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ABSTRACT Single photon emission computed tomography (SPECT) is frequently
used in oncology and cardiology to evaluate disease progression and/or treatment
efficacy. Such technology allows for real-time evaluation of disease progression and
when applied to studying infectious diseases may provide insight into pathogenesis.
Insertion of a SPECT-compatible reporter gene into a virus may provide insight into
mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter
(hNIS), a SPECT and positron emission tomography reporter gene, was inserted into
Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus
that can cause severe respiratory disease and death in afflicted humans to obtain a
quantifiable and sensitive marker for viral replication to further MERS-CoV animal
model development. The recombinant virus was evaluated for fitness, stability, and
reporter gene functionality. The recombinant and parental viruses demonstrated
equal fitness in terms of peak titer and replication kinetics, were stable for up to six
in vitro passages, and were functional. Further in vivo evaluation indicated variable
stability, but resolution limits hampered in vivo functional evaluation. These data
support the further development of hNIS for monitoring infection in animal models
of viral disease.

IMPORTANCE Advanced medical imaging such as single photon emission computed
tomography with computed tomography (SPECT/CT) enhances fields such as oncol-
ogy and cardiology. Application of SPECT/CT, magnetic resonance imaging, and pos-
itron emission tomography to infectious disease may enhance pathogenesis studies
and provide alternate biomarkers of disease progression. The experiments described
in this article focus on insertion of a SPECT/CT-compatible reporter gene into MERS-
CoV to demonstrate that a functional SPECT/CT reporter gene can be inserted into a
virus.

KEYWORDS MERS, coronavirus, medical imaging, reporter gene

ecombinant viruses expressing reporter genes such as luciferase or fluorescent
proteins or viral proteins fused with a reporter protein have been used as screening
tools for countermeasures and to understand pathogenesis (1-4). While the application
of reporter gene technology has provided insight into viral pathogenesis, these exper-
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iments are frequently hampered by sacrificing the subject to identify the source of the
reporter gene signal (5-7). Applying medical imaging technology, such as single
photon emission computed tomography (SPECT) or positron emission tomography
(PET), to animal models of human infectious disease provides the capability to serially
monitor anatomical and physiological responses to infection in the same subject that
can be clinically translated. Generating a virus that carries a SPECT/PET-compatible
reporter gene furthers that capability by serial, real-time evaluation of virus kinetics,
identification of tissue tropism, and determination of pathogenic mechanisms. The
human sodium iodide symporter (hNIS) gene has emerged as one of the most prom-
ising reporter genes in preclinical and translational research for oncology and gene
therapy (8, 9).

The hNIS symporter is an intrinsic plasma membrane protein belonging to the
sodium/solute symporter family, which drives negatively charged solutes into the
cytoplasm using a sodium ion electrochemical gradient (10). The advantages of hNIS as
an imaging reporter gene include its relatively small size (~2 kb), wide availability of
substrates, such as radioiodines, tetrafluoroborate, and ®*™Tc-pertechnetate, and well-
understood metabolism and clearance mechanisms of these substrates (11). Oncolytic
viruses such as measles virus and replication-deficient adenovirus that contain hNIS
have demonstrated value as theranostics, as hNIS is used both as a therapeutic platform
and to track the therapeutic effect (8, 9). In addition, hNIS is unlikely to perturb the
underlying cell biochemistry, and no negative effects of resultant sodium influx have
been observed (12). Finally, once incorporated into the viral genome, the relatively
small size of the reporter gene is less likely than larger reporter genes to alter viral
pathogenic properties (13).

Middle East respiratory syndrome-CoV (MERS-CoV) recently emerged and is associ-
ated with Middle East respiratory syndrome (MERS), a severe, frequently lethal pneu-
monia in humans (14-16). Viral pathogenesis is not well understood, in part, because
of limited autopsy information and a lack of animal models that fully recapitulate
human disease. As with most lethal infectious diseases, animal models are the corner-
stone for preclinical countermeasure evaluation and understanding pathogenesis.
MERS-CoV provides a unique opportunity to incorporate reporter gene technology to
better understand viral pathogenesis because its larger genome size may be more
amenable to reporter gene insertion than other viruses.

Animal models for MERS are under development with no single model identified as
the standard. New World and Old World nonhuman primates infected with MERS-CoV
develop transient respiratory disease with little or no virus replication and varying
disease outcome (17-19). MERS-CoV-exposed New Zealand White rabbits develop
limited lung pathology with evidence of viral replication but did not show overt clinical
signs of disease (20, 21). Transgenic mice globally expressing the human CD26/
dipeptidyl peptidase 4 (DPP4) receptor (22), expressing the human receptor under the
murine promoter (23) or transduced with DPP4 receptor (24) become permissive to the
virus but do not develop fulminant, lethal respiratory disease. Therefore, changes in
reporter gene signal may serve as a biomarker for countermeasure evaluation.

The objective of this study was to incorporate hNIS into MERS-CoV to improve the
MERS animal models. Incorporation of a SPECT/PET-compatible reporter gene with an
emerging virus such as MERS-CoV requires functional evaluation of the recombinant
virus to ensure similar fitness to the parental pathogen. We hypothesized that insertion
of hNIS would result in stable expression of a SPECT/PET-compatible reporter gene. A
recombinant MERS-CoV carrying hNIS (rMERS-CoV/hNIS) was generated. We assessed
the stability, fitness, and functionality of this recombinant pathogen in vitro and in
CRISPR-generated transgenic mice that support replication of wild-type MERS-CoV (25).

RESULTS

rMERS-CoV/hNIS genetic stability, kinetics, and fitness. Recombinant virus was
evaluated by one-step and multistep kinetics and by serial passaging of the virus.
rMERS-CoV/hNIS replicated similarly to rMERS-CoV in Vero E6 cells infected at a multi-
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FIG 1 Kinetics of rMERS-CoV/hNIS and parental rMERS-CoV replication in Vero E6 cells. (a and b)
Multistep (a) and one-step (b) growth curves of Vero E6 cells infected with rMERS-CoV (Parental) and
rMERS-CoV/hNIS (hNIS). Quantification of the release of infectious virus at the indicated time points
(hours postexposure) was determined by plaque assays. Each data point represents the mean = standard
deviation (SD) (error bar) averaged from three independent experiments. (c and d) Cytopathology of
rMERS-CoV and rMERS-CoV/hNIS in Vero E6 cells. The cells were infected with either rMERS-CoV or
rMERS-CoV/hNIS at an MOI of 0.01 (c) or 3 (d) and analyzed by light microscopy at the indicated time
points. Photomicrographs were taken using a 40X objective.

plicity of infection (MOI) of 0.01 with a peak in virus yield of 4 log,, plaque-forming
units (PFU)/ml at 24 h. At an MOI of 3, viral yields peaked at 7 log,, PFU/ml at 48 h and
plateaued at 72 h postinfection (Fig. 1a and b). The correlations between the multistep
growth curves for cells infected at an MOI of 0.01 g (r = 0.96 Pearson correlation,
P =0.0082) (Fig. 1a) and one-step growth curves of cells infected at an MOI of 3
(r=0.90, P = 0.03) (Fig. 1b) for both viruses were high. Both viruses had comparable
cytopathic effects (Fig. 1c and d).

Expression of the hNIS transgene was evaluated by reverse transcriptase PCR
(RT-PCR) using primers to specifically detect hNIS expression by MERS-CoV. The result-
ing 635-bp PCR product includes the MERS-CoV leader sequence and a portion of the
hNIS transgene. RT-PCR confirmed hNIS expression in rMERS-CoV/hNIS-infected Vero E6
cells up to 96 h (Fig. 2a). The PCR product was not detected in parental rMERS-CoV-
infected cells (Fig. 2b). The RT-PCR assay was also performed to determine the stability
of the hNIS transgene following serial passage. The hNIS transgene was stable in
rMERS-CoV/hNIS for up to six cell culture passages (Fig. 2c).

hNIS functionality in MERS-CoV/hNIS-infected cells. To demonstrate in vitro hNIS
functionality, a series of assays were performed to characterize the kinetics of 2°™Tc-
pertechnetate cellular uptake, the relationship between virus concentration and probe
cellular uptake, and between probe dose and its detectability by the gamma camera.
The in vitro hNIS functionality assay is outlined in Fig. 3a and b. The °°™Tc-
pertechnetate uptake by rMERS-CoV/hNIS-infected cells in six-well plates was visible on
the tissue culture plate images and distinguishable from the background radioactivity
in the wells with uninfected and rMERS-CoV-infected cells (Fig. 3c). In rMERS-CoV/hNIS-
infected cells, uptake increased with time after infection and reached a maximum, 20%
of the dose applied to the well, at the final 96-h postinfection time point (Fig. 4a). The
mean radioactivity values measured in the wells were 89.8 = 5.6, 0.77 = 0.15, and
0.57 = 0.04 nCi for rIMERS-CoV/hNIS-infected, rMERS-CoV-infected, and uninfected cells,
respectively.
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FIG 2 Retention of hNIS transgene following viral kinetics analysis and serial passage. (a and b) Vero E6 cells were
infected with rMERS-CoV/hNIS (a) or parental rMERS-CoV (b) at an MOI of 0.01 or 3 and then collected at 96 h
postinfection for RT-PCR. (c) Retention of the hNIS gene following serial passage. RNA was extracted from cells 72
h postinfection followed by RT-PCR at passage 6. A positive-control virus (C+) and uninfected negative-control cells

(C—) were used as controls.

29mTc-pertechnetate uptake was dependent on the virus MOI (Fig. 4b). Higher MOI
was associated with greater accumulation of °°™Tc-pertechnetate by rMERS-CoV/hNIS-
infected cells.

Uptake by rMERS-CoV/hNIS-infected cells was also dependent on the dose of
29mTc-pertechnetate (Fig. 4c). The relationship between radioactivity measured by the
gamma camera on plate images and the dose of *™Tc-pertechnetate added to each
well was linear with high correlation (R?2 = 0.99, linear regression). At 96 hours
postinfection with an MOI of 0.01, uptake was slightly above the background level
when the 2°™Tc-pertechnetate dose of 0.02 mCi per well was applied, and no uptake
was detected when 0.004 mCi of °°™Tc-pertechnetate was added to each well (Fig. 4c).
Therefore, the °°™Tc-pertechnetate dose should be considered a limiting factor for
detection of hNIS expression in rMERS-CoV/hNIS-infected cells. Importantly, no changes

a MERS-CoV 9mTcO, SPECTI/CT scanner

24148/

7296 hr

—

Confluent monolayer
b ) c rMERS-CoV
Single plate layout rMERS-CoV hNIS

S
o
n
5 & Counts
= 80
<
o
o
n H
o
= 0

FIG 3 Radio-uptake of °™Tc-pertechnetate by planar scintigraphy. (a) Experimental overview of in vitro
evaluation of the rMERS-CoV/hNIS virus. Vero E6 cells were infected with rMERS-CoV or rMERS-CoV/hNIS
at an MOI of 0.01 or 0.04. At various time points postinfection, the cells were incubated with °°™Tc-
pertechnetate, and images of the plates were acquired. (b) Plate layout for hNIS functional assays. (c)
Representative images of the plates acquired at 24 h postinfection at an MOI of 0.01 (top plates) or 0.04
(bottom plates) after incubation with °°™mTc-pertechnetate.

November/December 2018 Volume 3 Issue 6 e00540-18

mSphere’

msphere.asm.org 4


https://msphere.asm.org

rMERS-CoV Expressing the Sodium lodide Symporter

a b
OrMERS-CoV MOl =0.01
) Bl rMERS-CoV/hNIS g B MOI = 0.04
s 254 © 254
52 52
20 20
23 23
%9 154 ° 9 154
£3 £
S & 104 o o 104
o® o®
o = - Y
8 7 i 8s ]
I o
E 0 L iI L ] L ] L ] g 0-
@ 24 48 72 96 L 24 48
Post-exposure (hrs) Post-exposure (hrs)
C
160+ O rMERS-CoV

B rMERS-CoV/hNIS
120

9nTc-pertechnetate
uptake (nCi)
H [e:]
I

e, i |

1
0.6 041 0.02 0.004
9mTcO, (mCi)

o

FIG 4 Quantification of °°mTc-pertechnetate uptake by rMERS-CoV/hNiS-infected cells. (a) 2°™Tc-
pertechnetate uptake by rMERS-CoV- or rMERS-CoV/hNIS-infected cells at an MOI of 0.01 at 24, 48, 72,
and 96 h postinfection. (b) °°™Tc-pertechnetate uptake by rMERS-CoV/hNiS-infected cells at an MOI of
0.01 or 0.04 at 24 and 48 h postinfection. (c) Quantitative analysis of ®™Tc-pertechnetate uptake applied
at doses ranging from 0.6 to 0.004 mCi per well.

in 2°mTc-pertechnetate accumulation were detected in the wells infected with the
parental virus rMERS-CoV regardless of the dose.

The specificity of °*mTc-pertechnetate uptake by rMERS-CoV/hNIS-infected cells was
confirmed by adding sodium perchlorate, a specific and competitive inhibitor of hNIS
protein function, and assessing uptake at 24 h postinfection (Fig. 5a). At a concentration
of 0.1 mM, sodium perchlorate blocked 99.5% of the cellular uptake of °°™Tc-
pertechnetate in rMERS-CoV/hNIS-infected cells at an MOI of 0.01. Sodium perchlorate
concentrations below 0.1 mM reduced the inhibitory effect. For example, radiotracer
uptake was inhibited by 50% at sodium perchlorate concentrations of 0.001 mM at 24
h postinfection (Fig. 5a). The effective inhibition of ®®™Tc-pertechnetate uptake with 0.1
mM sodium perchlorate declined between 48 and 96 h postinfection (Fig. 5b), sug-
gesting that viral transcription can overcome the inhibitory effect. By 96 h postinfec-

a b
e e OrMERS-CoV
25 B rMERS-CoV/hNIS
£5 [JrMERS-CoV £5 06 ' °
3 2 20 B rMERS-CoV/hNIS 3 2 05
- T - T
g T 15 _E 3 0.4
c= €= 0.3
S8 10 S S
Lo o ® 0.2
©0 g5 o ‘e
3 22 04
= — o =~
5 0 L 1L 1L 1L I E 0 L 1L 1L 1L 1
0 0.001 0.01 0.1 8 24 48 72 96
NaClO4 (mM) Post-exposure (hrs)

FIG 5 Sodium perchlorate-mediated inhibition of °*™Tc-pertechnetate uptake. (a) Quantitation of *°™Tc-
pertechnetate uptake in the presence of sodium perchlorate at doses ranging from 0 and 0.1 mM.
29mTc-pertechnetate uptake was reduced in rMERS-CoV/hNIS-infected cells with increasing sodium per-

chlorate concentrations. (b) °™Tc-pertechnetate uptake by rMERS-CoV- or rMERS-CoV/hNIS-infected cells
an MOI of 0.01 at 24, 48, 72, and 96 h postinfection in the presence of 0.1 mM sodium perchlorate.
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tion, 2°mTc-pertechnetate uptake in rMERS-CoV/hNIS-infected cells was nearly double
the uptake at 24 h postinfection in the presence of sodium perchlorate (Fig. 5b).

In vivo evaluation of rMERS-CoV/hNIS. CRISPR-generated 288/330*/* DPP4 hu-
manized mice were challenged with parental rMERS-CoV or rMERS-CoV/hNIS by the
intranasal route and monitored by SPECT imaging. One group each of mice infected
with rMERS-CoV/hNIS and parental rMERS-CoV were euthanized on day 3 postexposure
(pe), while another set was monitored to day 7 pe and euthanized. SPECT/CT imaging
was performed to determine whether sites of virus replication were evident in these
animals. Unfortunately, the low resolution of the clinical scanner used in our biocon-
tainment facility prevented clear discrimination of hNIS-expressing tissues and limited
the utility of the imaging. Details of the SPECT/CT data can be found in Fig. ST and the
methodology is described in Text S1 in the supplemental material.

Macroscopic evaluation of the lungs from virus- and sham-exposed animals did not
reveal any significant pathological changes except in one of the five mice in group 2
(rMERS-CoV). The right caudodorsal lung lobe of this animal was congested. Micro-
scopically, minimal-to-mild perivascular and peribronchiolar inflammation was noted
multifocally with variable congestion in rMERS-CoV- and rMERS-CoV/hNIS-infected mice
(Fig. 6a to e). Kidney congestion was also noticeable in 40 and 50% of mice in groups
2 and 3, respectively, on day 3 pe and 33 and 50% on day 7 pe in mice in groups 4 and
5, respectively, infected with rMERS-CoV or rMERS-CoV/hNIS (Table 1). The percentage
of mice with alterations in the lung was higher on day 7 pe compared to that observed
on day 3 pe (100% vs <83%, respectively). Extensive focal congestion in the lungs and
multifocal congestion in the kidneys were observed in one of five mice from group 1
receiving sham infection, but inflammation was not manifested in this group (Table 1).

Infectious virus could be detected only in the lungs from 3/6 mice from group 3
(5.01 £ 0.45 log, PFU/mg) but was detected in the lung tissue by plaque assay in 4 of
5 mice from group 2 (6.7 = 0.43 log,, [mean = SD] PFU/mq) (Fig. 6f). The differences
in viral loads between groups 2 and 3 were not statistically significant (two-tailed t test,
P = 0.214). RT-PCR indicated maintenance of the hNIS transgene in 3 of 6 mice in group
3 (Fig. 69). The inability to detect virus in 3 of 6 mice and the nearly 2 log,, decrease
in PFU/mg observed for rIMERS-CoV/hNIS at day 3 supports a loss of viral fitness in vivo.
Virus could not be detected by plaque assay or RT-PCR at 7 days postinfection.

DISCUSSION

This is the first report describing the application of a recombinant RNA virus
expressing a SPECT/PET reporter gene to study viral pathogenesis. Our data demon-
strate the feasibility of using hNIS as a reporter protein in animal models of human
disease, provided a higher-resolution SPECT/CT or PET/CT is available. Despite the
presence of a robust signal, the clinical grade SPECT/CT in our facility did not provide
the necessary resolution to demonstrate in vivo functionality of the rMERS-CoV/hNIS in
mice. If available, a micro-PET/CT and the use of tetrafluorborate, an alternate hNIS
ligand, could be used to increase sensitivity and improve signal to noise (26). The
recombinant MERS-CoV/hNIS has similar fitness to the parental virus, rMERS-CoV, as
evidenced by similar kinetics, fitness, and cytopathic effect in vitro. The results of in vivo
evaluation also support similar fitness; however, further development would require
insertion of the hNIS transgene into other locations within the virus and insertion of the
transgene into the MERS-15 virus, which can cause lethal respiratory disease in the
288/300" " mice.

Genetic stability of the hNIS transgene cloned into MERS-CoV was confirmed over six
in vitro passages. hNIS maintained its function in rMERS-CoV/hNIS-infected cells upon
incubation with °°™Tc-pertechnetate. The probe uptake (percentage of radioactive
dose applied to each well) positively correlated with virus concentration and time
postinfection. rMERS-CoV/hNIS expression of the hNIS protein in infected Vero E6 cells
resulted in specific uptake of °°mTc-pertechnetate and kinetics that correlated with viral
replication. Similarly, in a previous study using hNIS-expressing adenoviral vector in
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FIG 6 Lung histopathology in infected mice and detection of rMERS-CoV/hNIS or rMERS-CoV in lung
tissue. (a to e) Histopathology of the lungs of one representative mouse each from groups 1, 2, 3, 4, and
5 infected with rMERS-CoV or MERS-CoV/hNIS. The cells were visualized with HE stain. Magnification,
X10. Bars = 200 um. (a) Uninfected control mouse. (b) Representative mouse infected with rMERS-CoV
(group 1) with multifocal, minimal-to-mild perivascular and peribronchiolar inflammation, with conges-
tion on day 3 postexposure (pe). (c) Representative mouse infected with rMERS-CoV/hNIS (group 2) with
multifocal, minimal-to-mild perivascular and peribronchiolar inflammation, with congestion on day 3 pe.
(d) Representative mouse infected with rMERS-CoV (group 4) with multifocal, minimal-to-mild perivas-
cular and peribronchiolar inflammation with congestion at day 7 pe. (e) Representative mouse infected
with rMERS-CoV/hNIS (group 5) with multifocal, minimal-to-mild perivascular and peribronchiolar in-
flammation with congestion at day 7 pe. (f) Viral load in lung tissue on day 3 pe in mice infected with
rMERS-CoV or rMERS-CoV/hNIS as determined by plaque assay. (g) RT-PCR analysis of the lungs recovered
from rMERS-CoV/hNIS- or rMERS-CoV-infected mice. The leftmost lane contains molecular size markers (in
kilobases). The next three lanes contain stock controls, IMERS-CoV/hNIS (stock control, without RT step),
rMERS-CoV stock, and rMERS-CoV/hNIS stock. C+ indicates positive-control virus, and C— indictes
uninfected negative-control cells. Samples from groups 1 to 5 are shown in the five sets of lanes as
follows: group 1, uninfected control (C—) group, lanes 1 to 5; group 2, exposed to rMERS-CoV, lanes 1
to 5; group 3, exposed to rMERS-CoV/hNIS, lanes 1 to 6; group 4, exposed to rMERS-CoV, lanes 1 to 5;
group 5, exposed to rMERS-CoV/hNIS, lanes 1 to 6. The asterisk in lane 5* of the rMERS-CoV/hNIS-treated
group on day 3 pe indicates altered PCR conditions (48°C annealing temperature, 3% dimethyl sulfoxide)
to improve the sensitivity to detect rMERS-CoV/hNIS.

carcinoma cells, radionuclide accumulation of °°™Tc-pertechnetate correlated with the
amount of adenovirus delivered and the activity of the added radioisotope (27).

Consistent with other studies (28), sodium perchlorate greatly decreased rMERS-
CoV/hNIS uptake in cell culture. However, the sodium perchlorate dose that blocked
hNIS protein function by 99.5% at 24 h postinfection became less effective at +96 h
postinfection, corresponding with increased viral replication, and presumably sym-
porter expression from the virus.

These experiments utilized the 288/330*/* transgenic humanized mice (25). Results
from previous work indicated that these mice, when challenged with the mouse-
adapted MERS-15 virus, developed severe acute respiratory distress syndrome, includ-
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TABLE 1 Pathological summary of mice

% mice in group % mice in group

with lung with congestion
Mouse Recombinant Day of tissue fiamnatoniiy (n)
group (n) virus sampling Minimal Mild Lung Kidney
Group 1 (5) None (sham) 7 0 0 20 (1) 20 (1)
Group 2 (5) rMERS-CoV 3 40 (2) 40 (2) 80 (4) 40 (2)
Group 3 (6) rMERS-CoV/hNIS 3 33 (2) 33 (2) 83 (4) 50 (3)
Group 4 (6) rMERS-CoV 7 33 (2) 50 (3) 100 (6) 33(2)
Group 5 (6) rMERS-CoV/hNIS 7 17 (1) 67 (4) 100 (6) 50 (3)

ing decreased survival, extreme weight loss, decreased pulmonary function, pulmonary
hemorrhage, and pathological signs indicative of end-stage lung disease (25). Similar to
the previously published work, the parental (MVERS-CoV) and recombinant virus (MERS-
CoV/hNIS) grew to high titers in the 288/330*/* mice, but the mice did not develop
disease (25). Although the SPECT signal was dependent on the viral load in tissue
culture, the SPECT signal from infected mice as determined by comparing lung-to-heart
ratios was not sufficiently different between infected and uninfected mice. Unfortu-
nately, rMERS-CoV/hNIS was detected by PCR in only 50% of infected mice on day 3 pe,
suggesting limited in vivo genetic stability.

This inconsistent detection of rMERS-CoV/hNIS could be due to hNIS transgene
insertion into the ORF5 gene, which antagonizes innate immunity and thus may impact
viral pathogenesis in vivo (29). Cockrell et al. demonstrated that a clone of the MERS-15
virus with an ORF5 deletion was attenuated compared to a clone in which the ORF5
gene was not deleted (25). This attenuation may also explain the lower titer in the
rMERS-CoV/hNIS mice compared to that observed with the parental virus (Fig. 6f).
Further utilization of ANIS as a reporter for virus growth and localization would include
developing the mouse-adapted version (rMERS-15/hNIS-CoV) for evaluation and model
improvement and insertion of the hNIS into other locations of the viral genome.

Imaging with a small-animal PET scanner and PET radiotracer '8F-tetrafluoroborate
would improve image quality and sensitivity for visualizing rMERS-CoV/hNIS replication.
An alternative to the SPECT is use of a gamma counter to measure the radioactivity in
the tissues; unfortunately, a suitable gamma counter is not available in our biosafety
level 4 (BSL-4) laboratory. Alternatively, utilization of rMERS-CoV/hNIS in larger animals,
i.e, nonhuman primates, should help overcome the SPECT clinical scanner’s limited
spatial resolution. This technology also aids identification of tissues that are directly
infected, which would improve virological analysis, histological analysis, and charac-
terization of tissue-specific response to infection.

Although the animal models of MERS require further improvement, the model
chosen for this experiment was useful in supporting the relative in vivo stability of the
hNIS reporter in MERS-CoV. The results from the mouse experiments agree with
published studies (20, 21, 25) and corroborate previous data that indicate that wild-type
virus grows to a high titer in the 288/300" * transgenic mice. Realizing the potential
and limitations of the existing MERS-CoV animal models, further incorporation of
real-time imaging technology will expand MERS-CoV research. Development of recom-
binant viruses with imaging reporter genes and its application with suitable animal
models will be instrumental in furthering our understanding of viral pathogenesis,
potentially leading to improved animal models of human disease and more efficient
countermeasure evaluation.

MATERIALS AND METHODS

Cells, viruses, and animals. Recombinant parental virus (rMERS-CoV) and MERS-CoV expressing hNIS
(rMERS-CoV/hNIS) were generated as previously described (30). Briefly, the hNIS open reading frame
(ORF) was inserted into the NS5 ORF of MERS-CoV. The nine bases, UCCUUCAUA, between the M gene
TRS and its start codon were included at the start of the hNIS sequence and cloned using the SanDI
restriction enzyme site upstream of ORF 6. Transfections for recovery of the recombinant viruses were
performed at biosafety level 3 (BSL-3). Except for generation of the recombinant viruses, all experimental
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procedures were conducted at BSL-4 biocontainment laboratories due to the location of the SPECT
clinical scanner. MERS-CoV isolate Hu/Jordan-N3/2012 was propagated in MRC-5 cells (ATCC) at a
multiplicity of infection (MOI) of 0.1 for 5days following published procedures (19, 31). Virus was
recovered by removal of the tissue culture media followed by centrifugation, titers of the virus were
determined by plaque assay, and the cultures were evaluated for mycoplasma and endotoxin contam-
ination (19, 31). Vero E6 cells (ATCC CRL-1586) were maintained in Dulbecco’s modified Eagle medium
(DMEM) (Lonza) supplemented with 5% fetal bovine serum (FBS) and incubated at 37°C and 5% CO,
without antibiotics or antimycotics.

CRISPR-Cas9-engineered mice (288/330"/"; n = 30) encoding two amino acids (positions 288 and
330) that match the human sequence in the DPP4 receptor on both chromosomes were obtained from
the University of North Carolina (25).

rMERS-CoV and rMERS-CoV/hNIS plaque assays. Plaque assays were performed in Vero E6 cells as
previously described (32). For titration of virus in tissues, the collected tissues were homogenized using
a bead-based tissue homogenizer to make a 10% homogenate in DMEM plus 2% FBS (Sigma).

One-step and multistep growth curves and serial passage. Kinetic studies with rMERS-CoV and
rMERS-CoV/hNIS were performed in parallel experiments in triplicate. Vero E6 cells were infected with
rMERS-CoV or rMERS-CoV/hNIS at an MOI of 0.01 or 3. Samples were collected at 0, 24, 36, 48, 72, and
96 h postinfection, and virus titers were determined as described above. Serial passage was performed
to demonstrate stability of the hNIS transgene. Virus was passaged every 72 h for six passages. An aliquot
was collected and assayed by reverse transcriptase PCR (RT-PCR) to detect the hNIS transgene.

RT-PCR of viral RNA. For evaluation of stability of the hNIS gene, total RNA was isolated from Vero
E6 cells collected 24, 36, 48, 72, and 96 h after rMERS-CoV and rMERS-CoV/hNIS infection at MOls of 0.01
and 3. The RNA was reverse transcribed into cDNA using deoxythymidine oligonucleotide primers and
SuperScript reverse transcriptase Il (Thermo Fisher Scientific) according to the manufacturer’s protocol.
Two custom primers, hNIS Leader (forward primer sequence, 5'CTATCTCACTTCCCCTCGTTCTC) with hNIS6
(reverse primer sequence, 5'GAAGCCACTTAGCATCAC) were used to create PCR products. PCR products
were separated and identified on a SYBR safe DNA-stained agarose gel (Thermo Fisher Scientific). Stock
rMERS-CoV/hNIS was used as a positive control, and uninfected-cell lysates were used as a negative
control for RT-PCR.

Cell culture radio-uptake assay. Functionality of the hNIS gene was assessed by hNIS-mediated
accumulation of #°mTc-pertechnetate by rMERS-CoV/hNiS-infected cells. Vero E6 cells were infected with
rMERS-CoV or rMERS-CoV/hNIS at two different MOls, 0.01 and 0.004, and incubated for 0, 24, 36, 48, 72,
and 96 h. °*Tc-pertechnetate, 0.004 to 0.6 mCi in 0.2 ml, was added to each well and incubated for 60
min. °°mTc-pertechnetate was removed from the wells, and the cells were washed with room temper-
ature media. Planar images of the plates were acquired over 30 min with a single gamma camera head
using the Precedence SPECT/computed tomography (CT) clinical system (Philips Medical Systems), that
was modified to operate in a biocontainment environment (33). The in vitro samples were quantified
using the SPECT/CT scanner. Uninfected cells were treated with °°™Tc-pertechnetate to determine the
background level. Specificity of °°mTc-pertechnetate uptake by rMERS-CoV/hNIS-infected cells was
assessed by adding sodium perchlorate, NaClO,, 1 to 100 uM, to the wells prior to ®*™Tc-pertechnetate
introduction. 2°™Tc-pertechnetate counts from each well were converted into radioactivity units and
decay-corrected relative to the time of probe introduction to the wells. Uptake of 2°mTc-pertechnetate
by infected cells was expressed as a percentage of the radioactive dose applied to the well. The
radio-uptake assays were conducted in triplicate.

Transgenic mouse experiments. Thirty 288/330"/* mice, 15 males and 15 females, were split into
5 groups of 6 animals. Two mice, one from group 1 and one from group 4, did not recover from
anesthesia after a preexposure scan and were not replaced. Mice were lightly anesthetized with
isoflurane and were exposed intranasally with phosphate-buffered saline (PBS) without virus (group 1) or
with rMERS-CoV (groups 2 and 4) or rMERS-CoV/hNIS (groups 3 and 5). The virus/PBS was instilled into
both nostrils, 25 ul per nostril. The mice were monitored daily for clinical signs of disease. The animals
from groups 2 and 3 were euthanized on day 3 postexposure (pe), and the animals from groups 1, 4, and
5 were euthanized on day 7 pe. The lungs were collected for gross pathological and microscopic
evaluation and virus detection via plaque assay.

Ethics statement. All work with animals was performed in an AAALAC-accredited research facility
and approved by the National Institute for Allergy and Infectious Disease Division of Clinical Research
Animal Care and Use Committee. The experiments complied with the Animal Welfare Act regulations,
Public Health Service policy, and the Guide for the Care and Use of Laboratory Animals (34). Animals were
monitored daily. Clinical health, body weight, and food consumption were recorded.

Statistical analysis. Statistical analysis was performed using Graphpad Prism 7.03 (Graphpad Soft-
ware Inc.) as indicated in the text.
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