might be approached in future works.

4 Conclusion

The present work studies a robust method that helps clas-

sify EEG into normal, ictal and inter-ictal. High accuracy is

achieved compared to previous literature. The intuitive

characteristics of EMD, the advantages of DQ normaliza-

tion, the quantification of synchronization level by entropy

and the fast easy-to-interpret Random Forest classifier are

the main promising elements.

In future work, application of multivariate empirical

mode decomposition will be investigated in order to get the

same number of IMFs for all studied EEG signals. This

might help avoid features with missing values. Further-

more, additional features as variance and other types of

entropy will be studied.

The suggested processing has the potential of classifying

normal, ictal and inter-ictal EEG. Further directed

improvements on the proposed method will allow an

approach towards accurate seizures detection and man-

agement. More investigation should be conducted to study

the applicability of the classification to eventual seizure

prediction, especially the investigation of the effect of

mode mixing. Targeted enhancements, with the help of

neural mapping, might also facilitate seizure prevention

prior to onset as well as guidance in neurosurgical

interventions.
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