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Simple Summary: Ca2+ dyshomeostasis is implicated in several key pathophysiological processes
attributed to cancer metastasis biology. Here, we decipher the role of intracellular and extracellular
Ca2+ signalling pathways in processes that contribute to metastasis at the local level (involving cell
proliferation, adhesion, motility, invasion, migration and the epithelial-mesenchymal transition) and
also their effects on cancer metastasis globally. Ca2+ proteins are potential candidates for cancer
biomarkers and druggable targets for future metastatic cancer therapy.

Abstract: Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is
a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous
secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in can-
cer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and
progression—including cellular adhesion, epithelial–mesenchymal transition, cell migration, motility,
and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling
pathways in processes that contribute to metastasis at the local level and also their effects on can-
cer metastasis globally, as well as at underlying molecular mechanisms and clinical applications.
Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour
progression and metastasis. They are a limited number of clinical trials investigating treating patients
with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of
cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific
upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients
with metastatic cancers.

Keywords: calcium; Ca2+ signals; metastasis; cancer

1. Introduction

Cancer is a serious public health condition globally. Metastasis is a significant hall-
mark of cancer, defined as the transition of cancer cells from their original site to another
site, and accounts for ~90% of cancer-related mortalities [1]. Metastasis is a complex phe-
nomenon that involves multiple phases (from the translocation from the primary site to the
colonization of the secondary site) and several pathophysiological processes (including cell
proliferation, adhesion and motility; tumour invasion and migration; angiogenesis; and the
epithelial-mesenchymal transition) which interact with each other at a local level to develop
metastatic cancer at a global level. It is a fundamental phenomenon in our understanding
of the underlying molecular mechanisms related to cancer pathogenesis; hence, it is a viable
target for cancer therapy and approaches to prevent and target metastatic cancer have drawn
scientific attention for several decades and remain of great interest in decoding cancer biology.
Ca2+ is a versatile second messenger, and its homeostasis is critical to hindering the develop-
ment of metastatic cancer at both the intracellular and extracellular levels. Intracellular and
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extracellular Ca2+ signalling is implicated in several key pathophysiological processes which
are attributed to tumour metastasis and progression [2–9].

Importantly, dysregulation of spatiotemporal Ca2+ homeostasis at both intracellular
and extracellular levels, in terms of spatiotemporal oscillations or waves, alters cellular
physiological processes at the local level leading to metastatic cancer globally (shown in
Figure 1). There are two main Ca2+ signalling pathways: intracellular (local) and extracel-
lular (global). The implications of their communication and complementary interplay for
the development of metastatic cancer are becoming extremely difficult to ignore. It has
become evident that intracellular calcium channels, including inositol 1,4,5-trisphosphate
(IP3) receptors (IP3Rs), transient receptor potential cation channels (TRPML, mucolipins),
and two-pore channels (TPCs), play roles in the modulation of key processes that regu-
late tumour progression and migration [9–12]. Our recent review discussed briefly the
role of two-pore channel 2 (TPC2) in tumour cell migration [9]. In addition, extracellular
Ca2+ signalling pathways, via calcium-sensing receptor (CaSR)and store-operated cal-
cium entry (SOCE), have been shown to contribute to pathophysiological processes that
promote metastasis [13,14]. A growing quantity of experimental evidence and a limited
number of clinical trials suggest a potential clinical application of Ca2+ modulators and
their upstream/downstream targets as a therapeutic approach to treat metastatic cancer.
Recently, a considerable amount of literature has been produced around the theme of Ca2+

signalling in cancer, particularly its pivotal role in pathophysiological processes towards
cancer metastasis. Here, we look at the role of Ca2+ signalling at both the intracellular and
extracellular levels in cancer metastasis, which will contribute to a deeper understanding
of cancer pathogenesis and permit us to further investigate Ca2+ signalling as a regulator
of tumour progression and metastasis.
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2. Intracellular Calcium Signalling in Metastasis

2.1. Endoplasmic and Sarcoplasmic Reticulum Ca2+ Channels/Pumps

Endoplasmic and sarcoplasmic reticulum Ca2+ channels/pumps include inositol
1,4,5-trisphosphate (IP3) receptors (IP3Rs), ryanodine receptors (RyRs), the translocons,
and sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA). SERCA acts as a mobiliser
of Ca2+ from the cytosol into the ER to maintain cytoplasmic Ca2+ homeostasis. It consists
of three major isoforms (SERCA1-3) [15]. Chung et al. (2006) found that high SERCA2
expression was correlated with lymph node metastasis, advanced stages of tumourigenesis,
and significantly shorter survival compared to low SERCA2 expression in patients with
colorectal cancer [16]. Unlike earlier findings, high SERCA3 expression was significantly
associated with longer survival, negatively correlated tumour node metastasis (TNM)
staging and distant metastases, but not with lymph node metastasis in patients with gastric
carcinomas [17]. Shi et al. (2018) showed that SERCA is involved in Yap (Yes-activated
protein)-mediated hepatocellular carcinoma metastasis [18].

The emerging role of intracellular Ca2+ signalling in cancer cell migration is not
a recent discovery. Rondé et al. highlighted the intracellular Ca2+ oscillations which
are linked to cell migration in U-87MG cells (an in vitro model of malignant glioma)
via IP3Rs, but not ryanodine receptors [19]. A previous study found that ryanodine
receptor isoform-2 (RYR2) gene expression was upregulated by 45-fold in epidermal
growth factor (EGF)-treated MDA-MB-468 cells (mesenchymal-like state) compared to
MDA-MB-468 cells (epithelial-like state), suggesting that the involvement of the RYR2/Ca2+

signalling pathway in the EGF-induced epithelial-mesenchymal transition (EMT) in breast
cancer, which is a critical process for cell adhesion, invasion and migration, ultimately
leads to a metastatic state [20]. Recently, Fukushima et al. have uncovered the role of
translocation associated membrane protein 2 (TRAM2), a component of the translocon,
in metastasis [21]. They have shown that TRAM2 knockdown eliminated metastatic traits—
including cell invasion and transendothelial migration in oral squamous cell carcinoma
(OSCC) cells—by modulating the expression of matrix metalloproteinases. Their study
found that Ca2+ permeability via translocon mediates cancer progression [21]. Ca2+ release
in the intracellular compartment is mainly mediated by IP3Rs, which are located on the
ER [16]. There are three isoforms: IP3R type 1 (IP3R1), IP3R type 2 (IP3R2), and IP3R
type 3 (IP3R3) [18]. The release of Ca2+ from the ER to the cytosol via IP3Rs is mainly
trigged by IP3 and Ca2+ [22]. Whole-exome sequencing (WES) conducted by Hedberg
et al. in patients with head and neck squamous cell carcinoma (HNSCC) underpinned
the potential clinical utility of IP3R3 as a prognostic biomarker. They discovered genetic
mutations in IP3R3 in metastatic or recurrent HNSCC cancers, but not in the primary
tumour [23]. IP3R3 overexpression is implicated in various types of cancer including breast,
colorectal, cholangiocarcinoma, gastric and glioblastoma, and promotes cancer progression
by enhancing metastatic phenotypes [24–28]. When siRNA was used to silence IP3R3 in
an in vitro model of breast cancer, this was shown to attenuate cell migrations induced by
Ca2+ oscillations [24]. Recent data showed that IP3R3 function was drastically impaired by
epidermal growth factor receptor (EGFR) and tyrosine-protein kinase (MET) inhibitors in
oncogene-driven non-small cell lung cancer (NSCLC), thus raising intriguing questions
regarding the possibility of targeting upstream or downstream regulator or effector proteins
of IP3R3 to treat metastatic cancer patients, particularly those with NSCLC [29].

In contrast to the findings which demonstrated that the IP3R3/Ca2+ signalling path-
way is critical for cancer invasion and migration in vitro, IP3R2 was found to be a key
mediator of ER Ca2+ signals which mediate migration in human lung cancer cells (A549
cell line) [30].

Taken together, these findings emphasise the critical role of Ca2+ signalling from the
ER, mainly via IP3Rs, which acts as a key regulator of several pathophysiological processes
related to tumour progression and migration. Despite substantial in vitro evidence that
has led to the recognition of emerging roles of IP3Rs as modulators of Ca2+ signalling and
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enhanced metastatic traits, further studies utilizing in vivo IP3R knockout mouse models
will help to further reveal the molecular mechanisms of IP3Rs as mediators of metastasis.

2.2. Endolysosomal Ca2+ Channels

TPCs, TRPML, and P2X(4) receptors are intracellular Ca2+ permeable channels and
are located in the endolysosomal compartment, which consists of early, late, and recycling
endosomes, lysosomes, and autophagosomes. While they have an evident role in the in-
volvement of endolysosomal Ca2+ signalling pathways in cancer phenotypes from tumour
initiation to cancer cell migration [11], the molecular mechanisms underlying endolyso-
somal Ca2+ signal-mediated metastasis remains speculative. Two-pore channel type 1
(TPC1) and two-pore channel type 2 (TPC2) are two isoforms of the two-pore channel
superfamily, expressed in mammalian cells. Recently, the effects of TPCs and particularly
TPC2 on pathophysiological processes related to metastatic cancer have been observed
in in vitro and in vivo cancer models [9]. TPC1- or TPC2-deficient T24 cells (an in vitro
model of bladder cancer) generated by siRNA showed a significant decrease in metastatic
phenotypes cell adhesion and migration compared to control cells [31]. In the same study,
diminished TPC function achieved either by silencing using siRNA or pharmacological
inhibition by Ned-19 or tetrandrine in T24 cells was shown to alter β1-integrin recycling,
which is involved in cell motility and invasion. This ultimately hinders tumour metasta-
sis [31]. Notably, the inhibition of TPC2 function using siRNA or inhibitors in an in vivo
mouse mammary cancer model has been shown to significantly reduce the formation of
lung metastasis [31]. These results differ from recent evidence demonstrating that the
downregulation of TPC2 expression or TPC2 knockout promotes tumour metastasis in
melanoma cells generated from an advanced stage of tumourigenesis [32]. The controversy
about whether TPC2/Ca2+signaling in metastatic cancer promotes or hampers metastatic
traits—such as tumour cell adhesion, motility, invasion and progression—might reflect
TPC2 having differential roles in different types or stages of cancer. Three isoforms of
transient receptor potential cation channels (TRPMLs) found in mammals are TRPML1,
TRPML2, and TRPML3 [33]. TRPML1 knockdown conducted with siRNA in HepG2 cells
(an in vitro human hepatocellular liver carcinoma model) impaired invasion and attenu-
ated cell migration compared to WT HepG2 cells [34]. Additionally, this study identified
for the first time the mechanism of action of tetrabromobisphenol A (TBBPA), a toxin that
has been linked to hepatic cancer invasion and migration, finding that TBBPA evoked
endolysosomal Ca2+ signals upon binding to TRPML1 [34]. An increased expression of
transient receptor potential mucolipin1 (TRPML1) was also detected in advanced stages
(III–IV) compared to early stages (I–II) of tumourigenesis in patients with non-small-cell
lung cancer (NSCLC); TRPML1 silencing or inhibition in vitro impaired pathophysiologi-
cal processes related to metastatic NSCLC cancer, indicating that enhanced expression of
mucolipin 1 was involved in cancer progression and metastasis by promoting cell invasion,
proliferation and migration in NSCLC [35]. TRPML-2 mRNA and protein levels were found
to be elevated in brain cancer patients and correlated with advanced pathological grades
(from astrocytoma (I) to glioblastoma (IV)) [36]. TRPML-2-deficient U251 and T98 cells
(an in vitro model of glioblastoma) showed a reduction in cell proliferation involving the
inhibition of AKT and ERK1/2 signalling [36], suggesting that TRPML-2 acts as a regulator
of ERK1/2 and AKT signalling pathways in glioblastoma cell proliferation.

Recently, TRPML3 was discovered to be one of the nine gene signatures predicting
overall survival in patients with pancreatic cancer [37]. Downregulation of TRPML3
expression acts as a protective factor in the prognostic nomogram established for pancreatic
cancer [37]. The above findings suggest the possibility of the clinical utility of TRPML
subtypes as a potential distinct prognostic marker for cancer progression and overall
survival in various cancer subtypes. The P2X(4) receptor is expressed in the endolysosomal
system and modulated by ATP and pH [38]. To our knowledge, no previous study has
investigated the role of P2X(4) receptors in metastatic traits. Endolysosomal Ca2+ signals
have attracted growing interest as a novel biomarkers or therapeutic targets for metastatic
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carcinoma. Further studies to confirm these findings through in vivo mouse models or a
prospective large cohort of cancer patients are required.

Despite the substantial literature that implicates the different roles of lysosomal Ca2+

release channels in cancer metastasis, there is a lack of evidence for how these lysosomal
Ca2+ channels may interact to mediate development of metastatic cancer at a global level.
We speculate that lysosomal Ca2+ dyshomeostasis contributes to metastatic phenotypes
with distinctive roles for these channels and possible crosstalk that requires further inves-
tigation to expand our knowledge of the pathophysiology of cancer metastasis biology.
The mobilisation of cytosolic Ca2+ into endolysosomal compartments is poorly understood
and remains enigmatic. Garrity et al. found that the ER plays a role in the Ca2+ refilling of
lysosomes [39], and we infer that it occurs via an unidentified Ca2+ transporter.

2.3. Intracellular Ca2+ Signalling and Ca2+-Activated K+ Channels (KCa) in Metastasis

Intracellular calcium oscillations activate Ca2+-activated K+ channels, involving in-
termediate (KCa3.1) and large conductance (KCa1.1), were found to promote tumour cell
proliferation, migration and progression [40–43]. KCa3.1 and KCa1.1 differ in their Ca2+

sensitivities. KCa3.1 requires a small physiological alteration in Ca2+, while KCa1.1 responds
to a large change in Ca2+ [44]. Several studies have provided substantial evidence that
KCa3.1 and KCa1.1 contribute to glioblastoma metastasis biology [45–48]. Growing evidence
is linking KCa3.1 to glioma cell invasion and migration [46,49,50], and recent data has
implicated that KCa3.1 is upregulated in high-radiation dose-induced glioblastoma cell
invasion [51]. KCa1.1 was shown also to play a role in radiation-enhanced glioblastoma
migration in in vitro and in vivo murine models [52]. Pharmacological inhibition of KCa1.1
diminished migratory capability of glioblastoma cells induced by hypoxia in U87-MG
cells [47]. Overall, these findings indicate the indirect involvement of intracellular Ca2+

signalling-mediated cell invasion and migration via either KCa3.1 or KCa1.1 in glioblastoma.
Further work is required to underscore the crosstalk between these channels and intracellu-
lar Ca2+ signalling at the molecular level to understand the pathophysiology behind the
roles of these channels in glioblastoma metastasis biology. These channels might represent
viable clinical tools that can enhance the efficiency of detection and guide the treatment of
glioblastoma patients.

3. Extracellular Components of Ca2+ Signalling in Metastasis

Apart from providing structural supports for cells to form organs and tissues, the ex-
tracellular matrix (ECM) and extracellular proteins play other vital roles in various cell
functions. Proteins in the extracellular space and on the cell membranes form a complicated
network which initiates signalling cascades in the intracellular space; such signalling cas-
cades regulate multiple aspects of cell behaviour including determination, differentiation,
proliferation, and migration [53]. Although extracellular proteins have been less studied
in relation to cell signalling than intracellular components, abundant evidence of their
critical functions has been revealed in the past decade. Here we review some extracellular
proteins related to Ca2+ signalling with particular emphasis on their mechanisms of action
and functional roles in processes linked to cancer, especially metastasis.

3.1. Calcium-Sensing Receptor (CaSR)

As the ECM is the largest Ca2+ reservoir in multicellular organisms, macromolecules
in the extracellular space directly bind to receptors on the cell surface resulting in Ca2+ en-
tering the cell [54]. One such receptor is the calcium-sensing receptor (CaSR), a ubiquitously
expressed G protein-coupled receptor sensing extracellular Ca2+ levels and controlling
Ca2+ homeostasis by regulating parathyroid hormone release in the parathyroid gland
and inhibiting Ca2+ reabsorption in the kidney [55,56]. The functions of the CaSR in the
parathyroid gland and kidney have long been well recognized but a recent study reported
that the CaSR has played pivotal roles in diverse processes such as inflammation, apoptosis,
migration and proliferation. In particular, its paradoxical role in cancer has aroused a lot of
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interest [57]. The CaSR suppresses cell proliferation and induces terminal differentiation
in parathyroid and colon tumors, as shown by recent studies which provided abundant
evidence that overexpressing the CaSR suppressed the proliferation of colorectal cancer
cell both in vivo and in vitro [58,59], while inversely, it acts as an oncogene in prostate,
testicular, ovarian, and breast cancer, especially bone metastasis in breast and prostate
cancer [60,61]. As early as 2006, Liao et al. demonstrated that elevated extracellular Ca2+

facilitated skeletal metastasis of prostate cell lines and that this effect was associated with
an up-regulated CaSR which mediated the influx of extracellular Ca2+ triggering the AKT
signalling pathway, but extracellular Ca2+ influx had no effect in prostate cancer cells
derived from a lymph node metastasis [57]. Around the same time, Mihai et al. provided
clinical evidence that CaSR-positive tumors were more likely to develop bone metasta-
sis in breast cancer, by assessing the intensity of CaSR expression in the primary tumor
histological sections [62]. This effect was later shown to have involved extracellular-signal-
regulated kinase (ERK1/2) and phospholipase C beta (PLCβ) as downstream effectors [63].
Using similar methods as Mihai et al., Feng et al. identified a promotion function for the
CaSR in metastatic prostate cancer; thus by pathological and statistical analysis, they found
that compared to non-metastatic prostate cancer tissue, metastatic cancer tissue specifically
expressed a higher level of the CaSR [61]. In 2014, Joeckel et al. demonstrated in renal cell
carcinoma (RCC) cells that the CaSR mediated the promotion function of extracellular Ca2+

on tumor cell proliferation and bone metastasis via activation of the PI3K (phosphatidyl-
inositol 3-kinase)/AKT pathway, the PLCγ-1 pathway, and the mitogen activated protein
kinase (MAPK) cascades [64,65].

Taken together, the findings show that binding of these proteins to the CaSR initiates
intracellular Ca2+ signaling cascades which lead specifically to the bone metastasis of
multiple cancers, indicating that the CaSR can be a treatment target and also a diagnostic
indicator of metastasis to bone.

3.2. Store-Operated Calcium Entry (SOCE)

One of the major mechanisms that regulate and remodel Ca2+ influx pathways in
tumour progression is store-operated calcium entry (SOCE), the process in which Ca2+

passes through the cell membrane upon the depletion of intracellular Ca2+ stored in the
endoplasmic reticulum (ER) [66,67]. Growing evidence has shown that SOCE and its
molecular determinants are involved in various cell behaviours including proliferation,
angiogenesis, invasion, and migration in some types of cancers [68–70].

3.2.1. ORAI

As an important determinant of SOCE, ORAI proteins, which form a store-operated
calcium selective ion channel, have been linked to roles in the development of cancer cells.
ORAI forms calcium release-activated channels (CRAC) on the cell surface and interacts
with stromal interaction molecule 1 (STIM1) which senses the Ca2+ concentration inside the
ER and regulates SOCE [71]. In 2014, Umemura et al. reported that melanoma cell prolifer-
ation and metastasis were significantly suppressed by either genetically down-regulating
ORAI or pharmacologically inhibiting SOCE [68], and since it has long been recognized
that in melanoma cells, proliferation is regulated via ERK signalling, and migration is
regulated via calpain-dependent actin dynamics [72], Umemura et al. proved that both
these regulatory mechanisms were initiated by SOCE [68]. In hepatocarcinoma tissues,
Tang et al. reported that genetic downregulation of ORAI1 or pharmacological inhibition
of SOCE using SKF96365 improves 5-FU-induced autophagy and cell death in HepG2
cells (an in vitro model of hepatocarcinoma) [73]. ORAI mediated SOCE also leads to
metastasis in acute myeloid leukemia, as reported by Diez-Bello et al. Genetic knockdown
of ORAI1 and ORAI2 in the promyeloblastic cell line HL60, attenuated cell proliferation
and metastasis via promotion of the phosphorylation of the focal adhesion kinase (FAK),
which was shown to be essential for cell migration and invasion [66,74]. The link between
FAK and another ORAI isoform, ORAI3, and their roles in tumorigenesis, was also reported
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by Motiani et al. in breast cancer cells [75]. Of all the ORAI isoforms, ORAI1 is the most
ubiquitously expressed and the most well studied, however, future studies may focus on
determining whether different ORAI isoforms have varying roles in different cancer types
or at different stages of tumourigenesis.

3.2.2. Stromal-Interaction Molecule (STIM)

Stromal-interaction molecule (STIM) is a Ca2+ sensor in the ER that triggers SOCE
activation. How STIM regulates cancer progress is controversial. Chen et al. revealed,
through in vitro studies, mouse models, and clinical analyses, that STIM1-dependent
signalling regulates proliferation, migration, and angiogenesis in cervical cancer cells [76].
STIM1 also affects invasion and migration of gastric cancer cells, possibly through an
unknown pathway independent of the MEK/ERK signaling, as reported by Xu et al. [77].

3.2.3. TRP Channels

Alterations of Ca2+ homeostasis via transient receptor potential (TRP) channels were
implicated in several processes attributed to cancer metastasis, practically cell proliferation
and migration, which are two of cancer’s hallmarks. TRP is a superfamily of cation chan-
nels localised in the plasma membrane and composed of subfamilies, such as transient
receptor potential canonical (TRPC), transient receptor potential vanilloid (TPRPV) and
transient receptor potential melastatin (TRPM) [78]. Although previous studies have pro-
vided evidence of the involvement of various isoforms of TRPC, such as TRPC1, TRPC4,
TRPC5 and TRPC6, in regulating pathophysiological processes related to tumour metas-
tasis [79–83], and several reviews [84–87] have also discussed it, current studies focus
mainly on the role of TRPC6/Ca2+ signalling in cancer metastasis at the global level in
various types of cancers and revealed the emerging roles of TRPC3 in melanoma metastasis
at the local level. Oda et al. (2017) found that TRPC3 acts as a modulator of melanoma
cell proliferation and migration in in vitro and in vivo models (using the C8161 human
melanoma cell line) in a mechanism involving (matrix metallopeptidase 9) MMP9 activa-
tion [88]. Inhibition of TRPC6/Ca2+ signalling either pharmacologically (using SKF-96365)
or by genetic downregulation using siRNA showed a significant reduction in A549 cell
(an in vitro model of NSCLC) proliferation by arresting the cell cycle at the S-G2/M phase
and invasion [89]. Therefore, inhibiting the effects of TRPC6/Ca2+ signalling may serve as a
viable therapeutic target for patients with NSCLC metastatic cancer, and it warrants further
investigation in an in vivo model. Recently, the novel roles of the Na+/Ca2+ exchanger
1 (NCX1) and TRPC6 were deciphered in modulating transforming growth factor-beta
(TGFβ), which plays a vital role in various aspects of human hepatocellular carcinoma
metastasis, involving hepatic cell invasion and migration [90]. Recent evidence has shown
that Ca2+ signalling via TRPC6 acts as a regulator of Helicobacter pylori-mediated gastric
cancer invasion and migration involving activation of the Wnt/β-catenin signalling path-
way in AGS and MKN45 cells [91]. A growing body of evidence highlights the contribution
of various TRPM isoforms, including TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8, in
cancer metastasis biology [92–100]. Recent scientific attention was given to TRPM8 in
bladder cancer metastasis. Wang et al. demonstrated that TRPM8 modulates cell prolifera-
tion and migration, ultimately leading to the development of bladder cancer metastatic
phenotypes [101]. Knockdown of TRPM8 attenuates bladder cancer proliferation and pro-
gression in T24 cells and slows down tumour growth and progression in a murine model of
human urinary bladder cancer [101]. The availability of a TRPM8 antagonist (PF-05105679),
which has been tested in humans (phase 1 trial, NCT01393652) [102], raises a translational
question regarding the possibility of modulating TRPM8 as a therapeutic approach and
giving it as adjuvant therapy for patients with metastatic cancer after adequate data for its
safety and tolerability (I.e. through clinical validation) have been obtained and an analogue
to overcome one potential therapeutic limitation (causing a hot feeling in patients) has been
developed that might greatly help the development of an anti-neoplastic agent to treat
metastatic cancer.TRPV1, TRPV2 and TRPV4 are reported to regulate pathophysiological
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processes related to metastatic traits [103–107]. Recently, growing evidence has shown
that TRPV4 modulates epithelial-mesenchymal transition and cytoskeleton promoting
cancer metastasis [108,109]. TRPV4/Ca2+ signalling enhances gastric cancer progression
in an in vitro model of gastric cancer (HGC-27 and MGC-803 cells) and is significantly
correlated with aggressive features (involving depth of tumour invasion and lymph node
metastasis) in gastric cancer patients, which suggests its clinical utility as a biomarker to
predict the prognosis in patients with gastric cancer [108]. Li et al. underpinned the role of
TRPV4/Ca2+ signalling-promoted endometrial cancer metastasis through the modulation
of the cytoskeleton in a mechanism involving the activation of the RhoA (Ras homolog
gene family member A)/ROCK1(Rho-associated protein kinase 1) signalling pathway [109].
Further studies are required to expand our cancer biology knowledge of the molecular
mechanisms underlying the TRP modulation of metastasis and the identification of novel
targets/biomarkers to treat metastatic cancer.

3.2.4. Mitochondrial Ca2+ Uniporter and SOCE Crosstalk

The mitochondrial Ca2+ uniporter (MCU) mobilizes mitochondrial Ca2+ signalling
from the cytosol into mitochondria. The cellular mechanisms underlying the regulation
of Ca2+ signalling via MCU in pathophysiological processes that are related to metastatic
cancer [110,111] and its links to store-operated Ca2+ entry-mediated tumour metastasis
have been investigated [112]. Several studies have shown that MCU plays a pivotal role
in breast cancer progression and metastasis and that it is a candidate therapeutic target
and biomarker for breast cancer [112–114]. Tang et al. demonstrated that Ca2+ release via
MCU is critical for SOCE-promoted metastasis in MDA-MB-231 breast cancer cells [112].
By contrast, Tosatto et al. suggested that the distinctive role of MCU enhances breast
migration progression via a mechanism involving hypoxia-inducible factor-1α (HIF-1α)
signalling, and they attributed the indirect effects of MCU on Ca2+ signalling via SOCE that
was observed by Tan et al. to the cell line-dependent effect [113]. Similarly, recent evidence
by Wang et al. is consistent with Tosatto et al.’s finding that MCU-mediated mitochondrial
Ca2+ signals enhance metastatic phenotypes (involving the epithelial-mesenchymal transi-
tion process) through a distinctive mechanism via HIF-1α and VEGF (Vascular endothelial
growth factor) signalling pathways in gastric cancer [115]. What remains unanswered is
how MCU acts at the molecular level and what the possible complex interplay is between
mitochondrial Ca2+ signalling, SOCE and metastatic cancer. These factors warrant further
investigation in various cancer subtypes utilising in vitro and in vivo models.

3.3. Voltage-Gated Ca2+ Channels in Metastasis

Recently, voltage-gated Ca2+ channels (VGCCs), particularly L and T subtypes,
have been implicated in the pathophysiological processes that drive cancer metasta-
sis [116–121]. Grasset et al. demonstrated that pharmacological inhibition of the L-type
calcium channel via verapamil or diltiazem decreases the EGF signalling mediated collec-
tive cancer cell invasion in in vitro and in vivo models of squamous cell carcinoma [120].
Recent evidence provided by Phiwchai et al. (2020) revealed the involvement of L-type
calcium channel/Ca2+ signalling pathway in labile iron-driving hepatic cancer cell pro-
liferation [121]. Knocked down or pharmacologically inhibited T-type calcium channels
showed reduced migration and invasion of BRAFV600E cells, which provides evidence
that T-type calcium channels play a role in melanoma metastasis [118]. These data high-
light the potential of these channels to serve as promising therapeutic targets to treat
patients with metastatic carcinomas due to the long-term medical use of these channel.

4. Proteins Involved in Ca2+ Signalling Cascades and Their Roles in Metastasis

The crosstalk between calcium effector proteins such as calpain and calmodulin (CaM),
and endolysosomal proteins such as the lysosome-associated membrane proteins (LAMPs),
and cancer metastasis has begun to be unravelled. There are 15 isoforms of the calpain
family of calcium-dependent cysteine proteases in mammals [122] and of those isoforms,
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calpain-1, calpain-2 and calpain-9 have received considerable scientific attention for their
roles in metastatic traits [123]. An increased expression of calpain-1 was detected in colorectal
cancer and correlated with poor overall survival (OS), advanced pathological grade, and
metastasis [124]. Calpain-1 deficient SW480 and HT29 cells (an in vitro model of colorectal
cancer achieved by siRNA) exhibited significantly reduced of cell invasion and migration
processes, which ultimately promoted tumour progression and metastasis compared to con-
trolled cells [124]. Similarly, Yu et al. found that upregulation of calpain-1 protein levels were
significantly associated with tumour progression and shorter OS in patients with pancreatic
cancer [125]. When calpain-1 expression in pancreatic cancer cells was downregulated by
siRNA in AsPC-1 and BxPC-3 cell lines, the invasion and migration abilities of pancreatic
cancer cells were significantly attenuated [38]. Previously, calpain-1 overexpression was
significantly associated with gallbladder carcinoma compared to cholecystitis, indicating that
calpain-1 might act as a key mediator shifting gallbladder cells towards a tumour progression
state that would make it a clinical tool for gallbladder carcinoma prognosis [126].

In 2003, Mamone, et al. discovered the emerging roles of calpain-2 at epigenetic
levels, using in vitro and in vivo prostate cancer models as potential therapeutic targets to
hinder metastatic prostate cancer [127]. These findings are consistent with a recent study
conducted by Gao et al. that identified elevated levels of calpain-2 proteins in metastatic
prostate cancer compared to primary tumours [128]. They also deciphered the underlying
molecular mechanism of epigenetic activation for calpain-2-evoked cancer metastasis via
the nuclear factor- κB (NF-κB)/ DNA (cytosine-5)-methyltransferase 1(DNMT1) signalling
pathway [128].

In contrast to calpain-1 and calpain-2 isoforms, the downregulation of calpain-9 ex-
pression was associated with metastasis in patients with gastric cancer, suggesting the
protective effect of calpain-9 expression and its roles in hampering gastric cancer pro-
gression [129]. Calpain small subunit 1 (Capn4) acts as a maintainer of calpain function
and belongs to the calpain family. A growing body of evidence has demonstrated its
promising prognostic biomarker potential and the crucial roles of Capn4 in metastatic
phenotypes, from tumour invasion to progression, in various types of cancer that include
nasopharyngeal carcinoma, gastric cancer, ovarian carcinoma, breast cancer, glioma and
oesophageal squamous cell carcinoma [130–135]. Capn4 exhibited distinct underlying
mechanisms depending on the cancer subtype context. The precise mechanisms under-
lying the actions of Capn4 and its complex interplay between Epstein-Barr virus latent
membrane protein 1 (LMP1) and nasopharyngeal carcinoma metastasis, was uncovered via
enhanced actin rearrangement-mediated ERK/JNK/AP-1 pathway signalling [130]. In ad-
dition, Zhao, et al. found that Capn4 promoted-cell invasion and gastric cancer metastasis
involving Wnt/β-catenin/MMP9 signalling [134].

Calmodulin (CaM) is a multifunctional Ca2+ binding protein. Its role in metastatic
traits was recently reviewed by Villalobo, and Martin, providing valuable insight into
the roles of calmodulin in metastasis, from invasiveness to tumour cell migration [136].
It was shown that calcium/calmodulin-dependent protein kinase II (CaMKII) triggered
gastric cancer cell metastasis by activating nuclear factor-κB (NF-κB) signalling involving
AKT, which ultimately enhanced MMP-9production in BGC-803 cells (an in vitro model
of human gastric cancer) [137]; this is a metastatic prompting protein present in various
cancer subtypes. Pharmacological modulation of CaM by KN93, a specific inhibitor, in
HCT116 cells (an in vitro model of human colon cancer) was found to drastically decrease
colon cancer cell invasion and migration via ERK1/2 or p38 signalling [138]. Acetyl-CoA-
activates cytosolic CaMKII-mediated metastasis in in vitro and in vivo models of prostate
cancer [139].

The lysosome-associated membrane protein (LAMP) family consists of five members
expressed mainly in the lysosome [140]. LAMP proteins are involved in various aspects of
cancer metastasis biology. They maintain lysosomal homeostasis, where much endolyso-
somal Ca+2 signalling occurs. Although it has become clear that lysosome-associated
membrane proteins play significant roles in autophagy [141], which contributes to cancer
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metastasis [142], the complex interplay between LAMPs, Ca2+ signals, and autophagy-
mediated metastasis remains elusive. LAMP1, LAMP2, and LAMP3 are the key LAMP
isoforms emerging as important potential players in cancer biology [140]. Upregulation of
LAMP1 expression has been reported to predict poor prognosis in various cancer subtypes
including large B-cell lymphoma, epithelial ovarian cancer, breast cancer, and laryngeal
squamous cell carcinoma [143–146]. The underlying mechanism of the role that ubiquitin-
like protein 4A (UBL4A) plays in autophagy-mediated metastasis by suppressing autophagy
and disturbing lysosomal functions through targeting LAMP1 in pancreatic ductal adeno-
carcinoma was unveiled recently [147]. Overexpression of LAMP2 has been associated with
worse OS in oesophageal squamous cell carcinoma patients [148]. Upregulation of LAMP3
expression acts as a biomarker for poor prognosis in oesophageal squamous cell carcinoma
(ESCC) and ovarian cancer [149,150], whereas downregulation of LAMP3 expression has
been associated with poor prognosis in hepatocellular carcinoma [151]. A recent study
conducted by Huang et al. provides a possible explanation for LAMP3 overexpression con-
tributing to poor prognosis in ESCC [152]. The authors found that LAMP3-deficient ESCC
cells had drastically reduced metastatic traits (invasive and metastatic capability) compared
to non-deficient ESCC cells via activation of the cAMP-dependent protein kinase A (PKA)-
mediated VASP phosphorylation pathway [152]. In addition, the authors showed that the
number of lung metastases were attenuated after LAMP3 knockdown in an in vivo mouse
model used for investigating LAMP3-mediated ESCC cell metastasis [152]. These findings
imply that the proteins involved in Ca2+ signalling or lysosomal function fulfil functions far
beyond their roles in maintaining Ca2+ or lysosomal homeostasis. Study of the interaction
of these proteins in the context of metastasis might form the basis of a fruitful therapeutic
approach for metastatic cancer. Further work is required to uncover the communication
between LAMPs and Ca2+ signalling in lysosomes at a dynamic level.

5. Challenges and Potential Clinical Utilities of Calcium Signalling as a Diagnostic
and Therapeutic Target in Metastatic Cancer

Despite significant advances in the current approaches to diagnosing and treating
metastatic cancer in clinical settings, some patients still have low successful response rates
to therapy or experience delay in the detection of metastatic sites; hence identifying in-
novative biomarkers and therapeutic targets for metastatic cancer detection or therapy is
required. Molecular characterization of Ca2+ signalling’s role in cell invasion and motility,
tumour progression, and metastasis is an evolving field receiving increased scientific atten-
tion, raising important questions regarding the possibility of translating these findings into
potential clinical tools to optimize metastatic cancer diagnosis and therapy. While navigat-
ing clinicaltrials.gov, we found a paucity of clinical studies using changes in Ca2+ signalling
pathways as a detection approach for metastatic cancer or targeting Ca2+ proteins as an
adjuvant therapeutic approach for patients with metastatic cancer. Calcium electroporation
(CaEP), characterized by introducing supraphysiological calcium concentrations into cells
by applying electrical pulses [153], is a promising novel adjuvant therapeutic approach for
cancer patients. This strategy is currently under investigation in phase 2 clinical trials (such
as NCT01941901, NCT04259658, and NCT03628417), mainly in skin cancers in the metastatic
state, in which it is administered intratumourally. A phase 1 clinical trial (NCT01056029)
was conducted to investigate mipsagargin, which is a thapsigargin (noncompetitive in-
hibitor of the sarco-/endoplasmic reticulum Ca2+ ATPase) pro-drug, in locally advanced
or metastatic solid tumours. Generally, mipsagargin has been shown to have acceptable
safety and tolerability profiles, with prolonged disease stabilisation in some patients with
solid tumours [154]. Mipsagargin has moved into phase 2, and its investigation has been
completed in various cancer subtypes including hepatocellular carcinoma (NCT01777594),
glioblastoma (NCT02067156), clear cell renal cell carcinoma (NCT02607553), and prostatic
neoplasms (NCT02381236). In a phase 1 clinical trial (NCT01480050), combination therapy
of mibefradil dihydrochloride (a T-type calcium channel blocker) and temozolomide (an
alkylating agent) in patients with recurrent advanced stages of gliomas was found to be
well-tolerated, with encouraging clinical responses in a subset of patients [155], warranting

clinicaltrials.gov
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further investigation in phase 2 trials. Despite Ca2+ being a ubiquitous second messenger,
defining distinct downstream/upstream regulators of Ca2+ signalling pathways could be
used to provide potential translation of preclinical evidence into clinical studies, in order to
ultimately develop more effective and less toxic chemotherapeutic agents.

6. Conclusions

In summary, a growing body of evidence reveals the substantial effects of Ca2+

signalling-mediated cancer metastasis, raising important questions regarding the clinical
utility of proteins involved in Ca2+ signalling cascades as cancer biomarkers or hallmarks.
Several studies have detected dysregulated expression of intracellular or extracellular
calcium channels or proteins related to Ca2+ signalling-triggered metastasis at the mRNA
or protein levels in various cancer subtypes (see Table 1). These are attributed to patho-
physiological processes, including cellular adhesion, motility, invasion, the epithelial-
mesenchymal transition, and cell progression and migration at a local level, as well as
the development of metastasis at a systemic level. Accumulating evidence points to an
association between calcium channel proteins or Ca2+ signalling-related proteins at the
mRNA or protein levels and the prognosis of patients with different types of cancers, sug-
gesting possible clinical applications of Ca2+ signalling proteins as prognostic biomarkers.
However, large prospective clinical studies with diverse patient populations are required
to validate these findings and sufficiently establish the specificity and sensitivity of these
biomarkers for cancer at a global level or among different cancers for them to be employed
in our daily clinical practice.

Table 1. Some experimental evidence supporting Ca+2 signalling-mediated cancer metastasis.

Target Expression Type of Cancer Process Related to
Metastasis

Mechanism
(If Applicable)

In Vitro
(Cell Line)/In Vivo Ref.

IP3R3

Intracellular
calcium

signalling in
metastasis

Endoplasmic and
sarcoplasmic reticulum

Ca2+ channels/pumps

IP3 receptors (IP3Rs)
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Table 1. Cont.

Target Expression Type of Cancer Process Related to
Metastasis

Mechanism
(If Applicable)

In Vitro
(Cell Line)/In Vivo Ref.

TPCs

Endolysosomal

Ca2+ Channels

Two-pore channels
(TPCs)
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Migration 

Ca2+ signalling via 

IP3R3 mediated 

cancer cell 

metastasis 

MDA-MB-231 and 

MDA-MB-435S cells 
[24] 

 

Increased  

protein 

levels 

Cholangiocarc

inoma (CCA) 
Migration 

Patients with 

hilar/intrahepatic 

CCA and CCA cell 

lines 

[25] 

 

Increased 

protein 

levels 

Colorectal 

carcinoma 
Aggressiveness 

Patients with 

advanced/metasatic 

colorectal carcinoma 

[27] 

 

Increased 

mRNA 

levels 
Glioblastoma 

 Invasion and 

migration  
Patients with 

glioblastoma  
[28] 

RYR2 

Ryanodine 

receptors 

(RyRs)  

Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA
levels

Non-
small-cell lung

cancer (NSCLC)

Invasion and
migration

Ca2+ signals via
TRPML1-
mediated

autophagy
promoting tumor

progression

Patients with
advanced-stage (
III–IV) NSCLC

[35]

TRPML2
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Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and

protein
levels

Glioma Cell proliferation and
progression

Ca2+ signalling
via TRPML2

promoting Glioma
progression

Patients with
advanced-stage
(III–IV) glioma

[36]

CaSR

Extracellular
components

of Ca2+

signaling in
metastasis

Calcium-sensing receptor (CaSR)
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TRAM2 Translocons 

 

Increased 

mRNA 

levels 

 Oral 

squamous cell 

carcinoma 

(OSCC) 

Cellular 

invasion, and 

migration 

Overexpression of 

TRAM2-mediated 

matrix 

metalloproteinase 

activation 

OSCC-derived cell 

lines and primary 

OSCC tissues 

[21] 

SERCA2 

Sarco-

endoplasmic 

reticulum 

Ca2+ 

reuptake 

pump 

(SERCA) 

 

Increased 

protein 

levels 

Colorectal 

Cancer 

(CRC)  

Progression 

Calcium 

signalling via 

SERCA2 

mediation 

CRC progression 

Patients with 

advanced stages of 

colorectal cancer 

[16] 

TPCs  

Endolysosomal 

Ca2+ Channels 

Two-pore 

channels 

(TPCs) 

 

Increased 

TPC1/TPC2 
mRNA 

levels 

Bladder cancer 

Cell 

adhesion 

and 

migration 

Endolysosomal 

Ca2+ signaling via 

TPC evoked β1-

integrin recycling 

T24 cells [31] 

TPC2 

 

Decreased 
TPC2 

mRNA 

levels 

Melanoma 
Cell 

adhesion and 
invasion 

Reduction in 

TPC2 expression 

enhanced 

metastasis via 

YAP/TAZ 

activation 

Patients with 

metastatic skin 

cutaneous melanoma 

(SKCM) 

[32] 

TRPML1 

Transient 

receptor 

potential 

cation 

channels 

(TRPMLs) 

 

Increased 

mRNA 

levels 

 Non- 
small-cell lung 

cancer 

(NSCLC) 

Invasion and 

migration 

Ca2+ signals via 

TRPML1- 

mediated 

autophagy 

promoting tumor 

progression 

Patients with 

advanced-stage ( III–

IV) NSCLC 
[35] 

Decreased
mRNA level

Colorectal cancer
(CRC)

Cell proliferation,
differentiation and

apoptosis
/

HT29/Caco2-
15/colorectal

cancer patients
[58]
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activation 
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[21] 

SERCA2 

Sarco-

endoplasmic 

reticulum 

Ca2+ 

reuptake 

pump 

(SERCA) 

 

Increased 

protein 

levels 

Colorectal 

Cancer 

(CRC)  

Progression 

Calcium 

signalling via 

SERCA2 

mediation 

CRC progression 

Patients with 

advanced stages of 

colorectal cancer 

[16] 

TPCs  

Endolysosomal 

Ca2+ Channels 

Two-pore 

channels 

(TPCs) 

 

Increased 

TPC1/TPC2 
mRNA 

levels 

Bladder cancer 

Cell 
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and 

migration 

Endolysosomal 

Ca2+ signaling via 
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T24 cells [31] 

TPC2 

 

Decreased 
TPC2 

mRNA 

levels 

Melanoma 
Cell 
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enhanced 
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activation 

Patients with 
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cutaneous melanoma 

(SKCM) 

[32] 

TRPML1 

Transient 

receptor 

potential 

cation 

channels 

(TRPMLs) 

 

Increased 

mRNA 

levels 

 Non- 
small-cell lung 

cancer 

(NSCLC) 

Invasion and 

migration 

Ca2+ signals via 

TRPML1- 

mediated 

autophagy 

promoting tumor 

progression 

Patients with 

advanced-stage ( III–

IV) NSCLC 
[35] 

Decreased
mRNA and
protein level

Parathyroid cancer Cell proliferation
CaSR activation
increases ERK

phosphorylation

Patients with
parathyroid
adenomas

[59]
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Mechanism 
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(Cell Line)/In Vivo 

Ref. 

IP3R3 
Intracellular 

calcium 

signalling in 

metastasis 

Endoplasmic 

and 

sarcoplasmic 

reticulum Ca2+ 

channels/pumps 

IP3 receptors 

(IP3Rs) 

 

Increased 

mRNA and 

protein 

levels 
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cancer 
Migration 

Ca2+ signalling via 

IP3R3 mediated 

cancer cell 

metastasis 

MDA-MB-231 and 

MDA-MB-435S cells 
[24] 

 

Increased  

protein 

levels 

Cholangiocarc

inoma (CCA) 
Migration 

Patients with 

hilar/intrahepatic 

CCA and CCA cell 

lines 

[25] 

 

Increased 

protein 

levels 

Colorectal 

carcinoma 
Aggressiveness 

Patients with 

advanced/metasatic 

colorectal carcinoma 

[27] 
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mRNA 

levels 
Glioblastoma 

 Invasion and 

migration  
Patients with 

glioblastoma  
[28] 

RYR2 

Ryanodine 

receptors 

(RyRs)  

Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and
protein level

Breast cancer Cell proliferation and
migration

ERK1/2 MAPK or
phospholipase Cβ
(PLCβ) pathway

Patients with
breast

cancer/breast
cancer cell lines
MDA-MB-231,

MCF7, T47D, and
BT474

[62,63]
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receptors 
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Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
protein level Prostate cancer Cell proliferation and

migration

CaSR mediated cell
attachmentvia the

AKT signaling
pathway

Human prostate
cancer tissue

sections/prostate
celllines PC-3,

C4-2B and LNCaP

[57,61]
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cancer cell 
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MDA-MB-231 and 

MDA-MB-435S cells 
[24] 
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levels 
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mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and
protein level

renal cell
carcinoma (RCC)

Cell proliferation and
migration

CaSR activated the
PI3K (phospatidyl-

inositol
3-kinase)/AKT,
PLCγ-1, and

MAPK pathway

Primary cells
derived from RCC

patients
[65]

ORAI1

Store-operated
calcium entry

(SOCE)
ORAI
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[28] 

RYR2 

Ryanodine 

receptors 

(RyRs)  
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levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
protein level Melanoma Cell proliferation and

migration

SOCE increases
phosphorylation of

ERK and
calpain-dependent

actin dynamics

Human metastatic
melanoma cell

lines
[68]

Cancers 2021, 13, x FOR PEER REVIEW 13 of 24 
 

Table 1. Some experimental evidence supporting Ca+2 signalling-mediated cancer metastasis. 

Target    Expression 
Type of 

Cancer 

Process Related 

to Metastasis 

Mechanism 

(If Applicable) 

In Vitro 
(Cell Line)/In Vivo 

Ref. 

IP3R3 
Intracellular 

calcium 

signalling in 

metastasis 

Endoplasmic 

and 

sarcoplasmic 

reticulum Ca2+ 

channels/pumps 

IP3 receptors 

(IP3Rs) 

 

Increased 

mRNA and 

protein 

levels 

Breast  

cancer 
Migration 

Ca2+ signalling via 

IP3R3 mediated 

cancer cell 

metastasis 

MDA-MB-231 and 

MDA-MB-435S cells 
[24] 

 

Increased  

protein 

levels 

Cholangiocarc

inoma (CCA) 
Migration 

Patients with 

hilar/intrahepatic 

CCA and CCA cell 

lines 

[25] 

 

Increased 

protein 

levels 

Colorectal 

carcinoma 
Aggressiveness 

Patients with 

advanced/metasatic 

colorectal carcinoma 

[27] 

 

Increased 

mRNA 

levels 
Glioblastoma 

 Invasion and 

migration  
Patients with 

glioblastoma  
[28] 

RYR2 

Ryanodine 

receptors 

(RyRs)  

Increased 
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levels 
Breast cancer 
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transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and

protein
levels

Hepatocarcinoma
(HCC) Autophagic cell death

Orai1 blocks
autophagy through

AKT/mTOR
signalling pathway

Tissues from HCC
patients and

human
hepatocarcinoma
cell line HepG2

[73]

ORAI 1 &
ORAI 2
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Ryanodine 

receptors 
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levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and

protein
levels

Acute myeloid
leukemia

Cell proliferation and
migration

Promoting
phosphorylation of
the focal adhesion

kinase (FAK)

HL60 cell line [66]
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levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and

protein
levels

Breast cancer Cell proliferation and
migration

SOCE-dependent
NFAT activity and
ERK1/2 and FAK

kinase
phosphorylation

MCF7 and
MDA-MB231 cell

lines/in vivo
[75]
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Table 1. Cont.

Target Expression Type of Cancer Process Related to
Metastasis

Mechanism
(If Applicable)

In Vitro
(Cell Line)/In Vivo Ref.

STIM1

Stromal-interaction
molecule (STIM)
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levels 
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Epithelial-
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transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
protein level Cervical cancer

Cell growth,
migration, and
angiogenesis

STIM1 activate
calpain and Pyk2,

which regulate
FAK

Human cervical
cancer cell lines

SiHa and
CaSki/in vivo

[76]

STIM1
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Patients with 
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[28] 
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receptors 

(RyRs)  

Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA and

protein
levels

Gastric cancer Cell migration and
invasion /

Human gastric
cancer cells/gastric

tumor tissues
[77]

TRPM8

TRP channels
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Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
mRNA Bladder cancer Cell proliferation and

migration

Ca2+ signalling via
TRPM8

mediated bladder
cancer cell
metastasis

Human bladder
cancer tissue [101]

TRPV4
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Mechanism 
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Migration 
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levels 
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migration  
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mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased
protein level Gastric cancer Cell proliferation and

invasion

TRPV4/Ca2+

signalling-
mediated

EMT

Human gastric
cancer tissues [108]
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Table 1. Some experimental evidence supporting Ca+2 signalling-mediated cancer metastasis. 

Target    Expression 
Type of 

Cancer 

Process Related 

to Metastasis 

Mechanism 

(If Applicable) 

In Vitro 
(Cell Line)/In Vivo 

Ref. 

IP3R3 
Intracellular 

calcium 

signalling in 

metastasis 

Endoplasmic 

and 

sarcoplasmic 

reticulum Ca2+ 

channels/pumps 

IP3 receptors 

(IP3Rs) 

 

Increased 

mRNA and 

protein 

levels 

Breast  

cancer 
Migration 

Ca2+ signalling via 

IP3R3 mediated 

cancer cell 

metastasis 

MDA-MB-231 and 

MDA-MB-435S cells 
[24] 

 

Increased  

protein 

levels 

Cholangiocarc

inoma (CCA) 
Migration 

Patients with 

hilar/intrahepatic 

CCA and CCA cell 

lines 

[25] 

 

Increased 

protein 

levels 

Colorectal 

carcinoma 
Aggressiveness 

Patients with 

advanced/metasatic 

colorectal carcinoma 

[27] 

 

Increased 

mRNA 

levels 
Glioblastoma 

 Invasion and 

migration  
Patients with 

glioblastoma  
[28] 

RYR2 

Ryanodine 

receptors 

(RyRs)  

Increased 

mRNA 

levels 
Breast cancer 

Epithelial-

mesenchymal 

transition (EMT) 

RYR2/Ca2+ signals 
activate EGF-

mediated EMT 

MDA-MB-468 cells [20] 

Increased;
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TRAM2 Translocons 

 

Increased 

mRNA 

levels 

 Oral 

squamous cell 

carcinoma 

(OSCC) 

Cellular 

invasion, and 

migration 

Overexpression of 

TRAM2-mediated 

matrix 

metalloproteinase 

activation 

OSCC-derived cell 

lines and primary 

OSCC tissues 

[21] 

SERCA2 

Sarco-

endoplasmic 

reticulum 

Ca2+ 

reuptake 

pump 

(SERCA) 

 

Increased 

protein 

levels 

Colorectal 

Cancer 

(CRC)  

Progression 

Calcium 

signalling via 

SERCA2 

mediation 

CRC progression 

Patients with 

advanced stages of 

colorectal cancer 

[16] 

TPCs  

Endolysosomal 

Ca2+ Channels 

Two-pore 

channels 

(TPCs) 

 

Increased 

TPC1/TPC2 
mRNA 

levels 

Bladder cancer 

Cell 

adhesion 

and 

migration 

Endolysosomal 

Ca2+ signaling via 

TPC evoked β1-

integrin recycling 

T24 cells [31] 

TPC2 

 

Decreased 
TPC2 

mRNA 

levels 

Melanoma 
Cell 

adhesion and 
invasion 

Reduction in 

TPC2 expression 

enhanced 

metastasis via 

YAP/TAZ 

activation 

Patients with 

metastatic skin 

cutaneous melanoma 

(SKCM) 

[32] 

TRPML1 

Transient 

receptor 

potential 

cation 

channels 

(TRPMLs) 

 

Increased 

mRNA 

levels 

 Non- 
small-cell lung 

cancer 

(NSCLC) 

Invasion and 

migration 

Ca2+ signals via 

TRPML1- 

mediated 

autophagy 

promoting tumor 

progression 

Patients with 

advanced-stage ( III–

IV) NSCLC 
[35] 

Decreased.

To date, a few clinical trials have investigated the pharmacological modulation of Ca2+

signalling as a therapeutic strategy to treat patients with metastatic cancer. Calcium elec-
troporation, mipsagargin and mibefradil in combination with temozolomide showed
promising results in the early stages of clinical trials, warranting further investigation.
This supports the possibility of translating these therapeutic strategies into the clinic as
novel alternative approaches to be given alone or as adjuvants with other chemotherapeutic
agents if they pass the development stages and are approved for clinical use by federal
agencies, such as the Food and Drug Administration (FDA) or the European Medicines
Agency (EMA). Despite the emerging roles of Ca2+ signalling in tumour progression and
metastasis and its potential as a clinical tool that can enhance the detection rate and guide
the treatment of metastatic cancer patients, several questions still remain to be answered,
such as those relating to the precise mechanisms underlying Ca2+ signalling-mediated
cancer metastasis. A key diagnostic or therapeutic challenge is discovering specific down-
stream or upstream regulators of Ca2+ signalling that are involved in metastatic cascades
given the ubiquity of Ca2+ signals in our cells. Ca2+ signalling pathways are involved in di-
verse aspects of tumour progression and metastasis, and this further research will open up
the possibility of using Ca2+ proteins as clinical biomarkers and utilising pharmacological
modulators to optimise metastatic cancer therapy.
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