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a b s t r a c t 

A method for objectively estimating reference states for suspended fine sediment (turbidity) is presented. To 

be fit for water policy development and implementation the method had to satisfy four requirements: (1) 

the method must not be dependent on data from minimally-disturbed reference sites; (2) the method must 

facilitate characterization of reference states throughout heterogeneous river networks, given patchy data; (3) the 

classification of reference states must be relevant and legitimate to end-users; (4) the method should provide 

several classifications of reference states at different spatial resolutions allowing selection of the resolution 

yielding the most parsimonious classification of reference states throughout the network. Implementing the 

method involves two stages: (1) Development of a river classification based on sediment supply and retention 

regimes (defining ‘turbidity classes’) at multiple spatial resolutions. (2) At each resolution, for each turbidity 

class, estimation of a reference state based on relationships between turbidity and anthropogenic stressors, then 

objective selection of the resolution yielding the most parsimonious classification of reference states throughout 

the network. Implementing the method requires a river network GIS and turbidity data within classes, preferably 

from monitoring sites spanning the domains of the anthropogenic stressor variables used for model-based 

estimation of reference states. 

• A method is presented for estimating reference states for suspended fine sediment (turbidity) throughout 

spatially heterogeneous river networks. 
• Development of the method was guided by the requirements of policy analysts during reform of water policy 

in New Zealand. 
• The method presented was used to develop fine sediment regulatory thresholds of national water policy. 
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Specifications table 

Subject Area Environmental Science 

More specific subject area Riverine water quality 

Method name Model-based estimation of reference states 

Name and reference of original method NA 

Resource availability NA 

Requirements of the method 

A pressing methodological challenge is to provide credible estimates of riverine reference states 

at policy-relevant scales for environmental attributes that exhibit natural spatial variation [6] . Adding

to this challenge is the dearth—often absence—of monitored locations that could serve as reference

sites; sites that contain attribute states that are not significantly influenced by the anthropogenic

stressors that policies and plans aim to manage [21] . When monitored locations that may serve as

reference states are identified, they are often not representative of the regions of the river network

that policies and plans address [4] . Further, data that may be used to estimate reference states are

often sparse in time and space. Methods are required to estimate reference states for river networks

that, first, are not dependent on the existence of representative reference sites; and second, facilitate

the characterization of reference states throughout entire national river networks. 

A third—usually overlooked—requirement of a method for estimating reference states of river 

networks is that it must provide a classification of reference states that is relevant and legitimate ( sensu

Cash et al. [3] ) with respect to the needs of end-users; policy-makers and river managers. A relevant

classification of reference states is one that fits into either a current or developing policy framework

such as New Zealand’s National Policy Statement for Freshwater Management (NPSFM) [14] . For

example, during the development of fine sediment targets under the NPSFM, local governments—those 

responsible for implementing policy—were consulted to provide feedback on a draft classification of 

reference states. One of their major concerns was the logistical challenge of implementing policy that

contained numerous (no more than 12), spatially-structured fine sediment targets throughout their 

jurisdictions [10] . In this instance, a classification of reference states with a very fine spatial resolution

(e.g. [7] ) was irrelevant to the policy framework. 

Processes and tools that ensure the values and experience of end-users are incorporated into 

the development of reference states improve the legitimacy of those reference states. A legitimate 

method is one with good ‘buy-in’ among key stakeholders; it streamlines adoption by end-users. 

Issues pertaining to the relevance and legitimacy of reference state classifications are covered further 

in our companion paper: Stoffels et al. [22] . 

A fourth requirement of a method for estimating reference states of all sites within river networks

is that it should facilitate transparent and objective: (a) classification of reference states at different

spatial resolutions; and (b) selection of the spatial resolution that provides the most parsimonious 

( sensu [2] ) classification of reference states throughout the river network. 

Here we present a simple method for estimating turbidity reference states for all segments of a

national river network. Our method meets all four requirements discussed above. Implementing the 

method involves two broad stages: 

1. Development of a classification of the entire river network based on the regimes of fine sediment

supply to, and retention within, all river segments, at multiple spatial resolutions. 

2. At each spatial resolution, within each turbidity class, estimation of reference state based on 

functional relationships between increasing turbidity (deterioration from the minimally-disturbed 
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Fig. 1. Conceptual overview of the steps involved in implementing the method presented here. Blue: data inputs; orange: 

analysis steps; green: outputs. 
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state) and a gradient of anthropogenic stress (following Dodds and Oakes [4] ), followed by

objective selection of the spatial resolution that yields the most parsimonious classification of

reference states throughout the river network. 

Fig. 1 presents a graphical overview of the steps involved in implementing the method. The

ethod we present was used to inform national freshwater policy reform in New Zealand. The

ethod, as presented below, was applied to riverine turbidity, but could easily be applied to many

iverine attributes relevant to river management such as nutrient concentrations, deposited fine

ediment or dissolved oxygen. 

tage 1: development of the river turbidity classification 

We used the New Zealand River Environment Classification (REC; [19] ) as a basis for our

lassification of river segments based on their turbidity (henceforth, turbidity classification ). The REC

s a geographic information system (GIS) that classifies all segments of New Zealand’s digital river

etwork (average length of river between tributary confluences = 700 m ; N = 593,548) according

o their upstream catchment characteristics. Our use of a river GIS as a basis could be replicated in

everal other countries where similar GISs already exist. Similar GISs have been developed in Australia

Australian Hydrological Geospatial Fabric; www.bom.gov.au/water/geofabric ), Europe [ 5 , 16 , 18 ] and

orth America [ 1 , 9 ]. We reasoned that use of the REC as a basis for our turbidity classification would

acilitate the meeting of two ends. 

First, characterization of reference states throughout the entire national river network. The REC

ssigns each segment of the national river network to classes within a hierarchical classification

esigned to represent dominant upstream conditions in relation to climate, geomorphology and

eology. If (a) we can obtain enough data from within each class to estimate reference state; and

b) the most parsimonious description of reference states throughout the river network is one that

aries by class, then we have a transparent, repeatable method by which we may assign reference

tates to all river segments, even if we have no turbidity data from a large number of those segments.

Second, we reasoned that use of the REC as a basis for the method should increase the legitimacy

f the turbidity classification. The REC has been used extensively to inform policy development and

mplementation in New Zealand (e.g. [ 8 , 23 ]), and so its familiarity to stakeholders should facilitate

http://www.bom.gov.au/water/geofabric
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Table 1 

Explanation of how REC Climate, Topography and Geology classes were aggregated prior to hierarchical clustering. Abbreviations 

used to define CTG names also presented. 

REC variable Values Aggregation to form new CTG classes, prior to clustering 

Climate 

1 Warm-Wet 

2 Warm-Extremely Wet 

3 Warm-Dry 

4 Cold-Wet 

5 Cold-Extremely Wet 

6 Cold-Dry 

Wet and Extremely Wet were combined given these two 

climatic classes are both characterised by generally high 

runoff. Hence six values were aggregated to four: 

1 Warm-Wet (WW) 

2 Warm-Dry (WD) 

3 Cold-Wet (CW) 

4 Cold-Dry (CD) 

Topography 

1 Lowland 

2 Lakefed 

3 Hill 

4 Mountain 

5 Glacial Mountain 

Mountain and Glacial Mountain classes combined on the 

basis of them both being associated with rivers of high 

gradient, hence low sediment retention. Yielding four 

topography classes: 

1 Lowland (Low) 

2 Lakefed (Lake) 

3 Hill (Hill) 

4 Mountain (Mount) 

Geology 

1 Soft Sedimentary 

2 Hard Sedimentary 

3 Alluvium 

4 Plutonic Volcanic 

5 Miscellaneous 

6 Volcanic Basic 

7 Volcanic Acidic 

Plutonic Volcanic and Miscellaneous were aggregated with 

Soft Sedimentary, based on exploration of the frequency 

histograms of sediment values within CTG classes, and 

consultation with expert geologists.Volcanic Basic and 

Volcanic Acidic combined to form Volcanic – geology 

resistant to erosion.This aggregation yielded four geological 

classes: 

1 Soft Sedimentary (SS) 

2 Hard Sedimentary (HS) 

3 Alluvium (Al) 

4 Volcanic (VA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

adoption. Furthermore, because the REC assigns river segments into classes defined by upstream 

climatological and geomorphological variables that, in theory, drive sediment supply and retention, 

the classification should facilitate reference state estimates that are consistent with what regional 

managers would expect based on their local knowledge of catchments. 

The REC is a hierarchical classification. We used the third level of this classification which

combines information describing upstream climate (C), topography (T) and geology (G) as a basis

for our turbidity classification [19] . An ordered triple of CTG values defined a CTG class . We started

with six, five and seven categories describing climate, topography and geology respectively ( Table 1 ).

If we were to do no aggregation of the CTG classes in Table 1 we would theoretically have up

to 6 × 5 × 7 = 210 possible CTG classes. Such a high-resolution turbidity classification would be

irrelevant ( sensu [3] ) to the policy being developed [10] ; aggregation of CTG classes was therefore

deemed necessary. 

Aggregation of CTG classes occurred in two steps: qualitative then quantitative aggregation ( Fig. 1 ).

Quantitative aggregation of CTG classes was done using hierarchical clustering. In order to qualify for

hierarchical clustering a CTG class had to contain long-term turbidity data from at least 20 monitoring

sites (see below). However, many CTG classes did not satisfy this criterion, prohibiting their inclusion

in the hierarchical clustering, which would result in the river segments of these CTG classes being

excluded from the turbidity classification. Some of the CTG classes with very few monitoring sites

contained river segments of very high socioeconomic value. Therefore, to maximise the amount of 

the New Zealand river network included in the hierarchical clustering we qualitatively aggregated 

CTG classes that were likely to experience similar turbidity supply and retention characteristics, prior 

to hierarchical clustering. 
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Fig. 2. Locations of the 1014 monitoring sites from which turbidity data was obtained. 
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Most of the qualitative aggregations of CTG classes that preceded statistical analysis were

traightforward and are documented in Table 1 , with the exception of aggregations concerning

akefed topographies. Most CTG classes containing Lakefed topographies were associated with very

ew (often < 10) monitoring sites. We assumed no effect of geology on turbidity within any CTG class

ontaining the Lakefed topography. As an example, consider the four Cold-Wet, Lakefed CTG classes,

ifferentiated by different geologies CW_Lake_SS, CW_Lake_HS, CW_Lake_Al and CW_Lake_VA; these

our CTG classes are pooled into a single CTG class (assuming geology has no impact): CW_Lake_Any.

ur assumption was based on the reasoning that lakes are suspended sediment traps, and so the

eology underpinning rivers flowing from lakes should have minor effects on turbidity, relative to

he lakes themselves. Following qualitative aggregation our basis for hierarchical clustering consisted

f 4 × 3 × 4 = 48 CTG possible classes without Lakefed topography, plus 4 possible CTG classes

ith Lakefed topographies, yielding a maximum of 52 possible CTG classes as a basis for hierarchical

lustering. Of these 52 possible CTG classes, 40 were represented within the New Zealand river

etwork. 

The 40 CTG classes resulting from qualitative aggregation were quantitatively aggregated using

ierarchical clustering [ 11 , 12 ]. Two turbidity data sets were used: the New Zealand State of the

nvironment (SoE) data and the National River Water Quality Network (NRWQN). The SoE data

re collected and maintained by New Zealand’s regional councils and unitary authorities while the

RWQN data is collected and maintained by NIWA. In both these data sets samples are collected ca.

onthly. After pooling these data sets we had 1014 monitoring sites nationwide ( Fig. 2 ). 

We summarised the turbidity data at each site as the median value. The median was chosen

ecause it was relatively insensitive to number of observations, is a good representation of turbidity

ithin sites, and can be easily calculated for deployment of the method. To ensure site medians

ere not biased by observations from a single season, a monitoring site had to comprise at least

8 observations to be included in the analysis. In our pooled data set most sites had time series
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Fig. 3. Histogram of the number of individual turbidity observations taken at sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

containing at least 50 observations ( Fig. 3 ). Indeed, 1008 of the 1014 sites yielding turbidity data had

at least 24 observations and the majority (638 sites; 63% of sites) had 100 or more observations. 

To calculate spatial similarities in the long-term turbidity states among classes, each CTG class was

characterized as a frequency histogram of turbidity (NTU) site medians. We selected N = 20 sites as

the minimum sample size for histogram estimation. This value was arbitrary, but its selection was

based on exploration of the data and seeking a balance between a minimum N that was too stringent

(too high, resulting in too many CTGs being excluded from the turbidity classification) and too lenient

(too low, resulting in an imprecise characterisation of the turbidity state of a CTG class). Bin domains

for these histograms were held constant across all CTG classes. 

Following initialization of a ‘CTG class’ by ‘histogram-bin’ matrix, we estimated Bray-Curtis 

similarity in the frequency distribution of turbidity values among CTG classes. Multivariate analyses 

were carried out using the R vegan package [15] . We generated four turbidity classifications; one each

for turbidity classes grouped at 50%, 30%, 20%, and 15% dissimilarity. These dissimilarities yielded four

turbidity classifications with 2, 4, 8 and 12 levels of classification detail, and associated differing levels

of spatial resolution. For ease of communication we hereafter refer to these levels of classification

detail as Resolution 1, 2, 3 and 4, which correspond to turbidity classes aggregated at 50%, 30%, 20%

and 15% dissimilarity, respectively. Our highest resolution is Resolution 4 (12 classes) and our lowest

resolution is Resolution 1 (two classes). Turbidity classes are referred to in a manner such that the

resolution is explicit; e.g. Turbidity Classes 1.2 and 4.12 are, respectively, turbidity class 2 at Resolution

1 (lowest/coarsest resolution), and turbidity class 12 at Resolution 4 (highest/finest resolution). 

Fig. 4 and Table 2 show that hierarchical clustering of CTG classes resulted in groups of river

segments that were consistent with what one would expect based on knowledge of the national

riverscape. For example, at Resolution 2, Class 2.3 grouped river segments with low turbidity levels

( Fig. 4 ), often characterised by a cooler climate, hilly/lake-fed topographies, and hard sedimentary

geologies—hence lower supply of sediment ( Fig. 4 ; Table 2 ). Rivers in Class 2.3 were found in the

foothills of the higher alpine regions of the South and North Island ( Fig. 4 ). As spatial resolution

increased, the observed differences between median turbidity states became more subtle ( Fig. 4 ), but

the clustering of CTG classes, hence river segments, remained consistent with expectations ( Fig. 4 ;

Table 2 ). 

Seventeen of the 40 CTG classes passed the criterion for hierarchical clustering ( N ≥ 20

sites), comprising a majority (89%) of all river segments present within the national network. 

Implementation of the policies required complete mapping of the nation’s river network to the 

turbidity classification, so we used a ‘nearest neighbour’ algorithm for mapping the remaining 11% 

of river segments to a turbidity class, based on their nearest neighbours (Supplementary Appendix 1).

The CTG classes comprising 11% of New Zealand’s river segments that were assigned using the nearest

neighbour algorithm are presented in Table 1 . Fig. 5 presents maps showing the spatial distribution of
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Fig. 4. a. Dendrogram of Climate-Topography-Geology (CTG) classes based on Bray-Curtis dissimilarity among their long- 

term turbidity states. Coloured boxes group CTGs by their turbidity class at different spatial resolutions (red = Resolution 1; 

orange = Resolution 2; green = Resolution 3; blue = Resolution 4). b – e. Violin plots of the long-term turbidity distributions 

within turbidity classes at four spatial resolutions. Left-right order of violins follows left-right order of turbidity classes 

(coloured rectangles) in the dendrogram. Horizontal lines in violins denote quartiles. 
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ach turbidity class, at each of the four spatial resolutions. The maps demonstrate the completeness

f the assignment of New Zealand’s river segments to a turbidity class. 

tage 2: Estimation of reference states within turbidity classes, and selection of the spatial 

esolution yielding the most parsimonious classification of reference states 

We used a model-based approach to estimating reference states within turbidity classes [4] .

his approach involves selecting a model of turbidity as a function of covariates that describe the

agnitude of anthropogenic stress within each turbidity class, and using that model to estimate

redicted turbidity at zero anthropogenic disturbance. In applying this method it is assumed that

urbidity will increase across sites with increasing anthropogenic stress. This is a standard approach

hat has previously been applied to estimating reference states for other attributes when few data

rom reference sites are available [ 8 , 20 ]. 

We fitted Gaussian linear models to log 10 -transformed turbidity ( T ) as a function of land-use

ariables from New Zealand’s Land Cover Database ( https://lris.scinfo.org.nz/ ). The land-use variables

elected were those most likely to represent anthropogenic sources of fine sediment [13] . We sought

imple models of reference states within turbidity classes. Towards that end the following set of

andidate models was fitted at each resolution: 

lo g 10 ( T ) = β0 + β1 P + β2 C + β3 P C + ε (M1)

lo g 10 ( T ) = β0 + β1 P + β2 C + β3 P C + β4 E + β5 EC + ε (M2)

https://lris.scinfo.org.nz/
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Fig. 5. Spatial distribution of turbidity classes at four levels of spatial resolution of New Zealand’s digital river network. 
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Table 2 

Hierarchy of turbidity classes, indicating the mapping of classes across classifications of different resolution and to CTG classes. 

Also shown is turbidity class membership of CTG classes assigned using the nearest neighbour algorithm, and qualitative 

evaluation of suspended sediment supply. See Table 1 for description of labels. 

Resolution 1 Resolution 2 Resolution 3 Resolution 4 CTG class (cluster) CTG class (near. 

neighbour) 

Supply of 

suspended 

sediment 

1 1 1 1 WW_Low_VA 

CD_Low_HS 

WW_Hill_VA Medium 

3 7 CW_Hill_SS 

CD_Low_Al 

CW_Mount_SS Low 

9 CW_Hill_VA CW_Low_VA 

CD_Low_VA 

CD_Hill_VA 

CD_Hill_SS 

CW_Mount_VA 

Medium 

6 12 CW_Mount_HS CW_Hill_Al 

CW_Mount_Al 

CD_Mount_Al 

Medium 

7 2 WD_Low_Al Medium 

3 4 8 CW_Hill_HS 

CW_Lake_Any 

WW_Lake_Any 

CD_Lake_Any 

Low 

10 CW_Low_HS Low 

5 4 CW_Low_Al Very low 

11 CD_Hill_HS CD_Mount_VA 

CD_Hill_Al 

CD_Mount_HS 

Very low 

2 2 2 5 WW_Low_SS 

WW_Low_HS 

CD_Low_SS 

WW_Low_Al 

WW_Hill_SS 

WW_Hill_HS 

Very high 

6 WD_Low_SS WD_Low_VA 

WD_Low_HS 

Very high 

4 8 3 CW_Low_SS WD_Lake_Any High 
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lo g 10 ( T ) = β0 + β1 P + β2 C + β3 P C + β4 U + β5 UC + ε (M3)

lo g 10 ( T ) = β0 + β1 P + β2 C + β3 P C + β4 E + β5 EC + β6 U + β7 UC + ε (M4)

In the above equations the β values are parameters and ε is error. The covariates P, E and U

re continuous covariates with domain [0,1] describing the proportions of the catchment upstream

omprised of heavy pasture (mostly productive, exotic grassland), exotic vegetation (mostly pine

orests) and urban development, respectively. These catchment characteristics were available for every

egment of the digital river network and provide good indicators of anthropogenic pressure on water

uality (including turbidity) in the upstream catchment [ 8 , 23 ]. C is a categorical, fixed covariate

eferring to the turbidity class. We did not treat C as a random covariate given its values described

ariation in supply and retention of fine sediment; its values were not random samples from a

opulation of possible sampling units [17] . The number of values of C is dependent on the resolution:

t Resolution 1, C has two values (one for each of two turbidity classes); at Resolutions 2, 3 and 4 C

as 4, 8 and 12 values, respectively. 

The Akaike Information Criterion (AIC; [2] ) was used to select the most parsimonious candidate

rom Models M1-M4, for each resolution. Consequently, we generated four models of reference

tate; one at each resolution. To obtain the reference state within each turbidity class, within each

esolution, we obtained the predicted value with other covariates set to zero, within each level of

 . Model selection statistics for the data we applied our method to are presented in Supplementary

esults Table S1. 

Turbidity was generally an increasing function of anthropogenic land-use, particularly the

roportion of catchments upstream comprised of heavy pasture ( Fig. 6 ). In our case monitoring sites
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Fig. 6. Turbidity as a function of the proportion of catchment upstream comprised of heavy pasture, within turbidity classes 

at four spatial resolutions. Points represent long-term medians of individual monitoring sites throughout New Zealand. The fit 

( + /- 95% CI) of the best model is also presented. 

 

 

 

 

 

 

generally spanned the entire domain of heavy pasture values ( Fig. 6 ). This was true for all turbidity

classes that returned a positive relationship between turbidity and heavy pasture, at all resolutions 

( Fig. 6 ); these classes were assigned the intercept as their reference state. 

Fig. 6 also demonstrates some challenges associated with the model-based approach to estimating 

reference conditions: Within Resolutions 3 and 4, certain turbidity classes returned a negative 

slope (e.g., Classes 3.6, 3.7, 4.3, ad 4.12; Fig. 6 ), which was inconsistent with our prior expectation

of increasing turbidity with increasing anthropogenic land-use. Classes with negative slopes were 

characterised by monitoring sites that were fewer in number and/or had poorer coverage of the heavy

pasture domain, and this was reflected in wider confidence intervals ( Fig. 6 ). When this occurred, the

reference state was estimated as the median fitted response for that class. Conditional assignment of

reference state based on the direction of regression slopes can be easily encoded into an algorithm

that executes the method. 

An information-theoretic approach was used to determine which resolution provided the most 

parsimonious description of turbidity reference states throughout the national river network. 
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pecifically, we estimated the following statistics for the most likely models at each of the four

esolutions: (a) AIC; (b) the AIC model rank: �i = AIC i – min(AIC); and (c) w i , the Akaike weight

f model i , interpreted as the approximate probability that Model i is the best model in the candidate

et, given the data [2] . In our case, the classification of reference states at the highest spatial resolution

Resolution 4; 12 classes) was by far the most parsimonious classification of turbidity reference states

Supplementary Results Table S2). 

oncluding comments on implementation 

In this paper we have outlined a method for estimating reference states of an attribute at all

ocations throughout a heterogenous river network. In our case the attribute was median turbidity

nd the river network represented conditions found across New Zealand that encompass mountains,

ills, and lowlands, both wet and dry climates, and a range of geological conditions. Implementing

he method requires: 

a river network GIS that describes 

◦ assignment of each river network segment to a class within a classification system that has a

sound theoretical basis for distinguishing expected natural variability in the attribute under

consideration. 

◦ for each site with observed data, quantification of anthropogenic stressor variables that have both

a theoretical and empirical association with the attribute under consideration. 

observed data on the attribute state within each class of the classification, preferably spanning the

gradient of the anthropogenic stressor variables used for model-based estimation of reference states.

The method satisfies our four main requirements because it: 

augments information available from reference sites with data from sites distributed across a

gradient of anthropogenic stressors; 

recognises natural variability between landscape settings when characterising reference state

throughout a national river network; 

fits into a developing policy framework by quantifying reference state, and therefore allowing

deviations away from reference condition to be assessed; and 

encourages adoption by end-users by using an existing river classification system that has been

amalgamated into a manageable number of groups each of which is associated with an estimated

reference state using a simple look-up table. 

The method also: 

does not require specialist statistical skills or subjective expert judgements to be implement; 

avoids the need to design, finance and wait for deployment of a bespoke field data collection

campaign because it utilises existing data even though they may not have been originally collected

for this purpose; 

can be automatically re-applied if new data become available because it has only limited

dependencies on manual inputs (e.g. number of classes); 

provides quantification of uncertainties associated with estimated reference states; 

produces estimated reference states that are relatively easy to explain to decision makers or the

general public because they are associated with meaningful catchment labels (e.g. Dry-lowland-

Alluvium); and 

can be applied to different variables because it is a generically applicable method. 
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