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Background: Previous studies in schizophrenia have consistently shown that deficits
in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-
related potential (ERP) typically elicited by changes to simple sound features – are linked
to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive
language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes
in speech but their relationship to NMDA-mediated neurotransmission is not clear.
Accordingly, our study aimed to investigate speech MMNs in healthy humans and their
underlying electrophysiological mechanisms in response to NMDA antagonist treatment.
We also evaluated the relationship between baseline MMN/electrocortical activity and
emergent schizophrenia-like symptoms associated with NMDA receptor blockade.

Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language
paradigm incorporating changes in syllables, vowels and consonant stimuli was used
to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on
the MMN. Further, measures of underlying neural activity, including evoked theta power,
theta phase locking and source-localized current density in cortical regions of interest
were assessed. Subjective symptoms were assessed with the Clinician Administered
Dissociative States Scale (CADSS).

Results: Participants exhibited significant ketamine-induced increases in psychosis-
like symptoms and depending on temporal or frontal recording region, co-occurred
with reductions in MMN generation in response to syllable frequency/intensity, vowel
duration, across vowel and consonant deviants. MMN attenuation was associated with
decreases in evoked theta power, theta phase locking and diminished current density in
auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN
and underlying electrophysiological features associated with the processing of changes
in syllable intensity correlated with the degree of psychotomimetic response to ketamine.

Frontiers in Pharmacology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 455

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00455
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2019.00455
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00455&domain=pdf&date_stamp=2019-05-08
https://www.frontiersin.org/articles/10.3389/fphar.2019.00455/full
http://loop.frontiersin.org/people/379259/overview
http://loop.frontiersin.org/people/351237/overview
http://loop.frontiersin.org/people/616389/overview
http://loop.frontiersin.org/people/54628/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00455 May 7, 2019 Time: 16:49 # 2

de la Salle et al. Ketamine, NMDA, and Speech MMN

Conclusion: Ketamine-induced impairments in healthy human speech MMNs and
their underlying electrocortical mechanisms closely resemble those observed in
schizophrenia and support a model of dysfunctional NMDA receptor-mediated
neurotransmission of language processing deficits in schizophrenia.

HIGHLIGHTS

- Neural effects of NMDA receptor blockade on speech processing were assessed in
a ketamine model.

- Ketamine reduced MMN, theta power, theta phase locking factor and regional cortical
current density.

- Psychosis-like symptoms induced by ketamine were related to baseline (placebo)
neural measures of speech processing.

Keywords: mismatch negativity, N-methyl-D-aspartate (NMDA), ketamine, theta oscillations, cortical
current density

INTRODUCTION

This electroencephalographic (EEG)-based research project
aimed to advance our neural understanding of language
processing by assessing the effects of ketamine-induced
N-methyl-D-aspartate (NMDA) receptor hypofunction on
mismatch negativity (MMN) responses to changes in speech
stimuli (i.e., speech deviants). We also investigated stimulus-
locked time-frequency and event-related spectral perturbation
(ERSP) signatures of ketamine-induced changes in speech
MMNs. Although frequently assessed in relation to high
frequency (beta and gamma) oscillations (Lee et al., 2018),
we specifically focused on the evoked and phase-locking
activity of the theta band as viable translational biomarkers for
investigating brain dynamics underlying language processing
deficits, and their treatment with NMDA receptor antagonists.
To examine ketamine effects on speech processing at the
oscillatory and network level, we combined ERP and ERSP
approaches with a source localization technique, using low-
resolution brain electromagnetic tomography (LORETA) to
assess MMN-associated current density in auditory and language
related regions of interest. Addressing the clinical relevance
of this work, as multiple lines of evidence have implicated
NMDA receptor dysfunction in schizophrenia pathophysiology
including impairments in MMN generation, this study examined
the relationship of these neural measures to psychotomimetic
symptoms produced by acute ketamine administration. This is
the first known human EEG study combining sensor- and source-
level approaches to assess the neural substrates of speech deviance
detection modified by NMDA receptor antagonist treatment and
their association with schizophrenia-like symptomatology.

BACKGROUND

Event-Related Potentials (ERP)
Neurophysiological approaches such as EEG-derived averaged
event-related potentials (ERP) are used increasingly as

biomarkers for aiding our understanding the neural mechanisms
underlying normal and abnormal information processing, and
to monitor novel drug therapies for treatment of sensory and
cognitive processing deficits (Javitt et al., 2008; Bickel and
Javitt, 2009; Javitt, 2015). Within the auditory system, sensory
processing is reflected in the generation of the MMN, an ERP
reflecting the function of the auditory “echoic” memory system,
which maintains brief representations of auditory stimulus
features. This automatic change-detection response is elicited
when the brain detects an infrequent deviance in a stream of
sound stimulation, even in the absence of attention (Näätänen
and Alho, 1997; Näätänen et al., 2007; Paavilainen, 2013). The
MMN is most commonly recorded in the context of the basic
“oddball paradigm” where a physically constant “standard” tone
is infrequently replaced by a “deviant” tone (e.g., differing in
frequency, duration or intensity). The MMN elicited by the
deviance is best observed in the deviant-minus-standard ERP
as a frontocentrally distributed negativity, typically peaking at
150–200 ms after the onset of deviant stimulus. As MMN and its
abnormality can also be elicited by changes of an abstract nature
such as a violation of a multi-stimulus pattern or regularity
(Avissar et al., 2018; Salisbury et al., 2018), or that of a complex
sequential stimulus rule, the MMN is thought to signal a
prediction-error based on regularity-violation rather than just
stimulus-change (Todd et al., 2013).

N-Methyl-D-Aspartate (NMDA)
Receptor Function
N-methyl-D-aspartate receptors are widely expressed in sensory
and higher cognitive brain regions, and dose-dependent
MMN deficits are observed with either systemic or local
infusion of NMDA receptor antagonists directly into the
auditory cortex (Javitt et al., 1996; Javitt, 2000). Evidence in
animal models of the role of NMDA receptor hypofunction,
either genetic (Featherstone et al., 2015) or pharmacologically
induced, on aberrant MMN generation (Harms, 2016) is
paralleled by studies in healthy human volunteers administered
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acute sub-anesthetic doses of ketamine. Ketamine is a non-
competitive NMDA receptor antagonist which reduces and
delays MMN generation elicited by frequency and duration
tone deviants (Rosburg and Kreitschmann-Andermahr, 2016).
MMN generation is not modulated either by dopamine
(D1/D2) agonists or by psychotomimetics targeting serotonin
(5-HT2H) receptors (Bickel and Javitt, 2009; Kantrowitz
and Javitt, 2010). Suggesting both limited dopaminergic
involvement and relative specificity of NMDA receptor
antagonist effects, MMN is considered to be a simple and useful
biomarker of NMDA receptor-type glutamate dysfunction
(Avissar and Javitt, 2018).

Mismatch negativity has been increasingly used for studying
hierarchical levels of acoustic processing involved in speech
and language function. General findings of larger MMNs to
speech sounds and words compared with unfamiliar sounds
and pseudo-words, respectively, suggests that MMN can serve
as a reliable probe of phonological, lexical, semantic, and
syntactic processes (Näätänen, 1999; Pulvermuller and Shtyrov,
2006; Shtyrov and Pulvermuller, 2007). Our primary objective
was to assess the effects of ketamine-induced NMDA receptor
hypofunction on speech MMNs, assessing MMN response to
ketamine as a function of 5 speech deviants, including changes
in syllable frequency, syllable intensity, vowel duration, as
well as consonant change and across-vowel changes. Accurate
perception of acoustic features of spoken words (e.g., frequency
and intensity) and their temporal attributes (e.g., duration or
determining where a work, phrase, and sentence ends) are
essential for affective social communication and there is evidence
that neural processing of phonological features differs from
that of non-linguistic auditory information (Näätänen, 1999;
Pulvermuller and Shtyrov, 2006; Shtyrov and Pulvermuller,
2007). As meta-analyses of studies examining MMN response
to ketamine have shown equivalent reductions in duration and
frequency MMNs, we also expect that ketamine will impair MMN
generation across deviant types.

ERO Time-Frequency Analysis
A mechanistic understanding of the effects of NMDA receptor
function on MMN requires an evaluation of its impact on
event-related spectral oscillatory (ERO) activity across different
frequency bands [delta (<4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), gamma (30–80 Hz)]. EROs can be obtained
at levels ranging from single cell to focal field potentials in
animals, to large-scale synchronized activities measured at the
human scalp (Moran and Hong, 2011). Power in the theta band
is particularly prominent during the processing of tone and
speech deviants, with studies showing that neural generation
of the MMN is accompanied by theta power modulation and
theta phase alignment (Fuentemilla et al., 2008; Hsiao et al.,
2009; Bishop and Hardiman, 2010; Ko et al., 2012; Choi et al.,
2013; Hermann et al., 2014; Koerrner et al., 2016; Corcoran
et al., 2018). NMDA receptor antagonists modulate background
spontaneous theta oscillations (Lazarewicz et al., 2009; Hunt and
Kasicki, 2013) and reduce both MMN and the theta response
to auditory deviants in rodents (Lee et al., 2018). Thus, evoked
theta activity is proposed as a viable translational biomarker

for investigating brain dynamics underlying auditory processing
deficits and their treatment with NMDA receptor antagonists.
In addition to measuring the power of oscillations associated
with the averaged time-domain ERPs, sensitive ‘time-frequency’
analyses of trial-by-trial ERSPs are being increasingly used to
provide a more detailed picture of brain dynamics underlying
ERPs, which is not available with the averaged time-domain ERP,
as seen with the MMN waveform (Lee et al., 2017). One of the
most frequently used ERSP measures, which is computed on a
trial-by-trial basis and is known to independently (vs. power)
affect the amplitude of the averaged ERP, is the phase locking
factor [PLF; also known as phase locking index (PLI), or inter-
trial phase coherence (ITC)]. This measures the degree of phase
consistency across trials, and is commonly interpreted to reflect
phase resetting of ongoing oscillations. The frontal MMN has
been found to be associated with an increase in theta power
for deviant stimuli as well as by theta phase alignment, whereas
the temporal MMN has been found to be associated with theta
phase resetting with no power modulation (Fuentemilla et al.,
2008). This study investigated the time-frequency signature of
ketamine-induced changes in speech MMNs with a specific focus
on evoked theta power and theta phase locking.

ERP Source Activity
The neural characteristics of the MMN (amplitude, power,
and phase resetting) are presumed to result from activity of
neural networks involved in its generation (Fuentemilla et al.,
2008). Studies employing dynamic causal modeling, source
localization, functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) have shown the MMN
to be generated by neural activity and connectivity within a
hierarchically organized cortical network involving temporal
(bilateral auditory cortex) and predominantly right frontal brain
regions (Näätänen and Alho, 1997; Näätänen et al., 2007). In
addition to primary (pAC) and secondary (sAC) auditory cortices
in the temporal lobe, the inferior frontal gyrus (IFG) is the most
studied non-auditory cortical contributor to MMN generation
and appears to serve as an evaluator of stimulus relevance
(Todd et al., 2012). In the oddball paradigm, its activity may
reflect the importance of the violated expectation (prediction
error) detected by auditory cortical areas (Todd et al., 2012).
Activity within and between cortical areas is essential for auditory
perception and oscillatory activity plays a cardinal role in the
recruitment of brain regions and their coupling (Lee et al.,
2017). Neurons within the IFG, such as those located in Broca’s
language area and Broca’s right homolog, are characterized by a
well-described theta frequency synchronization with the auditory
cortex (Hsiao et al., 2009; Choi et al., 2013). In order to examine
ketamine effects on speech processing at the sensory and network
levels, we combined ERP and time-frequency/ERSP approaches
with a source localization technique, using low-resolution brain
electromagnetic tomography (LORETA), a 3D inverse solution,
to assess intracerebral current density as a measure of activation
of regions of interest (ROI: pAC, sAC, and IFG) during MMN
generation. With ERPs and their underlying spectrally analyzed
activity, we expected to see ketamine-induced reductions in
MMN amplitude, evoked theta power and theta phase resetting
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(phase-locking), while with source analysis, we predicted reduced
current density (activation) in temporal and frontal cortical areas.

Relevance for Schizophrenia
For a number of reasons, this line of research has potential
clinical implications for schizophrenia cognition (Green, 2006;
Javitt, 2009a,b; Leitman et al., 2010; Javitt and Freedman,
2015; Javitt and Sweet, 2015) and particularly with respect to
improving our understanding of low-level acoustic processing
involved in speech and language functions that are distinctively
impaired in schizophrenia (Revheim et al., 2014; Brown
and Kuperburg, 2015). Among these reasons are: a vast
neuroimaging, molecular, and genetic literature supporting a
glutamate hypothesis of schizophrenia involving NMDA receptor
hypofunction (Carlsson et al., 1999; Coyle et al., 2010; Javitt et al.,
2012; Moghaddam and Javitt, 2012; Moghaddam and Krystal,
2012); pharmacological modeling of schizophrenia features,
including clinical, cognitive, and sensory deficit symptoms in
rodents/healthy humans with acute sub-anesthetic doses of the
NMDA receptor antagonist ketamine (Pauvermann et al., 2017;
Thomas et al., 2017); findings in schizophrenia of reliable and
robust attenuation of the MMN (effect size d ∼ 1.00), which
is not affected by antipsychotics (Näätänen and Kakkonen,
2009), is more apparent with speech MMNs (Kasai et al.,
2002; Fisher et al., 2008) and is associated with reductions
in frontotemporal volume/function (Kasai et al., 2002; Kasai,
2004; Yamasue et al., 2004) and diminished theta responses to
auditory deviants (Rodionov et al., 2009; Hong et al., 2012;
Kaser et al., 2013; Kirino, 2017; Lee et al., 2017). As reduced
MMNs predict conversion to psychosis in clinical high risk and
reflect a vulnerability to disease progression (Näätänen et al.,
2015), and as smaller MMNs to tone deviants are associated
with greater vulnerability to NMDA receptor system disruption
with ketamine in healthy humans (i.e., they experience greater
psychosis-like symptoms; Umbricht et al., 2002) a secondary
objective of this study is to examine the relationship between
baseline (placebo) frontal speech MMN/oscillatory and source
activity and subjective psychotomimetic response to ketamine.

MATERIALS AND METHODS

Experimental Subjects
Twenty healthy, medication-free, non-smoking, right-handed
males (age = 20.94, SD = 2.44) were recruited through
city/university newspaper advertisements. Only males were
recruited in order to avoid potential confounding effects of
hormonal variations associated with the menstrual cycle in
females. Only non-smokers were sampled in order to reduce
any potential confounding effects of nicotine and/or nicotine
withdrawal symptoms on ketamine response. Following
data processing, two of the participants exhibited marked
artifact contamination in their EEGs and the final study
sample was limited to N = 18. Participants were initially
screened by telephone for non-smoker status (defined
as not smoking a lifetime total of >100 cigarettes, with
no smoking in the past 12 months), absence of medical

illnesses, as well as psychiatric and alcohol/drug dependence
disorders. They were then assessed for psychopathology
and personal/family psychiatric history during an in-person
screening session using the Structured Clinical Interview
(SCID-non-patient version; Williams et al., 1992) for
DSM-IV and the Family Interview for Genetic Studies
(FIGS; Maxwell, 1992). They also underwent a full medical
examination (including ECG), laboratory blood testing (to rule
out any significant medical conditions), urine toxicology
(to screen for psychoactive substances), an expired air
carbon monoxide test to confirm non-smoker status [<3
parts per million (ppm)], and auditory threshold testing to
ensure normal hearing.

Any participants with a current/past or family history of
an axis 1–2 DSM-IV disorder, abnormal blood/ECG results,
positive drug screen (for barbiturates, ketamine, cocaine,
benzodiazepines, ethanol, cannabinoids, and opioids), significant
medical illnesses [including seizures and recent (<6 months)
head trauma with loss of consciousness], or audiometric
assessed indication of abnormal hearing (hearing threshold
above 30 dB SPL for 1,000 Hz pure tone) were excluded.
The study was limited to males to avoid possible variations
related to menstrual cycle. All participants provided written
informed consent during the in-person screening session and
were compensated $75 CAD per test session. This study was
approved by the Research Ethics Board of the Royal Ottawa
Health Care Group and was conducted in accordance with the
Tri-Council Policy Statement on Ethical Conduct for Research
Involving Humans.

Study Design
Participants were assessed within a randomized, double-blind
design consisting of two test sessions separated by a minimum of
5 days. Half received the placebo (saline) in their first test session
and ketamine in their second test session, while the other half
received the treatments in the reverse order.

Drug Administration
A racemic ketamine or NaCl 0.90% w/v bolus dose was
administered over 10 min (0.26 mg/kg), followed immediately
by a constant infusion lasting 60 min (0.65 mg/kg), using an
Imed Gemini PC-1 pump. The ketamine dose is consistent
with previous studies (Krystal et al., 1999; Morgan et al., 2004;
Lazarewicz et al., 2009; Kaser et al., 2013).

Study Procedures
Test sessions occurred in the morning (beginning at 8:00 a.m.),
following overnight abstinence from caffeine, food, drinks
(except for water), and alcohol. Sessions began with the insertion
of an antecubital intravenous line, attachment of a 2-lead ECG
(for continuous safety monitoring), and electrode positioning,
followed by the administration of the bolus dose and constant
infusion. After a 10 min stabilization period (i.e., 10 min into
the infusion), EEG recording and auditory MMN paradigm
administration began. This was followed by an evaluation with
the Clinician Administered Dissociative States Scale (CADSS;
Bremner et al., 1998), which is composed of 19 self-report items

Frontiers in Pharmacology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 455

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00455 May 7, 2019 Time: 16:49 # 5

de la Salle et al. Ketamine, NMDA, and Speech MMN

(0 = not at all; 1 = slightly; 2 = moderately; 3 = considerably;
4 = extremely) and yields three subjective sub-scale scores
(amnesia, depersonalization, and derealization) as well as 8
clinician rated items which yields an “observer” sub-scale score.
Vital signs and adverse events were analyzed for safety purposes
only. Participants remained in the lab until all symptoms had
ceased and were not allowed to drive vehicles to or from
the test sessions.

MMN Paradigm
During MMN paradigm administration, participants viewed
a silent video (The Blue Planet by British Broadcasting
Corporation et al., 2002) while stimuli were presented binaurally
through noise-canceling headphones. A fast multi-feature
speech paradigm (Pakarinen et al., 2009) was employed
to acquire MMNs to phonetic and acoustic changes in
speech stimuli. Compared to standard oddball paradigms,
which allow for assessment of cortical discrimination of 1–2
sounds features, multi-feature MMN paradigms allow for very
fast assessment of extensive auditory discrimination profiles,
evaluating central auditory discrimination of multiple auditory
attributes (Näätänen et al., 2004). The stimuli consisted of semi-
synthetic Finnish-language consonant-vowel (CV) syllables. The
standard stimuli were /te:/ and /pi:/ (frequency = 101 Hz,
intensity = 70 dB, syllable duration = 170 ms). The deviant stimuli
differed from the standards either in syllable FREQUENCY
(FO ±8%; 93/109 Hz), syllable INTENSITY (±6 dB), VOWEL-
DURATION (−70 ms; 100 ms /te/ and /pi/), CONSONANT
(/pe:/ and /ti:/), or VOWEL (/ti:/ and /pe:/). Additional details
regarding the creation of these stimuli can be found in Pakarinen
et al. (2009). The presentation of these stimuli followed the
same sequence as previously outlined (Näätänen et al., 2004):
every other syllable was a standard (P = 0.5) and every other
one of the 5 deviant syllables (P = 0.1 each). There were four
5-min sequences including 465 syllables, of which the first 5
were always standards. In two of the sequences the standard
syllable was /te:/ and the deviants were FREQUENCY /te:/,
INTENSITY /te:/, VOWEL DURATION /te/, CONSONANT
/pe:/, and VOWEL /ti:/, whereas in the other two sequences the
standard was /pi:/, and the deviants were FREQUENCY /pi:/,
INTENSITY /pi:/, VOWEL DURATION /pi/, CONSTONANT
/ti:/, and VOWEL /pe:/. The occurrence of the deviants were
pseudo-randomized in a way that all 5 deviants appeared once
in an array of 10 successive stimuli and the same deviant
was never repeated after the standard following it. The order
of the two sequences was randomized between participants.
Each deviant type was presented 184 times, the stimulus-
onset asynchrony (SOA, onset to onset) was 650 ms, and
the total recording time was 20 min. Although use of a
native (English) speech paradigm may have been preferable
with our English speaking sample, this was the only published
‘optimal’ paradigm that allowed for quick, efficient assessment
of multiple speech deviant types in a single recording when
we initiated our study. The five speech deviations are generally
relevant features in speech sounds across most, if not all,
spoken languages. The use of a non-native paradigm to derive
automatic cortical discrimination profiles has the advantage of

reducing the potential confounding influence of higher-order
semantic processes (on MMN generation), which are known to
interact with emotional processes that are markedly impaired in
schizophrenia as reflected by MMN-indexed auditory emotion
recognition deficits (Kantrowitz et al., 2015).

ERP Recording
Electroencephalographic activity was recorded using current
pharmaco-EEG standards (Knott, 2000; Saletu et al., 2006;
Jobert et al., 2012). This involved the use of a cap (EasyCap,
Herrsching-Breitbrunn, Germany) embedded with 30
Ag+/Ag+Cl− electrodes, left and right mastoids (TP9 and
TP10), as well as 2 bipolar electrodes placed on the supra-
and sub-orbital ridge and external canthi (to measure vertical
and horizontal electro-oculographic activity). An electrode
on the nose served as the reference and a ground electrode
was positioned at AFz. Electrical recordings were carried out
using a Brain Vision QuickAmp R© (Brain Products GmbH,
Munich, Germany) amplifier and Brain Vision Recorder R© (Brain
Products GmbH, Munich, Germany) software. Electrical activity
was sampled at 500 Hz, with amplifier bandpass filters set at
0.1–100.0 Hz. Electrode impedances were <5 k�.

MMN Processing
Mismatch negativity analysis was completed using Brain Vision R©

Analyzer 2 software (Brain Products, Munich, Germany). Offline
pre-processing involved a visual inspection of the recordings for
contamination due to noticeable ocular/muscle/cardiac activity
and/or drowsiness, digital filtering at 1–20 Hz, ocular correction
with an algorithm (Gratton et al., 1983), segmentation (−100
to 400 ms), semi-automatic artifact rejection (±100 µV),
and baseline correction (relative to the pre-stimulus segment).
The remaining epochs (minimum 100 per deviant) were then
averaged based on stimulus type, and subtraction waveforms
were computed (deviant – standard) by digital point-by-point
subtraction of standard waveform voltage values from each
deviant waveform values. For the purposes of our study and
based on grand average waveforms, frontal MMN at Fz, F3
and F4 scalp sites was quantified in terms of peak amplitude
(maximum negative voltage relative to average pre-stimulus
voltage within the 120–250 ms window for frequency, intensity,
duration, vowel, deviants and the 150–280 ms window for
consonant deviants). MMN latency (relative to stimulus onset)
for each of the deviants, was quantified only at the mid-
frontal (Fz) site. The mean number of epochs (±S.E.) for
MMN averages was not significantly different between deviants,
nor were there differences in epoch numbers across placebo
(frequency = 172.67 ± 2.55; intensity = 171.72 ± 2.57;
consonant = 170.78 ± 3.02; vowel duration = 171.22 ± 2.68;
across vowel = 171.33 ± 2.78) and ketamine conditions
(frequency = 174.00 ± 1.77; intensity = 174.78 ± 1.85;
consonant = 173.89 ± 1.95; vowel duration = 173.83 ± 1.99;
across vowel = 174.72 ± 1.65). In contrast to the original
study employing the fast multi-feature Finnish speech paradigm
(Näätänen et al., 2004), which employed a mastoid reference
and thus evidenced no MMN generation at temporal/posterior
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FIGURE 1 | Grand averaged ERP difference waveforms elicited in response to 5 speech deviants in the placebo condition.

sites, our use of a nose reference yielded prominent polarity-
inverted MMN responses in these regions, which results from
the dipole generator orienting between the auditory and frontal
cortices. As a secondary analysis, MMNs were also measured and
analyzed at left (TP9) and right (TP10) mastoid sites. Amplitude
of the obligatory N1 component (peak negativity between 90 and
120 ms) elicited by the standard stimulus was also measured in
order to clarify whether or not ketamine effects were specific
to deviance processing vs. general sensory processing. Figure 1
displays the placebo grand averaged difference waveforms
[including the polarity reversed MMNs and mastoid (TP9, TP10)
sites] for the five speech deviants, together with the grand
averaged topographic maps showing amplitude distribution of
MMNs across recording sites.

ERO and ERSP Processing
For each deviant type, the average frontal ERO was obtained
for the theta band at Fz, F3, and F4 sites in a manner
similar to that of Hall et al. (2011). Time-varying spectral
activity (µV) was computed on averaged epochs (separately for
each deviant) using a complex Morlet wavelet with a constant

[c = σf/f , where σf = the standard deviation of the centre
frequency (f )] value of 5; this was computed over the range
of 1–20 Hz with 40 frequency steps. Evoked theta activity (3–
7 Hz) within time-frequency ROIs were exported for analysis
(±50 ms around peak MMN amplitude). ERO values were
then ln-transformed to ensure that the data were normally
distributed for statistical analysis. Using the same methodology,
theta ERO (within the MMN latency range) was quantified for
the standard stimulus to determine whether ketamine effects
were specific to deviance processing or generalized to all sensory
processing. As background, ongoing oscillations may moderate
stimulus-induced oscillatory response, an additional analysis
was conducted to assess potential changes in spontaneous theta
with ketamine administration. Pre-stimulus epochs of 100 ms
duration were digitally sampled (500 Hz) across standard and
deviant stimuli and submitted to Fast Fourier Transform (FFT)
analysis for computation of ln-transformed spectral amplitude in
the theta (3–7) band in the MMN latency range. Values across
epochs were summed for statistical analysis.

Phase-locking factor (PLF) values were computed by
first performing wavelet transformation on each epoch, and
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subtracting the standard epochs from the deviants. By using
the BrainVision Analyzer “Phase Locking Factor” solution, the
average time-frequency PLF values can be extracted. PLF was
calculated as 1 minus the circular variance of phases, as described
by Tallon-Baudry et al. (1996), and ranges from 0 (random
distribution of phases) to 1 (perfect phase locking). Similarly to
the ERO data, theta PLF (3–7 Hz) within time-frequency regions
of interest was exported for analysis (±50 ms around peak MMN
amplitude). PLF was also quantified for the standard stimulus
and for spontaneous (pre-stimulus) activity.

Brodmann Area Regions of Interest
Intracortical current density (A/m2) measured at peak MMN
activity (based on ERP grand averages) from predefined ROIs
were computed using exact low resolution electromagnetic
tomography (eLORETA, version 2081104; Pascual-Marqui, 2007;
Pascual-Marqui et al., 2011). eLORETA models the cortex as
a collection of voxels (6239 voxels with a spatial resolution of
7 mm). Relying on the digitized Talairach atlas and the average
MRI brain provided by the Montreal Neurological Institute
(MNI) and a cortically restrained solution space, it calculates the
non-unique “inverse” problem by computing a three dimensional
distribution of intracortical source activity (with zero location
error) at each voxel based on surface-level electrical signals. The
original LORETA method has received considerable validation
from studies using more established localization methods such
as structural and functional MRI, PET, and implanted electrode
recordings. The selected ROIs were based on eLORETA-defined
Brodmann Areas (BA), and current density data from a single
centroid representative voxel of each BA (the voxel closest to the
center of the BA mass, which is an excellent representation of
the corresponding BA) were extracted for further analysis. This
included the primary (BA 41) and secondary (BA 42) auditory
cortices and the three regions comprising the IFG (BAs 44,
45, and 47). Current density was derived for the left and right
hemispheres of each BA.

Statistical Analyses
Statistical analysis was conducted using SPSS version 23
(SPSS Inc., Chicago, IL, United States). Separate repeated
measures analysis of variances (rmANOVA) for each EEG
measure were carried out. The ERP amplitude, theta ERO, and
theta PLF ANOVAs consisted of three within-group factors,
including drug (placebo and ketamine), deviant type (frequency,
intensity, vowel duration, across vowel, and consonant) and
electrode site [left (F3), central (Fz), and right (F4)]. A similar
but secondary set of analyses, limited to ERP amplitude,
were conducted using responses derived at left (TP9) and
right (TP10) temporal electrode sites. MMN latency (at
Fz only) was analyzed with similar ANOVAs but with no
site factor, while latency at temporal sites was analyzed
at left and right hemispheres. Finally, for ERPs, the N100
amplitude/latency values derived from the standard stimulus
were also subjected to similar rmANOVA with drug and electrode
site (Fz, F3, and F4) as factors. The eLORETA-derived current
density values were also analyzed using a rmANOVA and
involved two within-group factors, including drug (placebo and

FIGURE 2 | Mean (±SE) Clinician Administered Dissociated States Scale
(CADSS) values for the placebo and ketamine conditions. ∗p < 0.001.

ketamine) and ROI (BA41, BA42, BA44, BA45, and BA47).
Significant (Greenhouse-Geisser corrected when appropriate)
effects were followed up with Bonferroni-adjusted comparisons.
The CADSS subscales exhibited non-normal distributions and
were analyzed using the non-parametric Wilcoxon Signed
Ranks Test (WSRT).

Spearman’s rho correlations were used to examine the
relationship between baseline (placebo) electrophysiological
measures (ERP, ERO, PLF, and BA current density) with
changes in dissociate/perceptual symptoms [difference scores
(ketamine – placebo) as for the CADSS sub-scales]. For
ERPs (MMN), correlations were only conducted with the
frontal midline recording site (Fz) and only correlations
equal/less than P < 0.01 were considered significant in
order to reduce likelihood of chance findings associated with
multiple testing.

RESULTS

CADSS Symptom Ratings
Figure 2 displays the mean (±SE) rating scores for the placebo
and ketamine conditions. Relative to placebo, ketamine increased
observer rated symptom scores (WSRT = −3.40, p < 0.001) and
for self-ratings, depersonalization (WSRT = −3.30, p < 0.001),
derealization (WSRT = −3.52, p < 0.0001), and amnesia scores
(WSRT = −3.31, p < 0.001) were significantly higher with
ketamine than with placebo.

MMN Amplitude/Latency
Mid-frontal (Fz) grand averaged deviant-minus-standard
difference waveforms for each deviant type in the multi-feature
speech paradigm presented in placebo and ketamine conditions
are shown in Figure 3. Significant main effects were observed
for the drug condition across all linguistic sound features
(F = 24.29, df = 1/17, p < 0.0001), with ketamine reducing
MMN in response to changes in syllable frequency, syllable
intensity, vowel-duration, consonant change, as well as vowel
change. Drug did not interact with deviant type or electrode
site, but follow-up of a significant deviant effect (F = 18.17,
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FIGURE 3 | (A) Grand averaged ERP waveforms at Fz and topographic maps generated in response to 5 speech deviants during placebo and ketamine conditions.
(B) Mean (±SE) peak frontal amplitudes (µV) for the placebo and ketamine conditions. ∗p < 0.05.

df = 4/68, p < 0.0001) found largest MMNs with frequency,
vowel duration and across vowel deviants, which showed similar
amplitudes, each of which was greater than intensity (p = 0.01),
with the latter deviant producing the smallest of the MMNs.
For the significant electrode site effect (F = 8.39, df = 2/34,
p < 0.001), MMN amplitude at frontal midline (Fz) was greater
than both left (F3) and right (F4) frontal MMNs (p < 0.05),
which exhibited similar amplitudes. Frontal MMN latency was
not altered by ketamine.

Left (TP9) and right (TP10) temporal grand averaged deviant-
minus standard waveforms for each deviant type recorded
during placebo and ketamine conditions are shown in Figure 4.
Although not interacting with deviant type or electrode site,
a significant drug effect (F = 6.17, df = 1/17, p < 0.03)

showed reduced MMN amplitudes with ketamine vs. placebo
administration, particularly at TP9 sites. For the significant
deviant type effect (F = 10.19, df = 4/68, p < 0.0001),
the largest MMNs were equivalently elicited by intensity,
frequency and across vowel deviants. Compared to all deviant
types, the consonant deviant elicited the smallest MMN
(p < 0.001). MMN elicited by the duration deviant was
similar to the MMN elicited by the frequency deviant but
smaller than the intensity (p < 0.04) and vowel duration
(p < 0.007) MMN. Temporal MMN latencies were not
affected by ketamine.

N1 amplitude/latency derived from the standard stimulus
ERP frontal (Fz) recording sites were not altered by ketamine
administration (F = 0.76, df = 1/17, p = 0.79).
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FIGURE 4 | (A) Grand averaged ERP waveforms at mastoid sites (TP9 and TP10) generated in response to 5 speech deviants during placebo and ketamine
conditions. (B) Mean (±SE) peak temporal amplitudes (µV) for the placebo and ketamine conditions. ∗p < 0.05.
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FIGURE 5 | (A) Grand averaged time frequency plots showing theta power
response at the frontal midline (Fz) site to 5 speech deviants during placebo
and ketamine conditions. (B) Mean (±SE) frontal theta evoked activity (µV) for
the placebo and ketamine conditions. ∗p < 0.05. † = at Fz only.

FIGURE 6 | (A) Grand averaged event-related spectral perturbation (ERSP)
responses highlighting theta phase locking factor changes at the frontal
midline (Fz) site to 5 speech deviants in placebo and ketamine conditions.
(B) Mean (±SE) frontal phase locking factor for the placebo and ketamine
conditions.
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Evoked Theta Power
Figure 5 shows the grand averaged evoked (stimulus-locked)
time-frequency responses to each speech deviant type during
placebo and ketamine administration sessions. Significant main
drug effects were exhibited (F = 21.99, df = 1/17, p < 0.0001),
but follow-up tests showed evoked theta power for frequency,
intensity and vowel deviants being reduced by ketamine
compared to placebo administration. Although not interacting
with deviant type, follow-up of a significant deviant effect
(F = 9.35, df = 4/68, p < 0.001) found greater evoked power
at midline (Fz) compared to both left (F3) and right (F4) sites
(p< 0.007). Evoked theta power elicited by the standard stimulus
was not affected by ketamine. Ketamine administration did not
alter ongoing spontaneous theta power derived from frontal
recording sites.

Phase Locking Factor
Grand averaged PLF for each speech deviant type during placebo
and ketamine conditions are shown in Figure 6. Significant
overall drug effects were observed (F = 9.63, df = 4/68, p< 0.0001)
with ketamine (vs. placebo) significantly diminishing PLF in
relation to frequency and intensity deviant types. A significant
deviant effect (F = 8.13, df = 4/68, p < 0.0001) showed
consonant PLF to be smaller compared to PLFs associated with
other deviants (p < 0.02). Electrode site differences were also
shown (F = 3.49, df = 2/34, p < 0.05), with greater PLF being
observed at frontal midline (Fz) site compared to left (F3)
and right (F4) frontal sites (p < 0.007). Theta evoked power
elicited by the standard stimuli was not influenced by ketamine,
nor was PLF derived from spontaneous (pre-stimulus) activity
affected by ketamine.

Source Current Density
Mean (±SE) ROI current density values for auditory and frontal
cortices during placebo and ketamine conditions are displayed
in Figure 7. With the exception of consonant and vowel change
deviants, current density across all deviants and ROIs were
significantly altered by drug administration (F = 13.03, df = 1/17,
p < 0.002), with ketamine reducing current density vs. placebo.
Only the pAC and sAC regions failed to respond to ketamine
during the processing of frequency deviants. Regions varied in
current density (F = 16.94, df = 4/68, p< 0.0001), with the highest
current density being observed in the IFG (BA47) compared to
other regions (p < 0.003) and the lowest density was in the pAC.

In a significant deviant effect (F = 3.19, df = 4/68,
p < 0.02), consonant change produced the lowest current density
compared to other deviants (p < 0.02) and, although similar to
vowel duration and syllable intensity/frequency deviant current
densities, the across vowel deviant exhibits the highest current
density values. Follow-up of a significant deviance x region
interaction (F = 4.02, df = 16/272, p < 0.0001), found that
the comparatively lower consonant (vs. other deviants) current
density was limited to the pAC (p < 0.02) and that for all
deviants the highest current density was in the IFG (BA47), which
exhibited greater density values than the pAC across deviants
(p < 0.05), greater density values than all other regions for the

vowel duration deviant (p < 0.04), and greater density values
than BA44 (p < 0.04) and BA45 (p < 0.03) for syllable frequency,
syllable intensity and across vowel deviants.

Neural-CADSS Correlations
Of the three speech MMNs, which were reduced in amplitude
with ketamine administration, only the syllable intensity
MMN and its associated oscillatory and source activities
were related to changes in subjective symptoms elicited by
ketamine administration (Figure 8). With respect to MMN
itself, individuals with smaller Fz amplitudes during placebo
experienced greater ketamine-induced increases in derealization
(r = 0.631, N = 18, p < 0.001) and amnesia ratings (r = 0.594,
N = 18, p < 0.009). As shown in Figure 9, placebo theta PLF at
Fz were negatively correlated with ketamine-induced increases in
derealization (r =−0.613, N = 18, p < 0.007) ratings.

For the LORETA-derived ROIs (Figure 10), current density
in the right hemisphere pAC was inversely related to changes
in amnesia (r = −0.612, N = 18, p < 0.007) and derealization
ratings (r = −0.608, N = 18, p < 0.007) with ketamine, while
current density in regions of interest of the right IFG were
negatively correlated with ketamine-induced increases in self-
rated derealization (BA47: r = −0.584, N = 18, p < 0.01) and
observer-rated psychotomimetic symptoms (BA44: r = −0.555,
N = 18, p < 0.017).

DISCUSSION

Summary of Findings
The present study evaluated the hypothesis that the NMDA
receptor system is critically involved in the early sensory
processing of speech. As predicted, a sub-anesthetic dose of the
NMDA antagonist, ketamine, significantly diminished frontal
and temporal MMN generation in response to speech deviants.
To our knowledge, this is the first report suggesting a causative
relationship between NMDA receptor blockade and impaired
speech MMN generation. The absence of ketamine effects on
sensory ERP (N1) with a similar latency suggests that the
reduction of speech MMNs in this study is not the result
of a general weakening of ERP generators, but specifically
involves neuronal processes generating the auditory MMN,
including the MMN elicited by human speech. Supporting
this, NMDA receptor antagonism reduced both evoked theta
power and theta phase locking associated with diminished
speech MMNs, and it attenuated current density in the auditory
(pAC and sAC) cortex and in IFG brain regions involved in
the processing and production of speech. This is consistent
with previous studies showing a contributing influence of theta
oscillations, and activity in temporal and frontal brain regions
in the generation of the MMN. In our healthy volunteers
without a history of psychopathology, speech associated neural
activity assessed in the non-drug (placebo) state was negatively
correlated with ketamine-induced psychotomimetic experiences,
indicating that these electrophysiological markers may reflect the
functional state of the NMDA receptor-mediated system and its
vulnerability to disruption by receptor antagonism.
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FIGURE 7 | Mean (±SE) ln-transformed source-localized CSD values (A/m2) of Brodmann Area (BA) regions of interest associated with 5 speech deviants during
placebo and ketamine conditions. ∗p < 0.05 (IFG44 = BA44; IFG = BA45; IFG47 = BA47; † = right hemisphere effect).

FIGURE 8 | Scatterplots showing significant relationships between ketamine-induced changes in symptom rating (derived by subtracting placebo CADSS values
from ketamine CADSS values) and baseline (placebo) intensity MMN amplitude.

Ketamine-MMN Effects
Though no ketamine influence was observed on MMN latency,
our MMN amplitude results with speech MMNs in healthy
volunteers generally conform with meta-analyses involving
simple tone stimuli in humans, which show reductions in the
MMN response with ketamine (Rosburg and Kreitschmann-
Andermahr, 2016). This effect is also reported in a range
of animal models, including recordings in mice (Umbricht
et al., 2005; Ehrlichman et al., 2008), rats (Tikhonravov
et al., 2008), monkeys (Javitt et al., 1996; Gil-da-Costa et al.,
2013), and also pigeons (Schall et al., 2015). Whereas in
previous research ketamine’s effects on MMN generated by
simple acoustic stimuli were numerically but not statistically
different for deviant type (i.e., ketamine tended to attenuate
tone duration MMN amplitude more than frequency MMN
amplitude on visual inspection alone, but this did not reach
statistical significance), ketamine impairment of speech MMNs
was observed across all deviant types at frontal and less so
at temporal recordings. Although MMN amplitudes varied

with speech deviance, the baseline (placebo) temporal MMN
amplitude generally did not appear to moderate the presence
of significant ketamine effects on MMN. For example, MMN
in response to consonant change was significantly smaller than
MMNs elicited by the other four but all were significantly
affected by ketamine administration. The noticeably small
consonant MMN, exhibiting no clear discernible onset/offset
or peak within the typical MMN latency window, has been
attributed, in previous work, to more difficult discriminability
(vs. standard) based on behavioral discrimination tests
(Kantrowitz et al., 2015).

Mismatch negativity is thought to consist of two main
generators: one in the bilateral auditory cortex, underlying
pre-perceptual sound change detection in the auditory cortex,
which is thought to trigger the frontal cortex MMN generator,
associated with the initiation of attention switch to sound change
(Näätänen and Alho, 1997; Näätänen et al., 2007). Given the
ketamine-induced MMN reductions at frontal and temporal
recording sites and the suggestion that MMN generation involves
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prediction-error signaling (Todd et al., 2013), it is reasonable to
speculate that in the language domain, glutamate dysregulation
due to NMDA receptor hypofunction may induce problems
in prediction-error generation (i.e., the MMN) in a temporo-
frontal network circuit involved in early sensory processing,
manifesting as diminished MMNs to speech deviants. Non-
significant ketamine effects for consonant and syllable intensity
deviant MMNs at temporal but not frontal cortex has potential
relevance for MMN findings in schizophrenia.

Ketamine-Oscillatory Effects
In addition to our MMN observations using the conventional
time-domain approach, we also adopted the approach of more
recent human studies and utilized ‘time-frequency’ neuro-
oscillatory analyses of electrophysiological responses as a
function of underlying spectral frequency.

To our knowledge, this is the first investigation of the
time-frequency signature of human MMN responses to NMDA
receptor antagonist effects. Not observed with the standard
stimulus, averaged evoked theta power and theta phase
locking associated with speech (frequency, intensity, vowel)
deviants were found to be significantly diminished by ketamine
compared to placebo. Time-frequency studies have revealed the
contribution of the theta frequency band in driving the neuronal
generation of the MMN in frontal and temporal areas. Although
this research shows that neural generation of the MMN response
is accompanied by theta band power modulation and phase
alignment, their individual contribution varies with deviant type
(Lee et al., 2017) and their specific association with normal
and abnormal sensory/cognitive processes is not clear. NMDA
receptor antagonists have been found to reduce evoked theta
power during MMN generation (Lee et al., 2018) and other task
events in rodent models (Ehrlichman et al., 2009; Lazarewicz
et al., 2009). Interestingly, speech-evoked MMN and theta power
in healthy volunteers serve as predictors of behavioral speech

FIGURE 9 | Scatterplot showing significant relationship between
ketamine-induced changes in symptom rating (derived by subtracting placebo
CADSS values from ketamine CADSS values) and baseline (placebo) and
theta phase locking factor (PLF).

perception at the syllable and sentence level and, along with
perception accuracy are reduced during noise stress (Koerrner
et al., 2016), which also disrupts NMDA receptor signaling
(Cui et al., 2012).

Phase resetting, which refers to the systematic adjustment
of the phase of ongoing oscillations to give a consistent phase
relationship to a stimulus, contributes to the generation of ERPs
including the MMN. Indexed by the PLF measure of inter-trial
phase variability, modulation of theta phase consistency across
trials of oscillatory neural activity was significantly reduced with
ketamine administration. These effects, observed in relation
to frequency and intensity deviants, were concurrent with
ketamine-induced reduction of speech MMNs and indicate
that NMDA receptor-mediated neurotransmissions and
NMDA receptor hypo-function underly normal and abnormal
theta phase resetting dynamics contributing to speech MMN
generation in healthy volunteers, Rodent MMN and evoked
theta power impaired by NMDA receptor antagonism are
mitigated by concurrent treatment with the NMDA receptor
agonist glycine, suggesting that MMN generation both in time
(ERP) and time-frequency (neuro-oscillatory) domain analyses,
may serve as effective translational measures for revealing
circuit dynamics underlying acoustic deviance detection.
Compared to the auditory high frequency gamma (40 Hz)
response, deficits of which are associated with impaired function
of rapidly firing cortical parvalbumin (PV)-type expressing
inhibitory interneurons in thalamocortical circuits (Gonzalez-
Burgos et al., 2011), theta frequency rhythms are linked to
interactions involving more slowly firing non-PV cells, especially
somatostatin-type (SST) inhibitory interneurons in cortical
circuits (Womelsdorf et al., 2014).

It is of relevance to note that ketamine-induced changes in
evoked theta and PLF occurred in the absence of any changes
in background, ongoing theta oscillations. Analysis of baseline
(pre-stimulus) and resting EEG in healthy humans administered
ketamine has been mixed and have not consistently mimicked
this oscillatory abnormality (Knott et al., 2006; Kocsis et al., 2013;
de la Salle et al., 2016). These present findings, observed with a
sub-anesthetic dose of ketamine, suggest that impaired detection
of speech deviants during NMDA receptor blockade may not be
dependent on alterations in tonic cortical activity.

Ketamine-Source Effects
Neural activity in ROIs involved in the temporofrontal network
implicated in the generation of the auditory MMN elicited
by speech (frequency, intensity, vowel duration) change
was significantly attenuated by ketamine. Depending on
deviant type, intracortical current density in both temporal
and frontal cortical areas was reduced concurrently with
impairments in scalp-recorded MMN and theta oscillatory
responses during detection of speech deviants. Paralleling
recent LORETA observations in healthy volunteers of ketamine-
induced reductions in current density of auditory, cingulate
and middle frontal cortical sources of tone deviant MMNs
(Thiebes et al., 2017), our present source localization findings
support a role for deficient NMDA receptor-mediated
neurotransmission in hypofunction of auditory and frontal
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cortical generators associated with aberrant speech deviance
detection in schizophrenia.

Within the predictive coding formulation of MMN
generation, which accommodates the findings of multiple
studies showing that there are temporal and frontal cortical
sources underlying MMN generation (Garrido et al., 2009b),
our findings of ketamine-induced reductions in speech MMNs
together with current density reductions in temporal and frontal
cortical regions may indicate alterations in prediction error
in low level (auditory) sources and in higher cortical levels.
Additionally, they may reflect changes in temporal-frontal
connections that are thought to involve NMDA receptor-
dependent synaptic plasticity and underly MMN generation
(Garrido et al., 2008, 2009a). Data from neuroimaging studies of
auditory-change detection suggest that recruitment of the frontal
cortex (IFG), particularly in the right hemisphere, increases with
decreasing deviance. This suggests that the right IFG may engage
with the auditory cortex to produce a contrast enhancing effect
facilitating the detection of smaller deviances (Opitz et al., 2002;
Doeller et al., 2003), or complex (e.g., language), ambiguous
(e.g., Finnish stimuli), and difficult-to-detect stimulus changes.
Although the typically observed sequential activation of these
sources (auditory cortical preceding frontal) is compatible with
the notion that the auditory cortical output is “evaluated” in
some way by frontal regions (Todd et al., 2012) and is observed
in response to large deviants, a reverse activation pattern (IFG

activation before temporal) is observed with the processing of
small deviants (Tse et al., 2013). Interestingly, strong evoked theta
band synchronization between temporal and frontal regions is
observed during auditory MMN generation (Hsiao et al., 2010;
Choi et al., 2013).

Relevance to Schizophrenia
Ketamine-induced reductions in speech MMNs at frontal
and temporal recordings mimic the impaired speech
MMN generation observed in schizophrenia with EEG and
magnetoencephalography (MEG) recordings (Kasai et al.,
2002; Kasai, 2004; Yamasue et al., 2004; Kawakubo et al., 2006;
Kawakubo et al., 2007; Fisher et al., 2008) and directly implicate
deficient NMDA receptor- dependent neurotransmission in the
aberrant processing of speech in this disorder. NMDA-mediated
disruption of speech processing may possibly contribute to
negative symptoms (such as social withdrawal) by reducing
attentional switching to socially relevant auditory cues (e.g.,
intensity in a speaker’s voice) and/or may contribute to
the phenomenology of thought-disordered speech and false
perceptual influences in the language system (i.e., auditory
verbal hallucinations).

These MMN effects were concurrent with ketamine-induced
disruptions in evoked theta power and theta phase locking and
are consistent with findings linking MMN dysfunction in chronic
and first episode schizophrenia primarily to an impaired theta

FIGURE 10 | Scatterplots showing significant relationships between ketamine-induced changes in symptom rating (derived by subtracting placebo CADSS values
from ketamine CADSS values) and baseline (placebo) current density in LORETA-sources regions of interest.
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frequency response (Todd et al., 2008; Bishop and Hardiman,
2010; Moran and Hong, 2011; Choi et al., 2013; Hermann
et al., 2014; Xiong et al., 2019). It has been suggested that
by diminished theta power modulation and phase resetting
in response to speech stimuli, may contribute to cognitive
dysfunction in schizophrenia, and may be linked to the impaired
interplay between cortical pyramidal neurons and circuit SST-
type GABAergic interneurons (Javitt et al., 2018).

These sensor-level neuroelectric alterations with ketamine
were paralleled by reductions in intra-cortical current density
in frontal and temporal ROIs, cortical areas which have
also been shown by either EEG (Hirayasu et al., 1998;
Kreitschmann-Andermahr et al., 1999; Pekkonen et al.,
2002; Ahveninen et al., 2006; Thonnesen et al., 2008),
high-density EEG (Park et al., 2002; Youn et al., 2003),
fMRI (Wible et al., 2001; Kircher et al., 2004), or LORETA
sourcing (Miyanishi et al., 2013; Takahashi et al., 2013;
Fulham et al., 2014), to be underactivated during MMN
generation. Weaker frontal/temporal circuitry has also
been associated with MMN reductions to speech stimuli
in schizophrenia (Thiebes et al., 2017), and based on our
findings, may implicate deficient NMDA receptor-mediated
neurotransmission in underlying frontal and auditory
cortical generators.

The clinical findings with ketamine in healthy volunteers
were as expected, with significant dissociative effects reflected
in marked increases in self-rated derealization scores, as well as
by increases in amnesia and observer-rated scores. Consistently
reported, and co-occurring with reductions in MMN in
previous ketamine studies, these perceptual/dissociative
phenomena are part of a spectrum of transient schizophrenia-
like psychoactive effects (including positive and negative
symptoms) produced with acute sub-anesthetic ketamine
(Thiebes et al., 2017). Unrelated to baseline symptomatology,
ketamine also exacerbates positive symptoms in schizophrenia
patients in a way that is strikingly reminiscent of symptoms
during active episodes of the disorder (Lahti et al., 2001).
Although not blocked by conventional antipsychotics such as
haloperidol, and only blunted by the atypical antipsychotic
clozapine (Malhotra et al., 1997), clinical trials with sarcosine
(a glycine reuptake inhibitor) and glycine site agonists (e.g.,
D-serine) have reported beneficial effects on the negative
symptoms of schizophrenia (Kircher et al., 2004; Miyanishi
et al., 2013) (both glycine and glutamate binding are essential
for NMDA receptor activation). Active high-dose glycine
attenuates MMN in healthy humans (Leung et al., 2008)
but clinical trials with D-serine in schizophrenia showed
acute increases in duration MMN. Further, chronic (6 weeks)
increases in frequency MMN were observed, as well as
improvements in positive and negative symptoms, both of
which were predicted by baseline MMN amplitudes (i.e.,
smaller amplitudes correlated with greater clinical response)
(Kantrowitz et al., 2016, 2018; Greenwood et al., 2018).
Relatedly, glutathione deficiency also produces schizophrenia
phenotypes including hypofunction of NMDA receptors
(Steullet et al., 2006), and administration of the glutathione
precursor N-acetyl-cysteine (NAC) improved MMN in chronic

schizophrenia (Lavoie et al., 2008) and in early psychosis
(Retsa et al., 2018).

Although not implying any risk of disorder onset
in our healthy volunteers, individuals varied in their
susceptibility to particular psychotomimetic symptoms
induced by ketamine. Individual differences in ketamine-
induced effects were strongly correlated with the magnitude
of MMN in a baseline (placebo) condition, in particular
with smaller amplitudes to the intensity deviant being
associated with more intense psychosis-like symptoms.
This finding parallels similar observations showing baseline
tone duration and tone frequency MMNs correlating with
the degree of psychosis-like experiences with ketamine
(Umbricht et al., 2002). Also shown with the intensity
deviant following ketamine infusion, evoked theta power
and theta phase locking, as well as intracortical current
density in auditory (pAC) and language-related (BA44 and
BA47) brain regions at baseline were inversely correlated
with the degree of psychotomimetic experiences. As with
previous fMRI studies, in which activity of specific symptom
changes correlated with functional alterations in distinct
brain regions during ketamine infusion (Deakin et al., 2008;
Honey et al., 2008), selective theta oscillatory indices and
regional current densities exhibited differing relationships
to ketamine-induced psychotomimetic experiences, thus
supporting a NMDA receptor-regulated neural basis for
the varied symptoms characterizing schizophrenia. Baseline
individual differences in MMN-indexed vulnerability to
psychosis may reflect genetic influences on the cortical
expression of glutamate receptors, which are reduced in
schizophrenia (Catts et al., 2016) and have been shown to
modulate tonal (Featherstone et al., 2015) and phonetic
(Kawakubo et al., 2011) MMN response.

As observed in earlier work (Stone et al., 2008), the degree
of psychosis-like experiences evoked by NMDA receptor
antagonists varies with the degree of NMDA receptor
occupancy. As such, stronger psychotomimetic responses at
the same dose of NMDA receptor antagonist reflect a greater
disruption in NMDA receptor-dependant neurotransmission
and, accordingly, the MMN has been interpreted as providing
some information about the functional “condition” of NMDA
receptor-dependent systems. This can be regarded as an indicator
of the vulnerability or resiliency of the NMDA receptor system
to acute perturbation by antagonists: a smaller MMN indicates
a less resilient or less abundant NMDA receptor system,
that is also more perturbed by NMDA receptor antagonist
treatment (Umbricht et al., 2002). Similarly, speech-related
MMNs and their associated theta oscillations and intracortical
current densities in frontotemporal regions may serve as
neural indicators of the functional state of NMDA receptor-
mediated neurotransmission and may be useful neuroelectric
tools in studies of normal and abnormal NMDA receptor
functioning in humans.

The reasons why these relationships between baseline
(placebo) electrophysiology and symptom changes with ketamine
were limited to detection of syllable intensity deviants are not
clear. Impaired sensitivity to changes in pitch and duration

Frontiers in Pharmacology | www.frontiersin.org 15 May 2019 | Volume 10 | Article 455

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00455 May 7, 2019 Time: 16:49 # 16

de la Salle et al. Ketamine, NMDA, and Speech MMN

(Todd et al., 2003; Gold et al., 2012) processes known to
localize to the primary auditory cortex (Tramo et al., 2002),
along with deficits in sensitivity to modulation of intensity
discrimination are frequently observed in schizophrenia (Bach
et al., 2011). In studies of auditory emotion recognition,
patients have also shown relatively greater deficit in the
ability to use pitch-based versus absolute intensity-based
features of speech (Leitman et al., 2010a; Gold et al., 2012).
Although it is difficult to compare the degree of change
across speech deviants in our study, acoustic/vocal stimuli
with high cue saliency tend to increase temporal cortex
activation and associated sensory-integrative functions, while
with ambiguous, low salience speech stimuli, greater evaluative
processes associated with inferior temporal regions are recruited
(Leitman et al., 2010b). It is possible that our baseline MMN-
ketamine response associations seen with intensity deviants
may reflect the unique cortical recruitment pattern specific
to changes in speech intensity and its disruption by NMDA
receptor hypofunction.

LIMITATIONS

These results provide potential insight into some of the neural
mechanisms underlying NMDA receptor-mediated impairments
in the sensory processing of human speech, but there are
limitations to the study. The participant sample was limited
to young, adult (English-speaking) healthy male volunteers,
who tend to exhibit greater acute vulnerability (vs. females)
to some of the behavioral effects of ketamine (Morgan et al.,
2006), and thus the findings do not necessarily translate to
schizophrenia patients who develop NMDA receptor adaptation
with increasing chronicity. Also, although their age range
(early twenties) is comparable to the typical age of onset
of schizophrenia, findings may not translate for speech
processing in chronic patients. New language-specific neural
representations (indexed by MMN) can evolve for non-native
speech categories (Tamminen et al., 2015), and although
the MMN was elicited within an optimal paradigm which
allowed for neural profiling across different speech features,
they were recorded in response to deviations in Finnish-
language speech sounds and similar studies relevant to the
native language (English) of the test subjects are required.
Subjective effects of ketamine were evaluated with an instrument
emphasizing perceptual/dissociative symptoms and did not
address the positive, negative or cognitive symptomatology
that characterizes schizophrenia. Ketamine was administered
as a single dose, with no attempt to examine dose- or
time-response variations, and the design lacked an active
comparator drug (e.g., midazolam) which may allow for the
assessment of non-specific behavior (e.g., drowsiness), and
effects unrelated to NMDA receptor blockade. Examination of
EEG oscillations was limited to theta frequencies and future
studies need to assess a more complete frequency spectrum
from slow delta to fast gamma rhythms. Although gamma
band oscillations have also been associated with depression
and fast-acting antidepressants like ketamine (Fitzgerald and

Watson, 2018), they have been frequently associated with
the pathophysiology of schizophrenia and associated auditory
evoked response deficits (Curic et al., 2019). Moreover, relative
to standard sounds, deviant sounds elicit a cascade of oscillatory
modulations (beginning with gamma and followed by beta,
both of which are coupled with theta) that are altered by
acute ketamine administration (Gilley et al., 2017; Schuelert
et al., 2018). Further, EEG source localization lacks the spatial
sensitivity of other imaging methodologies such as fMRI and
was limited to specific regions of interest in the temporal and
inferior frontal cortex, thus, it did not include examination
of a possible role for other circuits (e.g., thalamocortical
and limbic) involved in sensory processing. Although the
NMDA receptor is known to specifically influence activity
in the central auditory system (Wang et al., 1987) and
frontal/limbic and cingulate regions (Vollenweider et al., 1987;
Lahti et al., 1995; Northoff et al., 2005), it is also thought
to participate in widespread suppression and activation of
circuit-level neural activity (Fitzgerald, 2012). Combining EEG
and other imaging tools in a ketamine model and assessing
activity and connectivity within and between multiple neural
networks during stimulus-evoked and resting-state conditions
may be a useful approach in future studies for delineating
extrinsic and intrinsic neural factors mediating region-specific
underpinnings of NMDA receptor-dependent speech/language
deficits pertaining to schizophrenia and associated auditory
hallucinatory experiences (Northoff and Qin, 2011; Northoff,
2014; Northoff, 2015; Alderson-Day et al., 2016).

CONCLUSION

To the best of our knowledge, this is the first study assessing
the effects of the NMDA receptor antagonist ketamine on
speech MMNs, and their associated oscillatory activities
and intra-cortical current densities in healthy humans.
Reductions in MMN generation and related neural activity
across speech deviants indicates a general impairment in the
processing of deviant speech. Together with the emergence
of perceptual/dissociative symptoms, these findings generally
support a glutamatergic/NMDA receptor model of schizophrenia
and of language impairment in schizophrenia in particular. In
this non-psychopathological sample, baseline (placebo) MMN,
theta oscillations and current density in frontotemporal regions
were associated with symptom response to ketamine and may
serve as objective indicators of the functional state of NMDA
receptor-mediated neurotransmission.
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