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ABSTRACT Objective: Non-sustained supraventricular tachycardia (nsSVT) is associated with a higher risk
of developing atrial fibrillation (AF), and, therefore, detection of nsSVT can improve AF screening efficiency.
However, the detection is challenged by the lower signal quality of ECGs recorded using handheld devices
and the presence of ectopic beats which may mimic the rhythm characteristics of nsSVT. Methods: The
present study introduces a new nsSVT detector for use in single-lead, 30-s ECGs, based on the assumption
that beats in an nsSVT episode exhibits similar morphology, implying that episodes with beats of deviating
morphology, either due to ectopic beats or noise/artifacts, are excluded. A support vector machine is used
to classify successive 5-beat sequences in a sliding window with respect to similar morphology. Due to the
lack of adequate training data, the classifier is trained using simulated ECGs with varying signal-to-noise
ratio. In a subsequent step, a set of rhythm criteria is applied to similar beat sequences to ensure that episode
duration and heart rate is acceptable. Results: The performance of the proposed detector is evaluated using
the StrokeStop II database, resulting in sensitivity, specificity, and positive predictive value of 84.6%, 99.4%,
and 18.5%, respectively. Conclusion: The results show that a significant reduction in expert review burden
(factor of 6) can be achieved using the proposed detector. Clinical and Translational Impact: The reduction
in the expert review burden shows that nsSVT detection in AF screening can be made considerably more
efficiently.

INDEX TERMS Atrial fibrillation screening, signal quality, handheld ECG device, non-sustained supraven-
tricular tachycardia.

I. INTRODUCTION

SCREENING for atrial fibrillation (AF) has received
considerable attention, exemplified by the rapidly grow-

ing number of studies published in the recent years, see
e.g., [1] and [2]. Screening provides an opportunity to
identify patients with untreated AF and initiate anticoagu-
lation therapy at an early stage. In a recent study [3], the
screened population was found to be associated with fewer
incidents (stroke and death) than the control group, i.e.,
patients not screened, thus emphasizing the importance of AF
screening.

Previous studies have shown that subjects with excessive
supraventricular arrhythmia are prone to develop AF [4], [5],
[6], [7], [8], [9]. Detection of supraventricular arrhythmia
has often been addressed by employing feature-based clas-
sification. The features are exemplified by RR intervals in
successive short windows, wave amplitudes, wave durations,
crosscorrelation to a template beat [10], [11], [12], [13],
and spatial features derived from the vectorcardiogram [14].
Classification has been performed using random forests,
support vector machines, linear discriminants, and neural
networks [15].
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FIGURE 1. Excerpts from single-lead, 30-s screening ECGs with nonsustained supraventricular tachycardia
(nsSVT), recorded using a handheld device. The nsSVT episodes, with a duration of 3 to 5 s, are surrounded by
normal sinus rhythm and a few motion artifacts.

With the increasing interest in home-based AF screen-
ing using a handheld device, the prognostic implications of
non-sustained supraventricular arrhythmia have gained atten-
tion. This type of arrhythmia includes frequent supraven-
tricular beats (isolated or couplets), atrial bigeminy, and
non-sustained supraventricular tachycardia (nsSVT), where
nsSVT has attracted particular attention as it has been associ-
ated with a higher risk of future AF [16], [17] and stroke [4].
The presence of nsSVT can also serve as a marker of already
existing but undetected AF.

The definition of nsSVT is somewhat ambiguous in the
literature. The maximum duration of an episode is usually
set to 30 s, see, e.g., [18], [19], [20], [21], and [22], whereas
the minimum duration is usually defined by the number of
beats, e.g., 4 beats [19], [22], 5 beats [21], 6 beats [23],
or 10 beats [18]. Examples of nsSVT are displayed in Fig. 1.
Detection of nsSVT in ECGs recorded using a handheld

device is prone to produce very large numbers of false
positives. This is mainly due to falsely detected beats occur-
ring in the presence of noise/artifacts and frequent ectopic
beats [24], [25].

The present study proposes an nsSVT detector, represent-
ing a novel type of detector designed for use with single-lead,
30-s screening ECGs. The first step of the detector identifies
beat sequences with similar morphology treated as candi-
dates for nsSVT. The second step applies a set of rhythm
criteria whose purpose is to sharpen the performance. The
identification of similar beat sequences (SBSs) is based on
machine learning, where the classifier is trained on a sim-
ulated ECG database and evaluated on two public ECG
databases well-suited for SVT detection and signal qual-
ity assessment. The performance of the nsSVT detector is
evaluated on a huge proprietary ECG screening database.
The clinical studies [16], [17], reporting on the prognostic
implications of nsSVT detection in ECG screening, serve as
the translational incentive to pursue the detection problem.

The present paper is organized as follows. The databases
are described in Sec. II and the nsSVT detector is described
in Sec. III. Section IV presents the results, which are then
subject to discussion in Sec. V.

II. DATABASES
A. SIMULATED ECG DATABASE
A simulated database (SIMDB) is generated using the sim-
ulator described in [26], containing ECGs in normal sinus
rhythm or AF, varying P-wavemorphology, and various types
of noise. Synthetic components are used to generate simu-
lated ECG signals, except for the noise which was taken from
the MIT–BIH Noise Stress Test Database.

A total of 20,000 30-s ECGs were generated with the
following two distinctly different noise levels: A set of 10,000
with a low noise level, uniformly distributed in the interval
[25, 75] µV, and another set of 10,000 with a high noise
level, uniformly distributed in the interval [250, 750] µV.
In each set, 5,000 were generated in normal sinus rhythm and
5,000 in AF. The set with low noise level was used to compile
episodes of detections with similar morphology, whereas the
set with high noise level was used to compile episodes with
one or several false detections. The upper limit of the low
noise level set was chosen to 75µV, since a higher noise level
significantly influences beat morphology.

For each ECG in SIMDB, an episode containing five
consecutive detections produced by a QRS detector was
randomly selected. The locations of the detections were
compared to the annotated beat locations provided by the
simulator. If the difference between these two locations did
not exceed 10 ms, the episode was annotated as an SBS.
On the other hand, if the difference for at least one of the
detections exceeded 75 ms, the episode was annotated as a
non-SBS. All episodes with deviations between 10 and 75 ms
were discarded as they did not contribute to establishing
a relevant training dataset. This selection process resulted
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FIGURE 2. Structure of the proposed nsSVT detector, and usage of the databases for training and evaluation.

in 9,449 segments with SBSs and 6,868 segments with
non-SBSs.

Since ventricular ectopic beats were not introduced in
the simulator, such beats were imported from the MIT–BIH
Supraventricular Arrhythmia Database (SVADB), see below,
replacing one detection in 2,581 randomly selected SBSs in
order to balance the simulated database. A segment with a
ventricular ectopic beats was annotated as a non-SBS.

B. MIT-BIH SUPRAVENTRICULAR ARRHYTHMIA
DATABASE
The SVADB contains 78 half-hour, two-lead ECG recordings,
annotated on a beat-to-beat basis. Twenty-seven out of the
78 recordings1 contain supraventricular tachycardia (SVT) of
at least 5-beat length.

C. BRNO UNIVERSITY ECG SIGNAL QUALITY DATABASE
The Brno University ECG Signal Quality Database
(BUSQDB) contains 18 single-lead, 24-h ECGs recorded
during everyday activities, annotated with respect to three
levels of signal quality, either allowing a complete wave
analysis, QRS detection only, or no analysis at all. Three out
of 18 signals were fully annotated in terms of signal quality,
while the remaining 15 signals were annotated in two 20-min
segments [27].

In the present study, segments annotated as ‘no analysis’
are used to evaluate the performance of SBS identification
with regard to rejection of noisy segments.

D. StrokeStop II DATABASE
The StrokeStop II Database (SSIIDB) contains 186,697 30-s
screening ECGs from 6,315 75- and 76-year old partici-
pants. The ECGs were recorded using the handheld Zenicor
device (Zenicor Medical System AB, Sweden). Based on
the N-terminal B-type natriuretic peptide level, participants
went through either index screening or intermittent screening.
Index screening involves only one single recording, while
intermittent screening involves four recordings per day during
two weeks. In total, 280 recordings were annotated as con-
taining nsSVT.

Written informed consent was obtained from each patient
before inclusion in the StrokeStop II Database. The study

1Recording numbers: 801, 806, 807, 808, 809, 810, 812, 826, 840, 844,
846, 847, 849, 851, 854, 855, 856, 857, 859, 860, 862, 864, 865, 870, 885.

protocol conforms to the ethical guidelines of the 1975 Dec-
laration of Helsinki and was approved by the regional ethics
committee (DNR 2015/2079-31 and 2020-01436).

In the present study, SSIIDB is used to evaluate the perfor-
mance of the nsSVT detector.

III. METHODS
The two-step structure of the proposed nsSVT detector is
illustrated by the block diagram in Fig. 2. The first step is to
find beat sequences with similar morphology, irrespective of
prevailing rhythm and absolute beat morphology. This means
that not only is nsSVT identified as an SBS, but so are nor-
mal sinus rhythm, sinus tachycardia, ventricular tachycardia,
and AF. Rhythms excluded by the first step include isolated
ventricular ectopic beats, ventricular bi- and trigeminy, and
noise/artifacts.

The second step excludes SBSs whose rhythm does not
fulfill certain criteria related to changes in heart rate rela-
tive to that of the surrounding rhythms and to RR interval
irregularity, avoiding that atrial bigeminy, supraventricular
beats (isolated and couplets), and interpolated atrial beats
not accompanied by a compensatory pause, are identified as
SBSs. Non-sustained sinus tachycardia, although relatively
rare, will be identified as an SBS.

The ECG signals were preprocessed using a zero-phase,
Butterworth bandpass filter with cut-off frequencies at 1 Hz
and 40 Hz to suppress baseline wander and high-frequency
noise. Since the ECGs of the above-mentioned databases
were recorded with different sampling rates, all recordings
were resampled to 1000 Hz. The built-in QRS detector of
a commercial software (Cardiolund AB, Lund, Sweden) was
used.

A. SIMILAR BEAT SEQUENCE IDENTIFICATION
Using a sliding window approach, SBSs are identified using
information of the residuals, determined by subtracting a
template beat from the other beats of the window. The W
beats contained in the k:th sliding window form the columns
of the matrix

Xk =
[
xk · · · xk+W−1

]
,

where each column vector xl, l = k, . . . , k + W − 1,
contains N samples of a 300-ms interval centered around the
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FIGURE 3. Illustration of an SBS (top) and a non-SBS (bottom). The left column shows two ECGs and the detected beats (blue dots).
The middle column shows the superimposed beats and the template beat (in red) following min-max normalization. The right column
shows the superimposed residuals obtained by subtracting the template beat from the detected beats.

l:th beat. Since the shortest possible nsSVT episode is here
taken to be 5, the window length W is set to 5. To facilitate
the analysis of different databases, xl is subject to min–max
normalization, resulting in the normalized matrix X̄k which
is used to compute the residuals.

In each window, the template beat is taken as the beat
yielding the lowest mean absolute value of the residuals when
subtracted from each of the otherW−1 beats in X̄k , resulting
in the matrix

Ek =
[
ek · · · ek+W−2

]
,

where the columns contain the residuals related to the non-
template beats. Clearly, the amplitude of the residuals in these
vectors is close to 0 whenever the beats xk , . . . , xk+W−1
exhibit similar morphology, and vice versa. Note that the
order of columns of Ek may differ from that of Xk . The
normalized matrix X̄k and the residual matrix Ek , obtained
from an SBS and a non-SBS episode, are illustrated in Fig. 3.

Using Ek , the following three statistical features are pro-
posed as a first set: 1. the median absolute deviation of all
elements of Ek , 2. the difference between the 99:th percentile
and the 1:st percentile of all elements of Ek , and 3. the total
number of outlier samples of Ek (defined below).
The number of outliers is typically much larger for beats

with non-similar morphology than for beats with similar
morphology, and, therefore, the total number of outliers is
used as a feature. An outlier sample en,j in ej is identified
when the following criterion is fulfilled:∣∣∣∣ en,j − mj

αj σMAD,j

∣∣∣∣ > 1, n = 1, . . . ,N ; j = k, . . . , k +W − 2,

(1)

where mj and σMAD,j denote the median and the mean abso-
lute deviation of ej, respectively, N is the number of samples
of a beat, and αj is the 75% percentile of the samples in ej.
The number of outliers is identical to the number of en,j that
fulfills the criterion in (1).
Inspired by the work in [28], [29], and [30], a second

feature set is considered for comparison which builds on
principal component analysis (PCA) of the beat matrix X̄k .
The following three features are proposed: 1. the mean cross-
correlation resulting from correlation of the largest principal
component, i.e., the eigenvector corresponding to the largest
eigenvalue, to each of the W beats, computed in a 100-ms
interval centered around the beat, 2. the lowest crosscorrela-
tion instead of the mean, and 3. the percentage of variance
explained by the largest principal component. The features
derived from Ek and X̄k are listed in Table 1.

A support vector machine (SVM) classifier with a
radial basis function kernel is used for SBS identification.
An advantage of an SVM over other classifiers is that the
computation of model parameters corresponds to a convex
optimization problem. Therefore, given a data set and a set
of hyperparameters, an SVM converges to the same solu-
tion [31]. In addition, an SVM with a radial basis function
kernel has only two hyperparameters, the penalty parameter
C and γ , which simplifies the optimization; for details on
SVMs and their properties, see [31].
The hyperparameters C and γ are selected using five-fold

cross-validation performed on SIMDB. When C and γ are
selected, the final models, based on either Ek or X̄k , are
trained using the entire SIMDB. The performance of the SBS
identification is evaluated using SVADB and BUSQDB. The
former database is used to assess the capability of the SVM
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TABLE 1. features extracted from the residual matrix Ek and features
extracted from the normalized beat matrix X̄k using principal component
analysis. PC stands for principal component.

TABLE 2. database usage and number of segments.

to identify SBSs in the presence of ventricular ectopic beats,
while the latter is used to assess the capability to identify
non-SBSs caused by noise and artifacts.

The number of segments used for training and evaluat-
ing the classifier for SBS identification are presented in
Table 2. The number of segments refers to episodes with
5 detections, irrespective of episode length. Note that only
one segment per recording is selected from each of the ECGs
in SIMDB.

B. RHYTHM CRITERIA for nsSVT DETECTION
The nsSVT detector supplements the SBS identification
with two rhythm criteria to sharpen the detection of nsSVT.
To accomplish this, the following two RR interval sets are
defined:

• The vector rm (m = 1, . . . ,M − 3) contains 4 consecu-
tive RR intervals, starting at them:th RR interval, whose
total duration does not exceed 2400 ms are identified as
an SBS, whereM is the number of identified SBSs.

• The vector r′ contains the RR intervals of the 30-s
recording, excluding those of rm.

Given that an nsSVT does not exceed 30 s and exhibits a
considerably faster heart rate compared to the other parts of
the 30-s recording, the following criterion is introduced:

median(rm)
median(r′)

≤ δ, (2)

where δ is a user-defined constant.
To avoid detection of atrial bigeminy, supraventricular

beats (isolated or couplets), and interpolated atrial beats not
accompanied by compensatory pause, the following criterion
is introduced:

rsm(3) − rsm(2)
median(r′)

≤ η, (3)

where η is a user-defined constant. The scalars rsm(2)
and rsm(3) correspond to the second shortest and second

longest RR intervals within the ascendingly sorted vector rsm,
respectively.

An nsSVT is detected whenever rsm satisfies both (2)
and (3).

C. PERFORMANCE EVALUATION
Sensitivity (Se), specificity (Sp), and positive predictive value
(PPV), defined by

Se =
NTP

NTP + NFN
, (4)

Sp =
NTN

NTN + NFP
, (5)

PPV =
NTP

NTP + NFP
, (6)

respectively, are used as performance measures. NTP is the
number of true positives,NTN is the number of true negatives,
NFP is the number of false positives, and NFN is the number
of false negatives.

The application of the above-mentioned performance
measures depends on whether SBS identification or
nsSVT detection is investigated. The following definitions
apply:

1) PERFORMANCE OF SBS IDENTIFICATION
NTP is the number of correctly identified SBSs, NTN is the
number of correctly identified sequences with non-similar
beats, NFP is the number of falsely identified SBSs, and
NFN is the number of falsely identified episodes with similar
beats.

2) PERFORMANCE OF NSSVT DETECTION
NTP is the number of correctly identified ECGs with nsSVT,
NTN is the number of correctly identified ECGs without
nsSVT, NFP the number of falsely detected ECGs without
nsSVT, and NFN is the number of falsely detected ECGs
with nsSVT.

IV. RESULTS
A. PERFORMANCE of SBS IDENTIFICATION
The results of the performance evaluation are presented in
Table 3, where Se and Sp are first computed for each subject
in SVADB and BUSQDB, and then the medians are presented
together with the 25 and 75 percentiles. Using the Ek -based
features on SVADB, the resulting Se and Sp are 100%
and 98.0%, respectively, for lead 1, and 100% and 94.5%,
respectively, for lead 2. Note that the segments selected from
BUSQDBonly contain detections of non-similar morphology
due to noise and artifacts (cf. Sec. II-C), and therefore only
Sp is applicable, found to be 97.6%.

Using the X̄K -based features, the resulting Se and Sp are
100% and 91.9%, respectively, for lead 1, and 100% and
77.0%, respectively, for lead 2 on SVADB. The measure Sp
on BUSQDB is 93.5%. Thus, Ek -based SBS identification is
found to be superior to X̄K -based SBS identification.
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TABLE 3. Subject-wise performance of SBS identification. Since BUSQDB only contains non-similar beats, Se is not applicable. Values are expressed as
medians (25–75 percentiles).

TABLE 4. Performance of nsSVT detection.

FIGURE 4. Performance of nsSVT detection when δ is varied from 0.75 to
0.95 in steps of 0.05. η is set to 0.25.

B. PERFORMANCE of nsSVT DETECTION
The detection performance is evaluated using SSIIDB. The
influence of the rhythm parameters δ and η on performance
is shown in Fig. 4. The results presented in Table 4 are based
on using δ = 0.8 and η = 0.25.
The measures Se, Sp, and PPV of theEk -based detector are

84.6%, 99.4%, and 18.5%, respectively. The corresponding
results for the X̄k -based detector are 86.4%, 98.6%, and
4.6%, respectively. Comparing the X̄k -based detector with
the Ek -based, a 1.8% increase in sensitivity is obtained at
the cost of a significant reduction in PPV. When expressed in
terms of the number of false positives, the reduction in PPV
leads to an increase from 1, 045 recordings to 4, 997 record-
ings. Thus, the performance of the Ek -based nsSVT detector
is superior to that of the X̄k -based detector. The significance
of this result is discussed below in terms of reduction in expert
review burden, notably a reduction by a factor of 6.

Since multiple ECG recordings are available for most
subjects in SSIIDB, a subject-based performance evalua-
tion is applicable as well. For the Ek -based detector, Se,

Sp, and PPV of 89.8%, 92.0%, and 27.7% are achieved,
respectively, on the subject-level. For the X̄k -based detector,
the corresponding numbers are 93.7%, 73.3%, and 10.6%,
respectively.

V. DISCUSSION
A. nsSVT DETECTION in AF SCREENING
The feasibility of AF screening is highly dependent on the
performance of automated approaches as manual review of
screening databases is time-consuming and very costly. Ide-
ally, all patients with AF should be identified, while the
number of false positives should be kept as low as possible.
This performance requirement was addressed in [25], where
the objective was to reduce the number of false positives
without introducing false negatives. In the present study, such
a requirement is relaxed as subjects with nsSVT may not be
referred to as patients from a clinical perspective, but rather
they are susceptible to develop AF, and therefore subject to
extended screening.

In the present study, Se and PPV of 84.6% and 18.5%,
respectively, were achieved. It should be noted that PPV
depends on the prevalence of nsSVT, and therefore can be
used as an indicator of the reduced need for expert review.
Without nsSVT detection, the StrokeStop II database requires
expert review of 667 ECG recordings (i.e. 186,697/280) in
order to find one ECG recording with nsSVT. In [17], this
number was reduced to about 31 recordings, but then accept-
ing that 7.9% of all cases of nsSVT remained undetected.
In the present study, the number of recordings needed to be
reviewed to find one single nsSVT is further reduced by a fac-
tor of 6, but at the expense of a decrease in Se from 92.1% to
84.6% compared to [17]. The performance measure Se can be
increased with another choice of δ and η, however, this comes
at the expense of a lower PPV, i.e., additional ECG recordings
calling for expert review, see Fig 4. The decrease in sensitivity
is due to that some of the annotated nsSVT episodes were not
SBSs or did not satisfy both rhythm criteria.

Due to the lack of annotated, public databases, it is difficult
to determine an optimal value for the nsSVT rhythm criteria
in (2) and (3). The database SSIIDB is highly imbalanced
which complicates the use of subject-wise cross-validation.

To improve the sensitivity without decreasing the PPV
calls for a structural change of the detector, for example,
by using deep learning to identify SBSs directly from the raw
ECG. Another possibility could be to use another database
better suited for training, either created by themore advanced,
recently developed ECG simulator described in [33] or
composed of real ECGs; however, as already noted, annotated

VOLUME 12, 2024 485



H. Halvaei et al.: Detection of nsSVT in AF Screening

public databases are unfortunately lacking. To improve the
PPV without decreasing the sensitivity, the approach pre-
sented in [32] may be used to differentiate nsSVT from PACs.
The proposed approach to nsSVT detection is based on the

assumption that the variability in beat-to-beat morphology
within such episodes is subtle. To the best of our knowledge,
the publicly available ECG recordings with the most occur-
rences of nsSVTs are found in SVADB. However, nsSVTs are
limited in number: only 26 recordings contain runs with at
least 5 supraventricular beats, where only one single record-
ing contains two SVT episodes with duration of about 5 and
8 minutes, thus accounting for a considerable number of the
SBS episodes in SVADB (cf. Sec. 2). Therefore, this database
alone is not large enough for training of machine learning
techniques.

The decision to use 5 beats as the minimum duration of
SVT episodes is partly motivated by the difficulty to judge
rhythm irregularity based on fewer beats. To detect shorter
episodes calls for P wave information, however, such infor-
mation is often difficult to rely on when analyzing screening
ECGs recorded using a handheld device. Another reason is
that the StrokeStop II database was annotated using the 5-beat
definition.

The nsSVT detection problem may alternatively be
addressed as a problem of signal quality assessment, followed
by a supraventricular/premature atrial beat detector. However,
the majority of detectors for supraventricular/premature atrial
beats are, in fact, beat classifiers known to provide low sensi-
tivity [12], [15]. The detector proposed for premature atrial
beats in [13], which yielded a high sensitivity in SVADB,
uses two-lead ECG signals. In the present study, the proposed
method solves both quality control and ectopic beat handling
in one single step, achieved by a design which is independent
of beat morphology and lead selection.

B. TRAINING CONSIDERATIONS
The first step of the nsSVT detector is to identify episodes
with similar morphology. The motivation to use the SVMwas
the convex optimization problem and the few hyperparame-
ters, facilitating model optimization. Other machine learning
models, including decision trees and random forests, were
found to yield similar results.

The purpose of using SVADB and BUQDB was to high-
light the performance of the SBS identification on relevant
and publicly available databases with beat annotations. How-
ever, using these two databases along with SIMDB to train
the final model, the nsSVT detection performance did not
improve. One explanation is that SVADB and BUQDB intro-
duce a large imbalance of the training data, which needs to
be handled by, e.g., data under/oversampling, weighted loss
function, or use of classifiers with intrinsic capacity to deal
with data imbalance, see, e.g. [34].

Other explanations are that the considerable number of beat
sequences in SVADB, expert annotated as normal, ventricu-
lar, or supraventricular beats, display significant variability
in morphology due to the presence of noise and artifacts,

FIGURE 5. A run of supraventricular ectopic beats in SVADB. All the beats
are annotated as supraventricular beats (’S’), while the morphology of
one beat is significantly different from the other beats. For training of SBS
identification, such beat sequences should be annotated as non-SBSs.

together with the fact that the information in both leads were
used for beat annotation, see Fig. 5. The same explanations
apply to the beat sequences with at least one aberrant beat
annotation, where the beats may display a similar morphol-
ogy in one of the leads, but not in the other. Hence, in the
present study, SBS identification training is done using only
SIMDB, where training data with reliable annotations are
generated.

The presence of ventricular ectopic beats is a major source
of false positives in nsSVT detection. The features extracted
for SBS identification are defined in a way so that non-SBSs,
caused by ventricular ectopic beats and false detections, can
be distinguished from SBSs. The features are independent of
the location of ventricular ectopic beats and false detections
within X̄k .

C. LIMITATIONS
The noise added to the ECGs in SIMDB was recorded during
exercise stress testing, cf. Sec. II-A. This is a limitation of the
study since such noise is less representative of ECGs recorded
by a handheld device, where poor hand contact, hand motion,
and device displacement deteriorate signal quality.

The SVM for SBS identification is trained using simu-
lated ECG signals with normal sinus rhythm and AF. While
the proposed strategy is independent of rhythm and PQRST
morphology, other approaches to nsSVT detection, including
end-to-end deep learning-based, would be applicable pro-
vided a simulation model for nsSVT would be available.

A comparison of performance involving some other nsSVT
detector is desirable. However, since the proposed detector
is the first of its kind, such a comparison could not be done.
To some extent the nsSVT detector builds on the same idea as
that of novelty detection, namely to model the stable mode of
operation while a deviation (‘‘novelty’’) from that model can
be identified using, e.g., an SVM [35]; such identification is
also referred to as one-class classification. In terms of nsSVT

486 VOLUME 12, 2024



H. Halvaei et al.: Detection of nsSVT in AF Screening

detection, novelty is identified whenever an episode with
beats of deviating morphology is present. However, novelty
detection has typically been considered in applications where
data change only once from a stable to an ‘‘unstable’’ mode,
whereas nsSVT detection has to handle repeated changes
between two modes, suggesting that two-class classification
is more suitable.

D. FUTURE WORK
Future work should focus on nsSVT simulation models
as these are expected to facilitate the development of
better-performing nsSVT detectors. Such simulation models
should be complemented with models for noise and artifacts
typical of handheld recorded ECGs.

VI. CONCLUSION
This paper presents an approach to nsSVT detection in single-
lead, 30-s screening ECGs, based on morphological beat
similarity. The results show that a significant reduction in
the expert review burden can be achieved using the proposed
detector. The lower number of recordings for expert review
facilitates the identification of subjects at risk of develop-
ing AF.
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