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ABSTRACT

The potential for antibiotics to affect the ecology and evolution of the human gut microbiota is well recognised and has
wide-ranging implications for host health. Here, we review the findings of key studies that surveyed the human gut
microbiota during antibiotic treatment. We find several broad patterns including the loss of diversity, disturbance of
community composition, suppression of bacteria in the Actinobacteria phylum, amplification of bacteria in the
Bacteroidetes phylum, and promotion of antibiotic resistance. Such changes to the microbiota were often, but not always,
recovered following the end of treatment. However, many studies reported unique and/or contradictory results, which
highlights our inability to meaningfully predict or explain the effects of antibiotic treatment on the human gut microbiome.
This problem arises from variation between existing studies in three major categories: differences in dose, class and
combinations of antibiotic treatments used; differences in demographics, lifestyles, and locations of subjects; and
differences in measurements, analyses and reporting styles used by researchers. To overcome this, we suggest two
integrated approaches: (i) a top-down approach focused on building predictive models through large sample sizes, deep
metagenomic sequencing, and effective collaboration; and (ii) a bottom-up reductionist approach focused on testing
hypotheses using model systems.
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INTRODUCTION

Antibiotics—chemicals that kill or inhibit the growth of
bacteria—play a central role in human medicine. They have
been used in some form for at least 1,500 years (Bassett et al.
1980) and produced industrially since the end of the Second
World War (Aminov 2010; Gould 2016), hugely improving the
treatment efficacy of many bacterial infections such as tuber-
culosis (Blower, Small and Hopewell 1996), typhoid (Bavdekar et

al. 1991) and syphilis (Dayan and Ooi 2005). About 34.8 billion
defined daily doses of antibiotics were consumed worldwide in
2015 (Klein et al. 2018), and as of 2019, 38 antibiotic treatments
were included on the World Health Organisation’s Model List of
Essential Medicines (World Health 2019).

Over the same time period, there has been increasing recog-
nition among microbiologists that not all bacteria living in and
on our bodies are harmful. Diverse communities of microor-
ganisms, predominantly bacteria, colonise the skin, throat and
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vagina of healthy humans (Huttenhower et al. 2012). However,
the vast majority of microbes associated with the human body
reside in the intestinal tract, and in particular the large intes-
tine, where more than 100 billion cells per gram content can be
found (Walter and Ley 2011). This community—the gut micro-
biota (Marchesi and Ravel 2015)—has numerous impacts on the
health of its host, including the transformation of metabolites
into energy sources usable by the colonic epithelium cells (Dun-
can et al. 2007), calibration of the developing immune system
(Thaiss et al. 2016), and production of neurotransmitters that
impact mood and behaviour (Sampson and Mazmanian 2015).
These combined effects are so great that the entire habitat—
the gut microbiome (Marchesi and Ravel 2015)—is considered by
some to be a ‘forgotten organ’ of the human body (O’Hara and
Shanahan 2006), and has attracted much research attention in
recent years.

Given that antibiotics are specifically employed to disrupt
bacterial populations, it is no surprise that antibiotic treat-
ment can have collateral effects on the gut microbiota. Probably
the first reports of such consequences were found in cases of
Clostridioides difficile infections associated with antibiotic treat-
ment (Bartlett et al. 1978). In this condition, known as Clostrid-
ioides difficile associated diarrhoea (CDAD), the microbiota is dis-
rupted by antibiotics (Young and Schmidt 2004), allowing the
often-resistant C. difficile to bloom and produce large volumes
of toxins that result in severe, chronic diarrhoea (Stanley et al.
2013). However, antibiotics are also implicated in far more sub-
tle gut microbiota-mediated impacts on health such as asthma
and dermatitis, especially during early life (Willing, Russell and
Finlay 2011). It has been hypothesised that reduced exposure to
microbes during childhood is detrimental to immune develop-
ment, and partially responsible for the rise in allergic disorders
over the last few decades (Noverr and Huffnagle 2005).

It must be remembered, however, that the gut microbiome
is not simply a ‘virtual organ’ with impacts on human health,
but a complex biological community in its own right. Over
1000 distinct species have been isolated from the human gut
environment to date, and many more remain unidentified
(Rajilić-Stojanović and de Vos 2014). Neither are the bacteria
that comprise the gut microbiota functionally equivalent. They
play a diverse range of roles within this complex ecosystem;
for example, Ruminococcus bromii acts as a keystone degrader
of diet-derived resistant starches (Ze et al. 2012), Akkermansia
muciniphila specialises in digesting complex molecules secreted
by the epithelial lining (Belzer and de Vos 2012), and Blautia
hydrogenotrophica can generate energy and biomass from hydro-
gen and carbon dioxide alone (Rey et al. 2010). Antibiotic treat-
ment poses a radical change to the environment of these organ-
isms, in terms of both their immediate chemical surroundings
and the competitive or beneficial relationships that they have
with other species. Therefore, any effects of antibiotic treatment
on human health are potentially mediated by the effects of treat-
ment on the ecology and evolution of the gut microbiota.

Many studies have contributed to our current understand-
ing of how antibiotics affect the ecology and evolution of the
gut microbiota, some using animal models or in vitro exper-
iments, but most by surveying changes in the microbiota of
human subjects as they undergo antibiotic treatment. In this
review we focus on the latter group to summarise and discuss
what is currently known about the ecological and evolutionary
effects of antibiotic treatment on the gut microbiota. The pri-
mary findings of key studies in this area are summarised in
Tables 1, 2 and Table S1 (Supporting Information), and include
a number that were previously examined elsewhere (Ferrer et al.

2017). Although these studies were distributed across multiple
continents, the majority were conducted in Western countries,
and collectively surveyed hundreds of subjects as they were
exposed to various antibiotic treatments. Some followed med-
ical patients as they received necessary treatment for disease,
producing clinically relevant results and reducing unnecessary
exposure, while others administered antibiotics to healthy vol-
unteers, achieving greater control and uniformity in their exper-
iments (Table S1, Supporting Information). Most took a longi-
tudinal approach, determining the effects of the antibiotics by
comparing samples taken during and after treatment to those
taken before exposure in the same subjects (De La Cochetière
et al. 2005; Dethlefsen et al. 2008; Dethlefsen and Relman 2011;
Bajaj et al. 2013; Pérez-Cobas et al. 2013b; Ladirat et al. 2014; Panda
et al. 2014; Heinsen et al. 2015; Willmann et al. 2015; MacPher-
son et al. 2018, Suez et al. 2018), but a few took a cross-sectional
approach and compared treated subjects only to untreated con-
trols (O’Sullivan et al. 2013; Abeles et al. 2015; Wipperman et al.
2017), and several studies combined the two methods (Jernberg
et al. 2007; Jakobsson et al. 2010; Morotomi et al. 2011; Arat et
al. 2015; Rashid et al. 2015; Stewardson et al. 2015; Zaura et al.
2015; Raymond et al. 2016; Dubinsky et al. 2020). All reviewed
studies surveyed the gut microbiota via faecal samples from
their subjects, but these samples were analysed in various ways,
including multiple different sequencing-based techniques, sev-
eral molecular fingerprinting methods, or in vitro culture analy-
ses (Table S1, Supporting Information), while a few studies took
auxiliary measurements such as testing for metabolites in the
serum and urine of their subjects (Bajaj et al. 2013), or direct sam-
pling of the colonic mucosal microbiota (Heinsen et al. 2015; Suez
et al. 2018). Despite the large variation in the methods and results
of these studies, it is still possible to draw from them some broad
conclusions about how the gut microbiota responds to antibi-
otic treatment. In addition, we highlight some key problems that
have impeded progress in this field, and with those problems
in mind suggest a set of guidelines for future research. In time,
this approach should create a clear foundation of knowledge
which can then be used to understand how antibiotic mediated
effects on the gut microbiota are translated into consequences
for human health.

ECOLOGICAL AND EVOLUTIONARY EFFECTS

Accurately measuring changes in the ecology and evolution of
any community is a major challenge, let alone a microscopic
community which is largely inaccessible without medical inter-
vention such as the gut microbiota. Antibiotic treatment may
well affect every aspect of the community, including the flow
of nutrients and energy, the rates and mechanisms of gene
transfer, and the strength of selection for different traits and
lifestyles, but the simplest effect is likely to be the direct sup-
pression of certain bacterial populations. Therefore, the most
basic measurement to compare between antibiotic treated and
untreated communities is the abundance of different bacterial
populations in the microbiota.

Absolute and relative abundance

An important distinction to make when discussing the abun-
dance of bacterial populations is between absolute abundance—
the actual number of cells belonging to a taxon in a given
sample—and relative abundance—the proportion of a sample
that is comprised of any given taxon (Shanahan and Hill 2019).
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Table 2. Details of studies that address the effects of antibiotic treatment on the human gut microbiota.

Reference Country N Subjectsa N Samplesb Treatmentc Lengthd

(De La Cochetière et al. 2005) Francee 6 [0] 1; 1–4; 2 AMX, 3×500 mg [5 days] 55
(Jernberg et al. 2007) Swedene 4 [4] 1; 1; 7 CLI, 4×150 mg [7 days] ∼730
(Dethlefsen et al. 2008) USAe 3 [0] 2-4; 1–2; 2 CIP, 2×500 mg [5 days] 175
(Jakobsson et al. 2010) Swedene 3 [3] 1; 1; 2 MTR, 2×400 mg; CIP, 2×250 mg; OME,

2×20 mg [7 days]
∼1460

(Dethlefsen and Relman 2011) USA 3 [0] 11; 5; 20–24; 4–5;
10–12f

CIP, 2×500 mg [5 days] 37-103

(Morotomi et al. 2011) Japan 5 [29] 0-1; 0–1; 0–2 Various, 150–3000 mg [1-8 days] 0-20
(Bajaj et al. 2013) USA 20 [0] 1; 1; 0 RFX, 2×550 mg [∼56 days] 0
(O’Sullivan et al. 2013) Ireland 42 [143]g 1g Various, Not Specified ≤31
(Pérez-Cobas et al. 2013b) Germany 1 [0] 1; 4; 1 SAM + CFZ, Not Specified [14 days] 26
(Arat et al. 2015) USAe 46 [15] 1; 1; 0 GSK, 500–3000 mg [1-4 days] 0
(Ladirat et al. 2014) Netherlands 10 [0] 2; 2; 0–4 AMX, 3×375 mg [5 days] 21
(Panda et al. 2014) Spaine 21 [0] 1; 1; 0 Various, Not Specified [7 days] 0
(Abeles et al. 2015) USAe 4 [5] 0; 3; 0 Various, Not Specified [≥42 days] 0
(Heinsen et al. 2015) Germanye 5 [0] 1; 1; 1 PMM, 4000 mg [3 days] 43
(Rashid et al. 2015) Swedene 19 [10] 1; 1; 3–4 CIP, 2×500 mg; CLI 4×150 mg [10 days] ∼356
(Stewardson et al. 2015) Switzerland 22 [20] 1; 1; 1 Various, Various [Not Specified] ∼28
(Willmann et al. 2015) Germany 2 [0] 1; 3; 2 CIP, 2×500 mg [6 days] 28
(Zaura et al. 2015) UK and Sweden 43 [23] 1; 1; 4 Various, Various [5-10 days]] ∼356
(Raymond et al. 2016) Canada 18 [6] 1; 1; 1 CPR, 2×500 mg [7 days] 90
(Wipperman et al. 2017) Haiti 38 [101]g 1g HRZE, Not Specified [≥∼183 days] 34-1202
(MacPherson et al. 2018) Canadae 70 [0] 1; 1; 2 AMX, 875 mg; CLA 125 mg [7 days] ∼14
(Suez et al. 2018) Israele 21 [25] 7; 7; 14 CIP, 2×500 mg; MTR, 3×500 mg [7 days] 180
(Dubinsky et al. 2020) Israel 33 [16] 75 / 159h Various, Various, [14-4646 days] Various

a‘N subjects’ column shows the number of treated subjects covered by the study, followed by the number of untreated controls in square brackets.
b‘N samples’ column shows the number of samples taken from each subject, with samples taken before, during and after treatment separated by semicolons.
c‘Treatment’ column shows the antibiotic treatment administered to the subjects, listing first the drug, then the daily dose, then the length of the course in square brack-

ets. Drug codes used are: AMX/Amoxicillin, CLI/Clindamycin, CIP/Ciprofloxacin, MTR/Metronidazole, OME/Omeprazole, RFX/Rifaximin, SAM/Ampicillin-Sulbactam,
CFZ/Cefazolin, GSK/GSK1322322, PMM/Paromomycin, CPR/Cefprozil, HRZE/Isoniazid-Rifampin-Pyrazinamide-Ethambutol, CLA/Clavulanic Acid.
d‘Length’ column shows the length of the study, shown as the number of days between the end of treatment and the last sample collected.
eLocation inferred from author locations and locations of ethical approval.
fStudy encompassed two courses of antibiotic treatment, and samples are listed in the format: before treatment; during first treatment; interval; during second
treatment; after treatment.
gStudy used cross-sectional experimental design, so each subject was only sampled once.
hStudy collected a widely different number of samples from each subject, for a total of 75 antibiotic associated and 159 non-associated samples.

In several respects, absolute abundance is the more meaningful
metric. The actual density of cells has the potential to affect
many important aspects of microbial ecology including com-
petition for resources and bacteria-phage interactions, and is a
fundamental component of quorum sensing systems, which can
influence biofilm formation, virulence and sporulation (Bassler
and Losick 2006). Absolute abundance is also relevant to under-
standing evolutionary processes within the gut microbiota as
mutation supply rate is proportional to population size and this
will impact a microbial population’s adaptive response to natu-
ral selection (Hall et al. 2010). Moreover, smaller populations are
more susceptible to genetic drift, which could potentially arise
from bottlenecking events following antibiotic treatment. Aside
from missing these details, a problem with relative abundance
measurements is that they introduce ambiguity into changing
population sizes, since it is impossible to know whether any
given species has truly, for example, increased in abundance, or
if it has merely maintained a stable population while other taxa
have diminished (Harrison et al. 2021). Unfortunately, the most
common methods used to investigate the microbiota in the
reviewed studies, 16S rRNA sequencing and shotgun metage-
nomic sequencing, only provide relative abundance data.
Despite this, several studies measured the effects of antibiotic
treatment on the absolute abundance of the gut microbiota
through other methods. The most common was quantitative

PCR, which led to inconsistent results between studies. Two
studies found clearly lower total microbial abundances in the
microbiome during antibiotic treatment compared to samples
taken before or after treatment (Suez et al. 2018, Dubinsky et
al. 2020). In contrast, Ladirat et al. found no significant effect of
treatment on the total microbial abundance (Ladirat et al. 2014),
while Panda et al. actually found that the total microbial abun-
dance increased after treatment, particularly for beta-lactam
treated patients (Panda et al. 2014), which perhaps reflected a
major overgrowth of resistant species. Other studies directly cul-
tured portions of their samples to measure the absolute abun-
dance of certain groups, and found decreased abundance during
treatment in some taxa but not universally (O’Sullivan et al.
2013; Rashid et al. 2015). The importance of measuring absolute
abundances is increasingly recognised in microbiome science,
and there have been several recent calls for wider adoptions of
a range of methods, including flow cytometry (Vandeputte et
al. 2017), spiking samples with strains of known abundance for
comparison (Harrison et al. 2021), or even comparing bacterial
gene proportions to the relatively stable proportions of human
and viral genes in samples (Dubinsky et al. 2020). Through
these methods and more, the measurement of absolute abun-
dances will allow for far more accurate and thorough ecological
investigation of the antibiotic-treated gut microbiota in future
studies.
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Although relative abundance provides less information than
absolute abundance, it still has considerable merit. The propor-
tions of different taxonomic groups in a community, otherwise
known as the community composition, can be compared over
time to determine which groups are affected in which ways by
antibiotic treatment. The vast majority of identified bacterial
species in the gut microbiota belong to just a few phyla, namely
the Actinobacteria, Bacteroidetes, Firmicutes and Proteobacte-
ria (Rajilić-Stojanović and de Vos 2014; Rinninella et al. 2019).
Phyla are very high-level divisions of organisms, each encom-
passing enormous diversity, but it is still possible to observe
some broadly common patterns in the reviewed studies. Most
clearly, many of the detected effects on Actinobacteria relative
abundance are negative, although some more recent studies
have found a combination of positive and negative effects, per-
haps owing to more sensitive modern techniques (Table 1). The
negative effects were often attributed to organisms in the genus
Bifidobacterium (Table S1, Supporting Information), a well-known
group of bacteria which metabolise a wide range of carbohy-
drates and are used in commercial probiotics for their reputed
beneficial health effects (Pokusaeva, Fitzgerald and van Sinderen
2011). Conversely, for the Bacteroidetes phylum, also charac-
terised by extensive carbohydrate metabolism (Thomas et al.
2011), many detected effects on relative abundance were pos-
itive, although this trend was less clear than the reduction of
Actinobacteria (Table 1). These effects were often reported for
the Bacteroides genus, but other genera such as Alistipes, Parabac-
teroides and Prevotella were also affected in some studies (Table
S1, Supporting Information). Effects relating to the relative abun-
dance of organisms in the Firmicutes phylum were reported
more often than for any other group (Table 1), which is not
surprising for the most abundant and diverse group of bacte-
ria in the gut (Rajilić-Stojanović and de Vos 2014). Many posi-
tive and negative effects were found, but in most cases more
organisms were suppressed than amplified. Within this phy-
lum, the Faecalibacterium genus, a major producer of the colonic
energy source butyrate (Ferreira-Halder et al. 2017), was often
described as reduced, as was the Blautia genus, while Entero-
coccus was amplified in several instances (Table S1, Supporting
Information). Effects on the relative abundance of Proteobacte-
ria showed no prevailing direction but were detected less com-
monly overall (Table 1), reflecting the group’s lower overall abun-
dance in the gut. Rare effects on other taxa have also been
demonstrated (Table S1, Supporting Information), and include,
for example, increases in the relative abundance of archaeal
phylum Euryarchaeota (O’Sullivan et al. 2013). Proteobacteria
and Bacteroidetes are gram-negative bacteria, while Actinobac-
teria and most Firmicutes are gram-positive (Rajilić-Stojanović
and de Vos 2014), which may go some way to explain their
responses to antibiotics, particularly those that affect the cell
wall (Table 1). However, it is not always clear why different
groups of species are amplified or suppressed by antibiotic treat-
ment.

It is intuitive that many of the suppressed groups are directly
inhibited by the antibiotics, and some information exists on
the sensitivity of certain gut species to certain antibiotics (van
Schaik 2015), but there are also huge gaps in our understand-
ing of this area. Some of the amplified species are likely to
be resistant organisms filling the empty niches of inhibited
species, or even exploiting freed resources from the dead cells
of targeted bacteria, but as these changes progress through the
network of ecological interactions, they are likely to lead to the
amplification and suppression of species not directly affected
by antibiotics. Complicating matters further, large differences

in the composition of the microbiota of individuals sampled
at different time points during treatment have been found
(Pérez-Cobas et al. 2013a); this finding suggests that antibiotic
treatment may induce a series of cascading changes in the gut
microbiota, rather than simply flipping it from an undisrupted
state to a disrupted state. In a few anecdotal cases, clear mech-
anisms behind important demographic shifts have also been
shown such as the widespread amplification in one study of
Lachnoclostridium boltae relative abundance that coincided with
the enrichment of antibiotic resistance genes in this species
(Raymond et al. 2016). Similarly, another study found that
members of the Enterobacterales and Lactobacillales orders
with at least one fluoroquinolone resistance allele were highly
dominant in the microbiota of antibiotic treated subjects, and
far less relatively abundant in untreated subjects (Dubinsky et
al. 2020). However, cases where we understand the mechanistic
basis for antibiotic mediated effects on the ecology of the gut
microbiome are still the exception rather than the rule.

Effects on community composition

Below the level of phyla, the collected information on each fam-
ily, genus, or species in the gut microbiota becomes increas-
ingly vast, making it difficult to determine the true scale of
disturbance, or draw meaningful conclusions between studies.
Furthermore, it has been shown that the gut microbiota can
fluctuate naturally over time (Dethlefsen and Relman 2011), so
the effects of antibiotic treatment must be separated from nor-
mal variation. Here, various methods exist to condense com-
plex multidimensional data, such as community composition
into, for example, distance and dissimilarity metrics, allowing
easy comparison of different communities over time or accord-
ing to different treatments (Bray and Curtis 1957; Lozupone and
Knight 2005; Jolliffe and Cadima 2016). These comparisons can
also be made in cases where studies didn’t directly measure the
abundance of any taxa, by substituting molecular fingerprints
for the full community composition (De La Cochetière et al. 2005;
Jernberg et al. 2007). Some methods even incorporate phyloge-
netic distance into the equation (Lozupone and Knight 2005), or
highlight which groups of species most underlie the divergence
between communities (Jolliffe and Cadima 2016). Through these
methods, the vast majority of reviewed studies determined that
their subjects’ microbiota were truly disrupted directly follow-
ing antibiotic treatment (Table 1), and studies that took several
samples before treatment to establish a baseline level of varia-
tion (Dethlefsen et al. 2008; Dethlefsen and Relman 2011; Ladi-
rat et al. 2014; Suez et al. 2018), or compared their treated sub-
jects to untreated controls (Jernberg et al. 2007; Jakobsson et al.
2010; Morotomi et al. 2011; Raymond et al. 2016; Suez et al. 2018),
showed that this disturbance was distinct from normal fluctu-
ations. After antibiotic treatment, these same metrics showed
that composition tended to return towards the pre-treatment
state, and fewer studies detected a meaningful disturbance of
the community by the end of their sampling period (Table 1),
demonstrating the resilience of the gut microbiota community.
For example, Fig. 1A shows the microbiota composition of each
of the three subjects in Dethlefsen and Relman’s study diverg-
ing from baseline during and immediately after treatment, then
progressing back towards their initial states (Dethlefsen and Rel-
man 2011). Such recoveries could be caused by consistent selec-
tion pressures imposed by the nutritional and host environ-
ment favouring the re-assembly of a similar community, more
complex negative-frequency dependent dynamics where rela-
tionships between species encourage less common members to
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Figure 1. Example effects of antibiotic treatment on the community composi-
tion of the gut microbiota. All graphs show the relationship between samples
via non-metric multidimensional scaling of Bray-Curtis dissimilarity. Data for all

graphs was processed and visualised using the ’vegan’ package and the ’ggplot2’
package in the R programming language (Wickham 2016; Oksanen et al. 2019; R
Core Team 2020). (A) shows data from only the first round of treatment covered
by Supplementary Dataset 1 of Dethlefsen & Relman., representing up to 40 sam-

ples from each of 3 subjects treated with ciprofloxacin, with a stress of 0.156849
(Dethlefsen and Relman 2011). (B) shows data from only the treated subjects cov-
ered by Raymond et al. and taxonomically classified by Supplementary Data 1 of
Chng et al., representing 18 subjects treated with cefprozil, and with a stress of

0.2342019 (Raymond et al. 2016; Chng et al. 2020). (C) shows data from only the
clindamycin treatments covered by Zaura et al. and taxonomically classified by
Supplementary Data 1 of Chng et al., representing 9 subjects, and with a stress
of 0.1898547 (Zaura et al. 2015; Chng et al. 2020).

return to higher abundance (Lozupone et al. 2012), or the exis-
tence of spatial refuges in the gut that are less strongly affected
than faecal samples reflect, from which depleted species can
recolonise after treatment. One study investigated these recov-
eries to baseline composition in detail and found that recovery
was faster and more complete when supplemented by a per-
sonal faecal microbiome transplant, but actually less complete
when supplemented with a probiotic treatment (Suez et al. 2018).
Regardless, this tendency towards resilience comes with some
important caveats.

In several studies where the community composition gener-
ally returned to baseline, some individual subjects completely
failed to recover (De La Cochetière et al. 2005; Dethlefsen and
Relman 2011; Raymond et al. 2016; MacPherson et al. 2018). For
example, in Dethlefsen and Relman’s study, 2 out of 3 subjects
mostly recovered their initial composition after a week, while
the third took several months to settle into a stable state which
was still noticeably different from the outset (Dethlefsen and
Relman 2011). In Raymond et al.’s study, taxonomic composition
alone showed no clear response to antibiotic treatment (Fig. 1B)
(Raymond et al. 2016). However, a more complex analysis that
included other factors such as resistance genes and sequencing
depth showed that even though 22 out of 24 subjects broadly
returned to their initial states after several months, the micro-
biota of 2 other subjects remained dramatically altered. One
subject had a dramatically reduced relative abundance of the
Prevotella genus which had previously dominated their micro-
biota whilst another saw large blooms in the relative abundance
of Enterobacteriaceae and Verrucomicrobiaceae families. These
examples could be related to other lifestyle changes—in fact one
of the affected subjects in the latter study was receiving con-
current ferrous sulphate treatment, which can have effects on
the microbiota in rats (Dostal et al. 2012)—but antibiotic treat-
ment cannot be ruled out as the cause. Furthermore, even in
subjects where the gut microbiota broadly recovered, persistent
effects on some taxa sometimes remained (Table 1). For exam-
ple, Jernberg et al. found that while the overall composition of
their subjects’ microbiota had mostly recovered a month after
treatment, the composition of strains in the Bacteroides genus
did not recover, even up to 2 years post treatment (Jernberg et
al. 2007). Similarly, Dethlefsen et al. showed that a Clostridiales
species that was present in all samples from two subjects before
treatment was never observed again up to 175 days after treat-
ment (Dethlefsen et al. 2008). It is also worth noting which par-
ticular studies found persistent disturbance in the gut commu-
nity. Dethlefsen and Relman took far more samples from each
of their subjects than any other study (Dethlefsen and Relman
2011), and Stewardson et al. used household contacts as paired
controls for each amoxicillin-treated subject, along with one of
the largest subject and control pools of the longitudinal studies
(Stewardson et al. 2015) (Table 2). Both of these studies found sta-
tistically significant, long-term disturbance in the composition
of their subject’s gut microbiota, suggesting that cryptic distur-
bance may have remained undetected in many of the other stud-
ies with smaller sample sizes (Tables 1 and 2).

Effects on diversity

Diversity is a commonly used metric that has been defined in
several ways (Jost 2006), but usually incorporates how many
species are present in a community—the species richness—
and how balanced their populations are—species evenness. In
the reviewed studies, diversity was described by several metrics
(Table S1) including the Shannon Index (Spellerberg and Fedor
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2003; Jost 2006), the Gini-Simpson Index (Jost 2006), estimated
total richness (Chao 1984; Chao 1987), or simply the detected
species richness, which all measure slightly different phenom-
ena, but are useful for comparisons within individual studies.
One of the most consistent results across all reviewed stud-
ies was that the gut microbiota’s diversity dropped in response
to antibiotic treatment (Table 1). Furthermore, even more reli-
ably than the recovery of composition, the diversity of the gut
microbiota was found to return to normal levels following antibi-
otic treatment (Table 1), and was even significantly increased in
one study for previously-treated subjects compared to controls
(Wipperman et al. 2017). Fig. 2 shows representative examples
broadly reflecting this pattern. However, once again, this appar-
ent recovery might not tell the whole story as 16S rRNA ampli-
con sequencing, used by many of the reviewed studies, is largely
unable to reliably identify organisms at taxonomic resolutions
below the genus level. In contrast, one study that paid particular
attention to individual strains in the Bacteroides genus found that
their diversity dropped dramatically following antibiotic treat-
ment, and remained lowered even 2 years later (Jernberg et al.
2007). If this strain-level loss of diversity is the norm, the effects
of antibiotic treatment on the diversity of the gut microbiota
may be far more persistent than currently recognised. As meth-
ods for analysing molecular data become more advanced and
more widely used (Truong et al. 2017), it should become clear
whether long-term disturbance that has been observed at the
strain level (Jernberg et al. 2007) represents a broad pattern.

Another ecological factor to consider is the heterogeneity
between gut microbiota samples, or in other words how dissim-
ilar samples taken from different subjects are to one another.
This is sometimes called beta diversity (in contrast to alpha
diversity which describes diversity within individual samples),
but beta diversity has been inconsistently defined since its
conception (Whittaker 1960) and recent work argues the term
should be reserved for describing a specific relationship between
the number of species found in individual samples and the total
sample pool (Tuomisto 2010), so the more general term hetero-
geneity is more useful here. The effect of antibiotic treatment
on the heterogeneity of gut microbiota samples wasn’t a major
focus of any of the reviewed studies, but through their measure-
ments of dissimilarity and distance between samples (Bray and
Curtis 1957; Lozupone and Knight 2005; Jolliffe and Cadima 2016)
it is possible to make some observations. In several cases, antibi-
otic treated gut microbiota seemed to be less similar to each
other than untreated gut microbiota (Abeles et al. 2015; Zaura
et al. 2015; Raymond et al. 2016; MacPherson et al. 2018) (Fig. 1C),
representing an increase in heterogeneity between individuals
during treatment. However, the opposite pattern was show in
Arat et al.’s study, where treated communities clustered together
more tightly than untreated ones (Arat et al. 2015). Heterogene-
ity or dissimilarity between subjects is more difficult to mean-
ingfully interpret than diversity within subjects, but may still
offer important insights into the effect of antibiotic treatment.
While there are many differences between the composition of
the gut microbiota between humans, gut microbiota samples in
general seem to be less heterogeneous than microbiota samples
from other body locations (Huttenhower et al. 2012), and this
likely reflects the broadly similar niche offered by the human gut
microbiome regardless of the individual. If a uniformly admin-
istered antibiotic treatment leads to a decrease in the similarity
between different subjects’ microbiota compositions, it suggests
that this niche is being disrupted, and moreover that the treat-
ment is affecting different subjects in different ways, perhaps

Figure 2. Example effects of antibiotic treatment on diversity of the gut micro-
biota. In all graphs, antibiotic treatment took place between pairs of dashed ver-
tical lines, and error bars represent 1 standard error around the mean. Data for all

graphs was processed and visualised using the ’vegan’ package and the ’ggplot2’
package in the R programming language (Wickham 2016; Oksanen et al. 2019; R
Core Team 2020). (A) Shows data from Table 5 (Supporting Information) of Jakob-
sson et al., representing three untreated controls and three subjects treated with

a combination of two antibiotics (metronidazole and clarithromycin) and a pro-
ton pump inhibitor (omeprazole) (Jakobsson et al. 2010). (B) Shows data from only
the first round of treatment covered by Supplementary Data set 1 of Dethlefsen

& Relman, representing up to 40 samples from each of 3 subjects treated with
ciprofloxacin (Dethlefsen and Relman 2011). (C) Shows data from only the clin-
damycin treatments covered by Zaura et al. and taxonomically classified by Sup-
plementary Data 1 of Chng et al., representing nine subjects (Zaura et al. 2015;

Chng et al. 2020).
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introducing stochastic effects, or exacerbating existing differ-
ences between subjects. It is also important to remember that
a single subject’s microbiota is not an ecologically isolated unit,
but rather a community that is subject to migration between
other microbiomes and the wider environment (Song et al. 2013;
Martı́nez et al. 2015; Asnicar et al. 2017). Ecological measure-
ments which consider not just individual communities but the
meta-community as a distinct structure, are important reflec-
tions of this fact. It would be valuable for studies to investigate
this factor more directly in the future, perhaps using multiple
cohorts of related subjects to test whether antibiotic treatment
leads to predictable changes in within-cohort heterogeneity, and
maybe also using true beta diversity (Tuomisto 2010) as a mea-
surement of this.

Other ecological effects

A few reviewed studies investigated further aspects of the gut
microbiota’s ecology in response to antibiotic treatment. Hein-
sen et al. compared the effects of antibiotic treatment in the
lumen and the mucosa of the colon, which are known to sup-
port different bacteria (Mark Welch et al. 2017; Flynn et al. 2018),
and found that while taxa differed between the two environ-
ments, their responses to antibiotic treatment were broadly sim-
ilar (Heinsen et al. 2015). Several studies also measured some
indication of the metabolic activity of the gut microbiota and
highlighted some interesting trends including a sharp increase
in certain kinds of phospholipids towards the end of treatment
(Pérez-Cobas et al. 2013b) and significant increases in a vari-
ety of fatty acids in the blood serum following treatment (Bajaj
et al. 2013). Of particular note, increased levels of faecal succi-
nate, monosacharrides, and oligosaccharides were found dur-
ing treatment in one particular study which led the authors
to speculate that these metabolites, normally used as energy
sources by members of the gut microbiota, were less efficiently
utilised and that metabolic activity was disrupted by antibiotic
treatment (Ladirat et al. 2014). The gut microbiota’s resistance
to invasion may also be affected by antibiotic treatment. It has
long been suspected that the gut microbiota is more vulnera-
ble to invasion by external microbes after antibiotic treatment
(Ferrer et al. 2017). This theory may be supported by Suez et al.’s
results showing that a probiotic cocktail was far more successful
at colonising antibiotic-treated subjects than untreated controls
(Suez et al. 2018).

Another major area that deserves more focus is the ecology
of non-bacterial members of the gut microbiota. Some archaea,
such as Methanobrevibacter smithii (Dridi et al. 2009), and vari-
ous eukaryotes, such as yeasts and Blastocystis spp. (Scanlan and
Marchesi 2008; Scanlan et al. 2014), are common residents of
the human gut. But perhaps some of the most abundant and
diverse inhabitants are the viruses, particularly bacteriophages,
which infect bacterial populations and can engage in dynam-
ics similar to predator-prey cycles with their hosts (Sutton and
Hill 2019). Only one of the reviewed studies played particular
attention to viral ecology and although they did not observe a
very clear effect of antibiotic administration on the diversity
or overall composition of viruses they found that viral homo-
logues putatively assigned to Firmicutes hosts were significantly
increased after treatment and those related to Bacteroidetes
hosts decreased, matching the shifts in bacterial populations in
that study (Abeles et al. 2015). The ecology of bacteriophages is
inherently linked to the ecology of bacteria, so even if antibiotic
treatment doesn’t affect bacteriophages directly, they are likely
to be influenced in complex ways.

One particularly important factor in phage ecology is the dif-
ference in life-cycles between virulent and lysogenic phages.
Virulent, or lytic, phages bind to and replicate within host
cells, which they ultimately destroy upon the release of infec-
tious virions into the environment. However, lysogenic phages
can either complete a lytic cycle as described above or can
be incorporated into the host’s genetic material and reside
there indefinitely, replicating along with the bacterium’s nat-
ural life cycle (Sutton and Hill 2019). As lysogenic phages can
alternate between these two strategies, and both have vary-
ing effects on the ecology and evolution of microbial popula-
tions, the factors that cause lysogens to be induced and com-
plete a lytic cycle are of considerable interest (Knowles et al.
2017; Sutton and Hill 2019). It has long been known that antibi-
otics can trigger lysogen induction, and in fact mitomycin C
is commonly used to test for the presence of lysogens in bac-
terial cultures (Otsuji et al. 1959), while other antibiotics such
as fluoroquinolones have a similar effect (López et al. 2014).
Based on these findings it is intuitive that antibiotic treatment
is very likely to have an effect on the balance between lysis and
lysogeny in intestinal phages with potential downstream effects
on the ecological dynamics of bacterial populations in the gut
microbiome.

Separating ecology and evolution

Even if the composition of the community largely recovers after
treatment, with some exceptions described above, this only
means that the same groups of organisms are present before
and after treatment. If evolutionary change has taken place, the
fundamental nature of those organisms may have been altered
during treatment, potentially leading to wide-reaching, func-
tional changes that may not be immediately evident. To com-
plicate matters, it is surprisingly difficult to pin down the dis-
tinction between ecological and evolutionary change, and even
studies that explicitly focus on the interplay between ecology
and evolution often lack precise definitions of the two (Pelletier,
Garant and Hendry 2009; Schoener 2011; Hiltunen, Virta and
Laine 2017; Kokko et al. 2017; Lowe, Kovach and Allendorf 2017).
Most definitions of evolution involve changes in the proportions
of alleles within specific populations, but bacterial populations
in particular can be very hard to define, owing to their capac-
ity for horizontal gene transfer and lack of sexual recombina-
tion (Konstantinidis, Ramette and Tiedje 2006; Cohan and Perry
2007; Rocha 2018). If evolution of different species in the gut
is driven by natural selection, rather than selectively-neutral
genetic drift, it is also important to explain how genetic changes
affect the phenotype, and why that phenotypic change increases
fitness. Investigating to this level of depth is highly labour inten-
sive, so for the most part the evolution of the gut microbiota
during antibiotic treatment is not as well understood as the
ecology. However, in one particular, obviously relevant aspect—
the evolution of antibiotic resistance—there has been some
exploration.

Effects on antibiotic resistance

As expected, most reviewed studies showed a clear rise in
antibiotic resistance genes or phenotypes following treatment
(Table 1, Fig. 3), through various methods such as functional
analysis of gene fragments, resistance gene microarrays, or cul-
ture work (Table S1). In some cases this rise was quite striking,
such as in Jacobsson et al.’s study where a particular resistance
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Figure 3. Example effects of antibiotic treatment on antibiotic resistance genes
and phenotypes in the gut microbiota. In all graphs, antibiotic treatment took
place between pairs of dashed vertical lines, and error bars, where present, rep-

resent one standard error around the mean. Data for all graphs was visualised
using the ’ggplot2’ package in the R programming language (Wickham 2016; R
Core Team 2020). (A) shows data from Supplementary Figure 1 of Jernberg et

al., representing the percentage of up to 20 Bacteroides clones from each of four

untreated controls, and four subjects treated with clindamycin, which were not
inhibited by 8 mg/L of clindamycin (Jernberg et al. 2007). (B) shows data from
both rounds of treatment covered by Table 2 (Supporting Information) of Deth-

lefsen & Relman, representing the count of colonies grown on media supple-
mented with ciprofloxacin as a percentage of the count grown on media without
ciprofloxacin, from 3 subjects treated with ciprofloxacin (Dethlefsen and Relman
2011). (C) shows data pooled from the placebo and probiotic treatments of Fig-

ure 7 of MacPherson et al., representing the total antibiotic resistance genes of 3
classes, detected in a microarray survey of samples from 70 subjects (MacPher-
son et al. 2018).

gene (erm(B)) increased by up to 5 orders of magnitude above pre-
treatment levels (Jakobsson et al. 2010). However, even this intu-
itive conclusion was not entirely simple, with other studies find-
ing large inter-subject variation in their results (Pérez-Cobas et
al. 2013a; Willmann et al. 2015) and in one case a clear decrease
of a family of antibiotic resistance genes during treatment (Will-
mann et al. 2015). This could suggest that fitness trade-offs
exist between different types of resistance, where resistance
genes not corresponding to the type of antibiotic used in treat-
ment are selected against in the competitive environment of the
microbiome. On the other hand, there are several clear exam-
ples where types of antibiotic resistance were promoted beyond
those directly corresponding to treatment (Pérez-Cobas et al.
2013a; Willmann et al. 2015; Raymond et al. 2016; MacPherson et
al. 2018), such as increases in aminoglycoside and tetracycline
resistance following beta-lactam treatment (MacPherson et al.
2018). In these cases, several resistance genes might be clus-
tered together on the same genome and/or on the same mobile
genetic element, and so resistance genes not corresponding to
the treatment could gain prevalence by hitchhiking alongside
directly beneficial genes. Alternatively, these genes might sim-
ply have wider effects than are currently understood. After treat-
ment, some studies found that the levels of antibiotic resistance
genes had returned to pre-treatment levels (e.g. Fig. 3B and C),
but others found them to remain raised (e.g. Fig. 3A) as per the
aforementioned elevated levels of the erm(B) gene that persisted
for up to 4 years after treatment (Jakobsson et al. 2010).

These elevations in antibiotic resistance were mostly found
at the community level, so they might not represent true evolu-
tion. Instead of populations evolving resistance in response to
antibiotic induced selection, it might simply be the case that
existing resistant species in the gut increase in abundance.
Indeed, in keeping with previous research (van Schaik 2015),
antibiotic resistance was regularly detected in reviewed stud-
ies even before treatment (Jernberg et al. 2007; Jakobsson et al.
2010; Willmann et al. 2015; Raymond et al. 2016; MacPherson
et al. 2018). However, at least one study conclusively demon-
strated the evolution of antibiotic resistance in their subjects’
gut microbiota (Jernberg et al. 2007). In this study, the levels of
resistance in individual Bacteroides isolates were measured and
isolates were discrimminated at the strain level using rep-PCR.
Using this approach, it was found that not only did the total
level of resistance increase, but crucially that in three of their
4 treated subjects, strains not previously shown to be resistant
became highly resistant following antibiotic exposure (Jernberg
et al. 2007). None of the other reviewed studies deeply investi-
gated genetic change within individual strains. However, sev-
eral recent studies have clearly demonstrated the occurrence of
adaptive evolution in the microbiome in the absence of antibi-
otic administration (Garud et al. 2019; Zhao et al. 2019), which
suggests that evolution by means of natural selection is very
likely to occur in this same environment when the extreme
selection pressure of antibiotic treatment is introduced. These
studies also showcase some powerful methods of investigat-
ing evolution which could be applied to studies incorporating
antibiotics. One study sequenced the full genomes of hundreds
of isolates of a single species (Bacteroides fragilis) and used them
to construct phylogenetic trees where they could track lineages
and infer genetic changes relative to common ancestors (Zhao
et al. 2019), and another used novel methods to narrow down
large metagenomic data sets to a subset of cases where it was
possible to reconstruct the genotype of a given species’ domi-
nant strain, and profiled genetic changes within these estimated
dominant strains over time (Garud et al. 2019). These studies also
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employed a number of approaches for separating adaptive evo-
lution from genetic drift, such as measuring the ratio between
mutations which change the amino acid product of a nucleotide
codon and those that cause no change, investigating whether
the same mutations occur independently in multiple separate
lineages, and comparing the rate of genetic change to models of
neutral evolution (Garud et al. 2019; Zhao et al. 2019). To prop-
erly understand the evolutionary effects of antibiotic treatment
on the microbiota, it will be crucially important for future stud-
ies to incorporate similar methods and measure genetic changes
within populations of individual strains.

Intuitively, horizontal transfer of resistance genes has the
capacity to confer a selective advantage during treatment, and
could also explain rises in antibiotic resistance. Several studies
have found evidence to support this hypothesis; for example,
Abeles et al. found increases in the antibiotic resistance genes
carried by transmissible viruses during treatment (Abeles et al.
2015), Raymond et al. found that the resistance gene blaTEM-1,
which increased 90-fold during treatment in one subject, was
located among genes known to belong to an Escherichia coli plas-
mid (Raymond et al. 2016), and Willmann et al. found that a pro-
moted resistance gene resided close to markers of a Bacteroides
fragilis mobile genetic element (Willmann et al. 2015). Horizontal
gene transfer is possible between very distantly related bacte-
ria (Amábile-Cuevas and Chicurel 1992), and therefore has the
potential to spread resistance genes to new populations.

Other evolutionary effects

Most evidence for evolution in the gut microbiota following
antibiotic treatment focuses only on antibiotic resistance, but
scattered evidence for other evolutionary change exists. Multi-
ple studies show that treatment affects the presence of genes
coding for efflux pumps in the gut microbiota (Pérez-Cobas et
al. 2013a; Willmann et al. 2015), which can confer resistance to
certain antibiotics by pumping the drugs out of the cell, but
also interact with other elements of the microbiome environ-
ment such as the host immune system and bile (Piddock 2006).
In the same way that many studies measured increases in the
community-wide presence of antibiotic resistance genes in their
samples, other groups of functional genes were found to change
with treatment, although none so consistently as resistance.
Several subjects in on particular study had increased levels of
genes relating to sporulation and germination (Pérez-Cobas et al.
2013a), which allow certain species to produce resilient spores
and survive through high-stress environments (Browne et al.
2016). Elsewhere, an increase in genes relating to fatty acid oxi-
dation and vitamin biosynthesis, as well as a decrease in genes
relating to conjugated bile acid biosynthesis have been noted
(Wipperman et al. 2017). Evidence from outside of the gut shows
that in response to fluoroquinolone exposure, Enterococcus fae-
calis may evolve a slower growth rate and Pseudomonas aeruginosa
may produce increased amounts of quorum-sensing molecules,
among other effects (Wassermann et al. 2016; Sun et al. 2018).
Despite the dearth of direct investigation, evolution in a variety
of traits seems very likely to occur in the gut microbiota during
antibiotic treatment.

It is also well established, from examples outside of the gut,
that antibiotics can affect several underlying mechanisms of the
evolutionary process in bacteria. The presence of antibiotics can
activate a stress response in some species that increases the
rate of both horizontal-gene transfer and mutation (Andersson
and Hughes 2014). Beyond this, recombination of the genome
within and between cells can also be stimulated by antibiotics

(López-Camacho et al. 2007). All of these processes widen the
pool of variation in a community that selection can then act
upon. In these ways, antibiotic treatment may be able to influ-
ence the evolution of the gut microbiota not just by imposing
selection pressures upon it, but by altering the mechanisms
through which evolution operates.

In summary, there is still much to learn about the evolution
and ecology of the gut microbiota following antibiotic treatment,
but some level of understanding exists. The relative abundances
of organisms in the Actinobacteria phylum are often reduced
following treatment, while the relative abundances of those in
the Bacteroides phylum are often increased, and less clear pat-
terns are shown for the Firmicutes and Proteobacteria phyla
(Table 1). The overall composition of the community usually
changes during treatment, along with a reduction in diversity,
but both factors tend to recover afterwards, although not always
and not completely. Antibiotic resistance increases during treat-
ment, which may be caused by extensive horizontal gene trans-
fer, and can persist for years. Meanwhile, the known effects of
antibiotics on the mechanisms of evolution suggest that more
wide-reaching evolutionary change, that has a range of func-
tional consequences outside of antibiotic resistance alone, is
likely.

PROBLEMS AND SOLUTIONS

Despite many studies that have measured the effects of antibi-
otic treatment on the gut microbiota, a comprehensive under-
standing remains elusive. Although differences in methods and
reporting make some studies hard to compare, different stud-
ies find results that seem to contradict each other. For example,
Wipperman et al. showed that subjects who had received HRZE
antimycobacterial treatment for TB had higher relative Faecal-
ibacterium levels than controls (Wipperman et al. 2017), while
multiple other studies showed that patients had reduced rel-
ative Faecalibacterium levels during treatment (Dethlefsen et al.
2008; Dethlefsen and Relman 2011; Pérez-Cobas et al. 2013b).
Furthermore, MacPherson et al. showed that the total resis-
tance gene abundances in their samples were not significantly
increased from the baseline one week after treatment (MacPher-
son et al. 2018), while Jakobsson et al. showed that a specific resis-
tance gene remained elevated in their samples four years after
treatment (Jakobsson et al. 2010).

Even where common conclusions are found between stud-
ies, the field is not yet able to fully explain these results or pre-
dict, which microbial taxa and genes will be affected. Although
it is evident that some species are suppressed due to direct inhi-
bition by antibiotics, we don’t know the minimum inhibitory
concentrations of many antibiotics for most species of gut bac-
teria, or how the interactions between different species might
contribute to changes in composition and diversity. Similarly,
though antibiotic treatment no doubt selects for antibiotic resis-
tance genes, we don’t understand the specific mechanisms by
which those genes are transferred, what their host ranges are,
or in many cases exactly how those genes confer resistance
and how they might interact with other aspects of the cell’s
phenotype and fitness. These gaps in understanding prevent
us from being able to predict which subjects would be most at
risk for long term microbiota disturbance, or which resistance
genes could be expected to persist at high levels after treatment
would be an important step towards practical applications of
this research. Other microbiome studies have attempted simi-
lar things, such as trying to diagnose intestinal disorders based
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on composition data, but only limited success has been achieved
so far (Ryan et al. 2020).

A major reason why the question, “How does antibiotic treat-
ment affect the gut microbiota?” has yet to find a satisfying
answer is that this one question is too broad and serves to
mask a multitude of many different, specific, and more guid-
ing questions. For example, “How does a week’s course of
clindamycin affect the gut microbiota of a healthy Swedish
population?”(Jernberg et al. 2007) is a very different question
to “How does a cocktail of four antibiotics delivered over 6
months affect the gut microbiota of Haitian tuberculosis suf-
ferers?”(Wipperman et al. 2017) Variation in the antibiotic treat-
ments used, the subjects receiving treatment, and the specific
methods of the study all serve to complicate the question, as
summarised in Fig. 4. In the coming sections, we will attempt to
outline the full scope of this problem, then suggest how it might
be overcome.

Variation between antibiotic treatments

It is important to make clear that antibiotics are treated as
a single group of medicines only because they have similar
uses, not because they have similar molecular structures or
functions on a biochemical level. Antibiotics can be split into
many groups called classes, where each antibiotic class gen-
erally contains multiple drugs with variable structures around
a common ‘active site’, which has a particular mode of action
that interferes with bacterial growth and/or physiology (Aminov
2017). For example, β-lactam antibiotics, like penicillin or amox-
icillin, contain an active site which binds to enzymes respon-
sible for building the bacterial cell wall, inhibiting their func-
tion and leading to cell death (Cho, Uehara and Bernhardt 2014).
Fluoroquinolones, like ciprofloxacin and moxifloxacin, instead
bind to enzymes involved in the DNA replication cycle, pre-
venting the cells from generating new DNA (Hooper 2001). Lin-
cosamide antibiotics, like clindamycin, prevent cells from trans-
lating mRNA into protein by binding to the bacterial ribosome
and interfering with the initiation of peptide chains (Spı́žek
and Řezanka 2017). It seems clear that these completely dis-
tinct mechanisms would have different effects on the ecology
and evolution of their targets. Some variation based on differ-
ent classes can be seen in Table 1, such as Arat et al.’s study,
which used a novel antibiotic treatment with a unique mode
of action and found only positive effects on the relative abun-
dance of Actinobacteria and negative effects on the relative
abundance of Bacteroidetes (Arat et al. 2015). This outcome is in
contrast to the general trends we outlined earlier in both direc-
tions and suggests that the effects of this novel antibiotic may be
atypical.

Beyond the problem of different classes with different mech-
anisms of action, the intensity, frequency, and duration of
antibiotic treatments can vary. Antibiotic courses used in the
reviewed studies (Tables 1 and 2) range between one-off doses
up to 6-month courses of treatment, involve a single dose per
day or up to 4, and vary between 100 mg and 4000 mg doses
daily. The relative frequency and intensity by which a commu-
nity is disrupted can have major impacts on its diversity (Hall et
al. 2012), so it is reasonable to assume that different doses and
treatment schedules may have different effects on the micro-
biota. Several studies also involved treatments using multiple
combined antibiotics, often of different classes, adding a further
layer of complexity. It was also found that the effect of antibi-
otic treatment can depend on whether the drug is administered
orally or through an intravenous drip, where in one study it was

found that only the oral treatment had a major effect on the gut
microbiota (Arat et al. 2015).

A study that compared the effects of four different kinds
of antibiotic treatment found some distinctly different results
between the treatments and concluded that the class of antibi-
otic plays an important role in modulating the effects on the
gut microbiota, as would be expected (Pérez-Cobas et al. 2013a).
However, with only four total subjects, one receiving each kind
of treatment, it is very difficult to separate the effects of different
treatments from differences in the individual subjects, or even
differences due to random chance. Other studies (Panda et al.
2014; Rashid et al. 2015; Stewardson et al. 2015) also used multi-
ple classes of antibiotics with larger sample sizes. One of these
studies found broadly similar effects of beta-lactam and flouro-
quinolone antibiotics on the gut microbiota, although some
effects on specific taxa and total microbial load differed (Panda et
al. 2014), while another found that ciprofloxacin treatment lead
to far greater disturbance of the gut microbiota than nitrofu-
rantoin (Stewardson et al. 2015). An in vitro study which used
faecal culture to thoroughly investigate treatment with seven
antibiotics at two different concentrations found distinct differ-
ences between their effects (Ladirat et al. 2013). These results
highlighted how such in vitro approaches have the potential
to serve as a valuable foundation for further in vivo work in
this area.

Variation between treated subjects

The composition of the gut microbiota varies widely between
different people. Some research has suggested that human
microbiomes can be sorted into several clear ‘enterotypes’ dom-
inated by specific groups of bacteria (Arumugam et al. 2011),
but the general, recent consensus is that gut microbiota vari-
ation is best understood in terms of multiple, continuous gra-
dients rather than a few specific classifications (Knights et al.
2014). The most well studied source of gut microbiota varia-
tion is diet, where proteins, fats, and carbohydrates—especially
indigestible fibre—have characteristic effects on composition
(Singh et al. 2017). In particular, large differences have been
observed between people living traditional hunter-gatherer and
rural farming lifestyles compared to those in westernised, urban
populations, likely due to a combination of diet and other
lifestyle factors (Gupta, Paul and Dutta 2017). The gut microbiota
is also known to change as people age, with particularly dis-
tinct profiles associated with both extremes of life. Infants begin
life with a largely aerotolerant microbiota very different from an
adult composition, and later show high levels of Bifidobacterium
species which are capable of digesting the complex molecules
found in human breast milk (Milani et al. 2017), while elderly
subjects show an overall lower diversity than most adults, with
decreased levels of key species such as Faecalibacterium praus-
nitzii, and increased levels of Proteobacteria (Salazar et al. 2017).
Some studies have even found associations between the sex
of subjects and the composition or diversity of the gut micro-
biota, which may stem from interactions with sex hormones
or simply lifestyle differences (Kim et al. 2020). Regular exercise
seems to have an effect on composition resulting in a greater
abundance and diversity of Firmicutes species (Mach and Fuster-
Botella 2017). Most importantly, it is clear that many high bur-
den intestinal and extra-intestinal diseases, including inflam-
matory bowel disease (Kostic, Xavier and Gevers 2014), obesity
and diabetes (Patterson et al. 2016), and HIV-infection (Bandera
et al. 2018) are also associated with altered abundances of certain
species and groups.
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Figure 4. Summary of the main sources of variation that complicate investigation into the effects of antibiotic treatment on the ecology and evolution of the gut
microbiome, as expanded upon in the main text.

If different people have distinctly different microbiota com-
positions even before treatment, it is intuitive that these dif-
ferent pre-treatment states will lead to different responses to
antibiotics, and there is some clear evidence to support this. For
example, in one study, subjects whose microbiota were initially
dominated by Bacteroides and showed a lower overall diversity
were more likely to have increased relative abundance of Enter-
obacter cloacae after treatment (Raymond et al. 2016). Stewardson
et al. showed that a number of subjects that had increased diver-
sity after treatment were dominated by rare genera before treat-
ment (Stewardson et al. 2015), and De La Cochetière et al. found
that the microbial fingerprint of the gut microbiota before treat-
ment was partially able to explain which subjects later acquired
Clostridioides difficile (De La Cochetière et al. 2008). Several stud-
ies show other major differences in response between subjects
receiving identical treatment, although they were not always
able to link these differences to initial conditions, such as cer-
tain resistance genes responding in different ways to treatment
in Willmann et al. (Willmann et al. 2015), or different degrees of
recovery in Dethlefsen et al. (Dethlefsen and Relman 2011).

Subjects in many studies showed distinct individual gut
microbiota compositions. For example, variation between sub-
jects remained higher than any variation caused by antibiotics
throughout two rounds of treatment in one study (Dethlefsen
and Relman 2011). Perhaps more importantly, consistent vari-
ation can be observed between the sample groups of different
studies. For example, Raymond et al.’s subjects were almost
all dominated by the Bacteroidetes phylum (Raymond et al.
2016), while Jakobsson et al.’s and MacPherson et al.’s subjects
were dominated by the Firmicutes phylum with a lower relative
abundance of Bacteroidetes (Jakobsson et al. 2010; MacPherson
et al. 2018). This difference could easily be due to differences in
how the samples were collected or how the composition was
measured, but it could also reflect true differences in the sample
populations used, particularly since Raymond et al. used an

unusually strict sampling criteria, excluding vegetarians, smok-
ers, and anyone working on a farm or in a healthcare facility.
Given that these studies used subject pools with distinctly dif-
ferent initial compositions, and Raymond et al.’s study explicitly
showed that the initial composition of the microbiota can
mediate the effects of antibiotics, the concern arises that any
conclusions found might only apply to the specific populations
surveyed.

Variation between research practices

Aside from differences in the treatment and subjects used, fur-
ther variation can arise from how these studies are carried
out and reported. Across various studies that used 16S rRNA
sequencing to survey the human gut microbiota, differences in
which region of the 16S rRNA gene was targeted and which
sequencing methods were used had effects on the data that
were sometimes larger than the meaningful biological variables
being studied (Lozupone et al. 2013). The methods used to iden-
tify species from 16S rRNA sequences can also lead to major
differences in the final results (Chen et al. 2013). Even details
such as how much time passes between sample collection and
freezing can introduce substantial bias (Cuthbertson et al. 2014).
In the reviewed studies, it is perhaps most worrying that dif-
ferent results were sometimes found between different meth-
ods, even when attempting to measure the same thing. For
example, Ladirat et al. determined through qPCR that the Bifi-
dobacterium genus reduced during treatment, but found no sim-
ilar effect in their microarray data (Ladirat et al. 2014), while
O’Sullivan et al. found a reduction in bifidobacteria according
to selective culture, but not through 16S rRNA pyrosequencing
(O’Sullivan et al. 2013). These results could simply represent a
lack of statistical power in the microarray and pyrosequenc-
ing methods, but they still undermine some confidence in any
conclusions.
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It is clear that in order for results between studies to be
meaningfully comparable, a lot of effort needs to be invested
in standardising procedures, or at least providing adequate con-
trols to separate the effects of the treatment from various biases.
However, out of the studies reviewed, half used no controls at
all (Table 2), and others used controls with major differences to
their sample group. For example, in one study the untreated sub-
jects were mostly women and all between 26–49 years old, but
the treated group was all male and ranged between 1–70 years
old (Morotomi et al. 2011), and in another all the treated sub-
jects were older than 61 while the controls were younger than
52 (Abeles et al. 2015). Many studies also had low numbers of
subjects, often in the single digits (Dethlefsen et al. 2008; Deth-
lefsen and Relman 2011; Willmann et al. 2015), although others
achieved a good balance of treated subjects and controls (Arat et
al. 2015; Stewardson et al. 2015; Raymond et al. 2016; Suez et al.
2018). Shortcomings in sample size are completely understand-
able given the difficulty of recruiting volunteers to take antibi-
otics and donate faecal samples, and in some cases comply with
rigid schedules over a large time period, as well as the effort
and expense of processing and analysing samples. That said, the
lower the sample sizes used in any given study, the more difficult
it becomes to correct for these numerous sources of variation.

Even if we assume that 16S rRNA and shotgun metagenomic
analyses produce accurate results, there are further problems
with how the data is reported. These methods produce vast
amounts of data, far more than can be fully comprehended by
the researchers or readers. Consequently, researchers typically
include only what they consider to be the most important or rep-
resentative findings in the main text and figures of reports and
leave the rest for supplemental data or exclude it entirely. This
can lead to problems. A recent review addressed the question
of how different antibiotics affect different components of the
gut microbiota, and concluded that the genera most sensitive to
treatment were Bifidobacterium, Bacteroides and Faecalibacterium
(Ferrer et al. 2017). It’s not entirely clear how the reviewed papers
were summarised, whether it was based on reported changes in
the main text, significant associations shown in supplementary
data, or re-analysis of raw data, but it is worth noting that these
three genera are some of the most well-known and well-studied
gut microbiota species. It’s entirely possible that these taxa are
particularly susceptible to antibiotics, but seems equally likely
that findings related to them are reported more often due to
their reputation, or that the abundance of reference genomes
for these groups makes analyses more powerful and more likely
to find significant results, than for lesser-known species.

Problems may also arise from the rapidly shifting taxonomy
of bacterial species. Eubacterium rectale has recently faced nam-
ing disputes, with different parties arguing for its reclassifica-
tion into Roseburia, Agathobacter or a novel genus, although it
seems generally agreed that it does not belong within Eubac-
terium (Rosero et al. 2016; Sheridan et al. 2016; Zuo and Hao 2016).
Several other Eubacterium species, first isolated and named when
classification technologies were far less sophisticated, are being
similarly renamed (Rajilić-Stojanović and de Vos 2014). Some
reviewed papers mention effects that treatment had on the
Eubacterium genus (or the Eubacteriaceae family) (Bajaj et al.
2013; Pérez-Cobas et al. 2013a; Heinsen et al. 2015; Stewardson
et al. 2015; Raymond et al. 2016; Wipperman et al. 2017), and as
time goes on it will be increasingly difficult to interpret which
group of organisms this refers to. Ruminococcus is another genus
with shifting taxonomy (Rajilić-Stojanović and de Vos 2014), and
is similarly referred to in some reviewed papers (Dethlefsen and
Relman 2011; Morotomi et al. 2011; Arat et al. 2015; Rashid et al.

2015; Stewardson et al. 2015; Wipperman et al. 2017; MacPherson
et al. 2018). Without raw sequencing data being made available,
which was not the case for several of the reviewed studies (Table
S1, Supporting Information), it is impossible for the results of
these sorts of studies to remain relevant throughout the con-
stant adjustments to classification and ever improving libraries
of reference genomes.

Suggested future approaches

Considering these problems, how can we make progress towards
a comprehensive understanding of how the gut microbiota is
affected by antibiotic treatment? We suggest focussing research
efforts into two complementary approaches: a top-down, ana-
lytic approach which aims to build large, well-annotated
databases and to process them with current and future tech-
niques to build predictive models; and a bottom-up, experimen-
tal approach which aims to answer specific, mechanistic ques-
tions using model systems that afford more replication and con-
trol. The key aim is to avoid any middle ground studies which
would be too specific to be meaningfully compared to other
research, yet too general to answer any questions in detail. Ide-
ally, with these combined approaches, we would be able to move
toward both explaining and predicting the response of the gut
microbiome to antibiotic treatment.

Studies contributing to the top-down approach would aspire
to recruit large pools of subjects and survey their microbiomes
using deep metagenomic sequencing, alongside measurements
of metabolites, transcripts, and proteins where possible. The use
of untreated controls and several samples taken before treat-
ment would provide multiple meaningful comparisons to deter-
mine the effects of antibiotics, while samples taken far after
treatment would allow the long-term effects to be measured.
Researchers would also collect and report as much metadata
as possible, including information related to the subjects’ age,
gender, health status, medication, diet, location, etc.; the treat-
ment’s dose, frequency, course length, source, etc.; and further
details on the collection, processing, and analysis of samples.
This approach would result in vast amounts of data, where sim-
plifying results into patterns intuitive to the human mind would
be counterproductive, so emerging technologies such as deep
learning (Arango-Argoty et al. 2018) and other forms of artifi-
cial intelligence would be vital to build predictive models which
can be validated against further data. While unrelated to antibi-
otics, a relevant study highlighted the power of this top-down
approach; here, researchers were able to predict post-prandial
blood glucose levels using a machine learning algorithm which
incorporated a broad variety of measurements from 800 sub-
jects, including microbiome composition and function (Zeevi et
al. 2015). Beyond individual studies, the most crucial aspect of
this approach would be effective coordination and collaboration
between different groups and disciplines, perhaps lead by fund-
ing bodies and/or specific groups that are focused on antibiotic
research encouraging researchers to share quality standards,
resources, and data (Proctor 2019). No single study could tackle
the full breadth of this question, so the success of the top-
down approach would depend on practices such as carefully
replicating existing studies with different local subject popu-
lations, conducting research that makes thorough use of the
wealth of existing data rather than producing new information,
and making raw data easily accessible. These priorities might
result in less studies able to claim individually novel findings,
and would certainly require the investment of significant time



Pennycook and Scanlan 15

and resources, but would greatly benefit the research commu-
nity as a whole.

Studies contributing to the bottom-up approach would draw
on the many advantages of conducting research outside of liv-
ing human guts. In vitro fermentation of faecal samples permits
experiments with communities approaching the complexity of
the natural microbiota, but with far greater capacity for repli-
cation and control over their environment, which can lead to
much more precise results (Kim et al. 2012; Ladirat et al. 2013).
Animal models, while they must be used with great care, allow
the manipulation of host diet, lifestyle and genotype, and for
sampling through biopsies and fistulas (Harmoinen et al. 2004;
Antonopoulos et al. 2009), which would be rare or impossible in
human studies. Finally, experiments using specific isolates or
synthetic communities can allow investigation into basic phe-
notypic responses to antibiotics (Wassermann et al. 2016; Sun
et al. 2018) or fundamental species interactions (Ze et al. 2012).
These methods would be used not only to simulate natural per-
turbations with greater replication and control, but also to for-
mulate specific hypotheses, test them and explain the results
in a way that is not currently possible due to the complexity
and intractiblity of working with naturally occurring gut micro-
bial communities. For example, Baumgartner et al. co-cultured
E. coli MG1655 with a faecal slurry in the presence of ampicillin
and found that despite the presence of horizontally transferable
genes in the faecal microbiota, the focal E. coli did not evolve
resistance (Baumgartner et al. 2020). In follow up experiments,
they were able to determine that some of these genes could be
transferred to the focal isolate, but only on an agar surface rather
than in liquid broth, suggesting that the physical environment
may have prevented transfer in the full treatment (Baumgart-
ner et al. 2020). Another impressive study used a combination
of mouse models, human subjects, and culture work to thor-
oughly investigate the effects of a probiotic on the recovery of
the microbiota after treatment and found compelling evidence
that secretions of Lactobacillus species played a role in delaying
recovery (Suez et al. 2018). Of course, results like this might not
always be applicable to more complex natural systems, but the
aim of this approach is not to prove that any individual process
or mechanism would certainly occur in the gut, but rather to
build a robust library of possibilities that can be consulted to
explain natural results.

In time, these two approaches should be able to mutually
support each other. Hypotheses generated from narrow, bottom-
up experiments could be tested and refined against the large
top-down data sets, while emerging patterns from the top-down
approach could be explained by the mechanisms demonstrated
in the bottom-up approach. An excellent example of this kind of
synthesis, within a single paper, comes from a recent study that
exploited a large pool of molecular data taken from both novel
and previously available cohorts to identify bacterial species
suspected to most support microbiota recovery after antibiotic
treatment. Then using follow-up experiments with a mouse
model the researchers obtained further data that strongly sup-
ported their initial results for the two species they had iden-
tified and tested (Chng et al. 2020). These methods are clearly
ambitious, and in many cases will be difficult to achieve due to
a variety of time, resource, and organisational constraints. How-
ever, as a set of guidelines, these approaches should lead to a far
stronger understanding of how antibiotic treatment affects the
ecology and evolution of the human gut microbiome in the years
to come.

CONCLUSION

Using the combined approaches outlined above, researchers can
work towards both predicting and explaining the response of the
human gut microbiota to antibiotic treatment. However, even
if the composition of the microbiota could be predicted and
manipulated through treatment, we must keep in mind that we
still lack a clear understanding of how microbiota composition
corresponds to human health (Huttenhower et al. 2012; Proc-
tor 2019). More specifically, even if antibiotic mediated effects
on community composition and the detailed mechanisms and
dynamics of antibiotic resistance evolution could be under-
stood, we still do not know how the presence and absence of
different species, and evolved phenotypic traits, are likely to
affect disease processes and the transfer of antibiotic resis-
tance to pathogens (van Schaik 2015). Therefore, it is impor-
tant to acknowledge that without considerable investment into
addressing the fundamentals of how microbes influence the
human host phenotype, knowledge of the antibiotic mediated
effects on microbial ecology and evolution alone might not be
immediately medically valuable. However, our understanding of
the relationship between the microbiome and host health is con-
stantly progressing, and antibiotic treatment itself represents a
valuable investigative tool, since it is known to produce measur-
able effects on both microbial composition and host health. It is
therefore clear that research into a detailed mechanistic under-
standing of how antibiotics affect the ecology and evolution of
the human gut microbiota is a valuable undertaking, not only to
advance our fundamental understanding of microbial commu-
nities but also to better understand their role in human health.
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