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ABSTRACT

The complex population of microbes in the human gastrointestinal (Gl) tract interacts with itself
and with the host, exerting a deep influence on health and disease development. The development
of modern sequencing technology has enabled us to gain insight into Gl microbes. Helicobacter
pylori colonization significantly affects the gastric microenvironment, which in turn affects gastric
microbiota and may be correlated with colonic microbiota changes. Crosstalk between H. pylori and
Gl commensal flora may play a role in H. pylori-related carcinogenicity and extragastric manifesta-
tions. We review current knowledge on how H. pylori shapes Gl microbiota with a specific focus on
its impact on the stomach and colon. We also review current evidence on colonic microbiota
changes attributed to eradication therapy based on the clinical studies performed to date.
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Introduction the human gastric mucosa and thrives in the sto-
mach niche, having co-evolved with humans over
tens of thousands of years.* Chronic infection can
lead to either hypo- or hyperchlorhydria, depend-
ing on the anatomic distribution and severity of the
resulting inflammation.” Although the majority of
H. pylori-infected persons remain asymptomatic,
chronic infection has been linked to peptic ulcer
disease, gastric cancer, gastric mucosa-associated
lymphoid tissue lymphoma, and a multitude of
extragastric diseases. Current studies suggest that
eradication of H. pylori can effectively reduce gas-
tric cancer incidence and treatment should be con-
sidered for all H. pylori-infected persons to reduce
the risk of peptic ulcers and gastric cancers.®®

Trillions of microorganisms reside in the human
gastrointestinal (GI) tract and form a symbiotic
relationship with the host, playing an important
role in health and disease. The GI microbiome
and the host generate a complex network of inter-
actions that transcends the boundaries of the GI
tract, forging intimate connections with all aspects
of human physiology, including metabolic,
immune, and neuroendocrine systems. The cross-
talk is mediated by microbial-derived biochemical
signals that are absorbed into the blood and circu-
lated throughout the human body; by signals
relayed by the enteric nervous system that transmit
microbiota-derived cues to the central nervous sys-

tem; and by immune cells that perceive local micro-
bial signals in the GI tract and are trafficked
throughout the body."~

However, there are still debates regarding the ben-
eficial effects of H. pylori colonization, including
regression in childhood asthma and other atopic

disorders.”'° It has been concluded that H. pylori is
a common flora, or at least a harmless bacterium.
Additionally, the mass eradication of H. pylori with

As a GI tract microbe, Helicobacter pylori is one
of the most-studied bacteria. It is highly adapted to
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antibiotic treatment as a preventive measure for
gastric cancer and peptic ulcers raises several con-
cerns, including the emergence of antibiotic resis-
tance and perturbations in gut microbiota
following H. pylori eradication.'™'* Being part of
the GI ecosystem, H. pylori infection and its impact
on gastric acid secretion may alter the GI micro-
biome and host health status. Here, we review cur-
rent understandings of the impact of H. pylori
infection on the GI microbiome and how it influ-
ences human health.

Helicobacter pylori and the esophageal
microbiome

The esophageal microbiome in the normal
esophagus

Although the esophagus serves as the beginning of
the digestive tract, the esophageal microbiome has
long been overlooked and little is known about it
relative to our understanding of the composition
and function of the gut microbiome. Early culture-
based studies using esophageal washing demon-
strated a high proportion of Streptococcus viridans
and a pattern resembling that of the oral
microbiome.'>'* The first culture-independent
investigation of the distal esophageal microbiome
identified a far more complex microbial commu-
nity, comprising six major phyla (Firmicutes,
Bacteroides,  Actinobacteria, = Proteobacteria,
Fusobacteria, and TM7), with Streptococcus as the
most prevalent genus.'® Streptococcus, Hemophilus,
Neisseria, Prevotella, and Veillonella are considered
to be the core microbes in the normal esophagus.'®
However, bacterial composition may differ depend-
ing on various factors, such as age, use of proton
pump inhibitors, and disease.'®"®

The esophageal microbiome in reflux esophagitis,
Barrett’s esophagus, and esophageal
adenocarcinoma

Chronic gastric acid exposure or duodenal bile in
the distal esophagus is considered to be the primary
factor in the pathogenesis of reflux esophagitis. It
was widely accepted that reflux may cause chronic
esophageal injury and promote carcinogenesis in
Barrett’s esophagus. A culture-independent study

by Yang et al. classified the esophageal microbiota
into two distinct types.'” The healthy esophagus
harbored Gram-positive taxa from the Firmicutes
phylum, of which Streptococcus was the dominant
genus (Type I microbiome), while an inflamed eso-
phagus (reflux esophagitis or Barrett’s esophagus)
was dominated by Gram-negative taxa from the
Bacteroidetes, Proteobacteria, and Fusobacteria
phyla (Type II microbiome). These findings are
consistent with other studies,"®***' reliably
demonstrating a change in esophageal microbiota
in cases of reflux disease that most likely reflects
physiological changes due to excess gastric acid.
Studies investigating the microbiota in cases of
esophageal adenocarcinoma (EAC) are rare. The
studies by Elliott et al. and Snider et al. identified
reduced microbial diversity in EAC samples com-
pared with controls.”***> Some EAC samples were
dominated by a single bacterial species belonging to
the order Lactobacillales in the study by Elliott
et al, while Snider et al. found more
Enterobacteriaceae and Akkermansia muciniphila
in patients with high-grade dysplasia or EAC.
Both studies had relatively small sample sizes and
further research is required before an EAC micro-
biome signature can be defined.

Helicobacter pylori, the esophageal microbiome,
and esophageal diseases

The incidences of gastroesophageal reflux disease,
Barrett’s esophagus, and EAC have been rising over
the past several decades in developed countries and
are inversely associated with H. pylori infection
prevalence.***” Previous research describes the
existence of a core esophageal microbiota and has
shown that its composition in healthy controls dif-
fers at the phylum and genus levels from patients
with reflux esophagitis or Barrett’s esophagus. The
altered bacterial microenvironment may contribute
substantially to esophageal mucosa injury and
further carcinogenesis. One of the hypotheses
explaining the protection by H. pylori against
Barrett’s esophagus and EAC may relate to the fact
that at the population-level it reduces acid secretion.
H. pylori also influences colonization by other
important organisms. Amir et al. and Deshpande
et al. determined that the administration of proton
pump inhibitors influences microbial composition



in the esophagus, and this effect is thought to be
related to acid levels.'"®*® The H. pylori-positive
stomach produces less acid and the microbial com-
munity in the distal esophagus is probably altered
when reflux occurs. It would be interesting to deter-
mine whether H. pylori interacts with the esophageal
microbiota to confer protection against Barrett’s
esophagus or EAC. However, this is a current gap
in esophageal microbiome research, and no studies
have assessed whether hosts’ H. pylori status con-
tributes to different esophageal microbial commu-
nities. It is imperative to study the impact of
H. pylori on host physiology and the ensuing effect
on the esophageal microbiome, although this may
become increasingly difficult due to a declining pre-
valence of H. pylori.

Helicobacter pylori and the gastric microbiome
The normal gastric microbiome

Although Gillespie isolated 24 different organisms
from the stomach through a stomach tube in 1893,
the stomach was still considered sterile due to its
acidic environment. Microbes cultured from gastric
fluid were generally considered to be transient or
passing luminal microbes until the discovery of
H. pylori in 1982.*° For the next few decades,
H. pylori was considered to be the only organism
capable of surviving in the hostile gastric environ-
ment because culturing was the mainstay of micro-
bial research.’®’! However, the majority of bacteria
are difficult to culture or are uncultivable.
Culture-independent methods, particularly
next-generation sequencing (NGS) technology,
have broadened the horizons in human micro-
bial research.’”> Studies employing NGS reveal
that human gastric microbes are more diverse
than initially anticipated.”> > Published studies
show significant heterogeneity of gastric micro-
biota, which may be attributed to inter-
individual variability, ethnicity, different sample
types, different gastric pathologies, and the use
of different technical approaches. In a review
article, Rajilic-Stojanovic et al. compared the
studies that investigated the gastric microbiota
using NGS. Based on an arbitrary cut-oft value
requiring genera to be present in more than 20%
of the included studies, the typical gastric
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microbiota consists of 57 bacterial genera dis-

tributed among eight phyla, including
Actinobacteria, Bacteroidetes, Firmicutes,
Fusobacteria, Proteobacteria, Spirochetes,

Tenericutes, and TM7.?® The six most common
genera reported were Prevotella, Streptococcus,
Neisseria, Hemophilus, Fusobacterium, and
Veillonella. Helicobacter was detected in 23 of
36 studies. The bacterial community of the nor-
mal stomach has not been extensively character-
ized; only four studies have reported on the
microbiota present in healthy adults, and these
provide us with a snapshot of healthy gastric
microbiota.”” *® All studies reported the pre-
sence of Prevotella, Streptococcus, Megasphaerae,
Capnocytophaga, Oribacterium, and
Propionibacterium. It is noteworthy that around
half of the 266 reported genera were only found
in one study, indicating that these groups are
most likely of low biological relevance or due
to artifacts from the sequencing technique or
bioinformatic processing.*'

Effect of Helicobacter pylori on the gastric
microbiome

H. pylori employs several enzymatic machineries
that permit its survival in the harsh acidic condi-
tions of the stomach.*> When H. pylori is present, it
is the most abundant organism of the gastric micro-
biota, representing 40%-90% of the gastric
microbiota.>****” The alpha diversity of bacteria
in the stomach is negatively associated with the
presence of H. pylori.***>*’~>° Studying the impact
of H. pylori status on beta diversity, we observed
that if H. pylori is present in the gastric mucosa it
gains a clear predominance, which alters the gastric
microbial composition in H. pylori-infected
individuals.*’ ! Most reports show that H. pylori-
positive and H. pylori-negative individuals’ micro-
biota are mainly dominated by the same phyla but
with  different  percentages  of  relative
abundance.’**”>* H. pylori-positive individuals
have a higher abundance of Proteobacteria, prob-
ably resulting from the contribution of H. pylori,
while there is a lower abundance of Actinobacteria,
Bacteroidetes, and Firmicutes.’**>***#*%>2 Qnly
one human study discusses the taxonomic differ-
ences between H. pylori-positive and H. pylori-
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negative groups after H. pylori sequence reads were
removed.”* When H. pylori sequences were left out
of the analysis, the phylotype evenness and diver-
sity of H. pylori-positive individuals were higher
than that of H. pylori-negative individuals. Further
examination of the phylum distribution of all non-
H. pylori phylotypes of individuals based on
H. pylori status revealed no gross differences in
taxonomic patterns. Martin et al. assessed the
impact of H. pylori on the preexisting gastric micro-
bial community in a rhesus macaque model. There
was no significant difference in the average relative
abundance of non-Helicobacter taxa in pre- and
post-inoculation ~ samples  after = removing
Helicobacter reads.”® The rhesus model suggests
the rhesus gastric microbial community is largely
stable despite the immunological and physiological
changes that occur due to H. pylori infection. In
human studies, the gastric microbial diversity
changes associated with H. pylori seem to be rever-
sible to some degree. Eradication of H. pylori infec-
tion may increase the diversity of gastric
microbiota.*>*°

Helicobacter pylori, the gastric microbiome, and
gastric cancer

H. pylori is well-recognized as a class I carcinogen
for gastric cancer.”’””® Infection initiates chronic
gastric inflammation and destroys the hydrochloric
acid-secreting glands of the stomach, ultimately
leading to the precancerous changes of atrophic
gastritis (AG) and intestinal metaplasia (IM).>**°
Although H. pylori infection is known to precipitate
this cascade, cohort studies show that only 1%-2%
of H. pylori-infected individuals develop gastric
cancer.®’ Moreover, the point of no return that
leads to gastric cancer in the carcinogenesis cascade
is reportedly associated with IM and dysplasia,
independent of H. pylori status.®” H. pylori viru-
lence, host genetics, and environmental factors all
contribute to the development of gastric cancer.®®
Before H. pylori was discovered in 1982, it had
repeatedly been shown that bacteria multiply dur-
ing gastric diseases, such as peptic ulcer diseases
and gastric cancer. Hewetson et al. seem to have
been the first to study material taken directly from
the stomach during surgery.®* They took cultures
from the stomach in 36 cases and a variety of

bacteria were isolated. They concluded that 72%
of the cases with gastric ulcers were positive for
bacteria, compared with 17% of the cases without
gastric ulcers. Later studies consistently showed the
percentage of sterile stomach samples was lower in
patients with gastric ulcers than in patients with
duodenal ulcers, which is probably associated with
the acidity and mucosal atrophy in the
stomach.®"®” Several studies have investigated the
bacteriology of patients with gastric cancer and
found that patients with gastric carcinoma have
higher bacterial counts and are colonized with
higher numbers of different species than patients
with other gastric diseases.®” *® Oropharyngeal or

intestinal commensals (Streptococcus,
Bifidobacterium, Lactobacillus, Veilonella,
Klebsiella, Escherichia, Pseudomonas, Neisseria,

Staphylococcus, and Bacillus) were reported to be
associated with gastric cancer.>®® The results of
culture-based studies associated with gastric disease
in English literature are summarized in Table
1.°47% It has been hypothesized that the hypochlor-
hydria associated with AG allows for bacterial over-
growth in the stomach, and this may play a role in
gastric carcinogenesis.71 However, research on the
microbiota and gastric cancer remained relatively
unexplored until the development of NGS.
Dicksved et al. conducted one of the first DNA-
based studies investigating the gastric microbiota in
patients with gastric cancer using terminal restric-
tion fragment length polymorphisms in combina-
tion with 16S rRNA gene cloning and sequencing.”
They found an enrichment of Streptococcus,
Lactobacillus, Veilonella, and Prevotella, and a low
abundance of H. pylori in ten patients with gastric
cancer. This was followed by 16 studies that
assessed the role of the gastric microbiota in gastric
cancer (Table 2, Figure 1(a)).***%73786 Most of these
studies observed a reduction in bacterial diversity
or richness in the shift from non-atrophic gastritis
to gastric cancer, while five studies showed different
results. Dicksved et al., Wang et al., and Jo et al. did
not find a significant difference in diversity indices
between gastric cancer patients and controls.”>”>”°
However, two of the studies were small in size and
underpowered, which made it difficult to detect
potential differences in microbiota diversity
between groups.”>”” Eun et al. reported an increase
in microbial diversity from gastritis to cancer, but
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Table 1. Studies analyzing the role of gastric microbiota in gastric diseases using culture-based methods.

Studies Participants Sample type Culture findings Remarks

Hewetson 36 gastric Gastric contents  Firmicutes, Streptococci, Bacillus coli, Micrococci, The positive culture rate was 72% in
etal., dilatation Proteobacteria, Streptococcus pyrogenes, Bacillus patients with GU compared with a 17%
1904%* cases with or Actinobacteria; subtilis, Staphylococcus albus positive culture rate in patients without

without yeast (epidermiditis), Sarcinae (family GU.
ulceration clostridiaceae), Bacillus proteus, bacillus,
Torula (yeast)

Rosenow 18 GU Gastroduodenal  Firmicutes, Streptococci, Streptococcus viridans, Of the 18 patients, 16 had positive culture
etal, ulcer or Proteobacteria, Staphylococci, Gram-positive bacilli, results from the ulcer base. The almost
1915%° regional Actinobacteria; Gram-negative bacilli, colon bacilli, constant occurrence of Streptococci in

lymph glands yeast Bacillus welchii, Diphtheroid bacilli, PUD suggests Streptococci (usually
spore-forming bacilli; yeast viridans) may play a role in the
pathogenesis of ulcers.

Seley et al, 16 GC, 6 GU, 18 Mucosa Firmicutes, Staphylococcus haemolyticus, S. viridans, ~ Positive cultures in 93.7% of GC, 83.3% of
194113 DU, 29 obtained by Proteobacteria, non-hemolytic Streptococci, Clostridium GU, 36.6% of DU, and 37.9% of

secondary surgery Actinobacteria; welchii, B. coli, Enterococcus, secondary peptic ulcers; pathogenic
ulcers yeast B. friedlanderi (Klebsiella pneumoniae), bacteria (S. haemolyticus, S. viridans,
Staphylococcus aureus, S. albus, non-hemolytic streptococci, C. welchii,
B. proteus, Bacillus pyocyaneus, and Bact. coli) were isolated from 88%
B. subtilis, Neisseria catarrhalis, of the GC samples vs. 30% of the GU
Corynebacterium hodgkinii, samples.
Saccharomyces

Barber 27 GU, 12 DU,  Swab on Firmicutes, S. viridans, non-hemolytic streptococci, Bacteria were isolated from the stomach
etal, 10 GC stomach Proteobacteria, coliform bacilli (Bact. coli, proteus, + duodenum in 90% of the patients
1946%° mucosa Actinobacteria; B. fecalis alcaligenes), S. albus, with GC; GU cases had a lower

yeast Neisseriae, Streptococcus pneumoniae, proportion of positive culture results

Diphteroid bacilli, S. aureus, S. pyogens, (55%), while swabs were sterile from all

Lactobacilli; M. albicans 12 cases of DU. M. albicans, non-
hemolytic streptococci, and coliform
bacilli were isolated from patients with
normal or high gastric acidity. All other
bacteria were isolated only from cases
with achlorhydria.

Cregan 10 PUD, Gastric juice Firmicutes, S. mitis, Streptococcus acidominimus, The bacterial load in the stomach was
etal., 8 GC Proteobacteria Streptococcus MG, Streptococcus uberis, higher in patients with GC, compared
1953%¢ Streptococcus salivarius, Streptococci, with patients without GC, and is

S. pyogenes, B-hemolytic streptococci, probably related to gastric acidity. Oral
not Group A, B, B or G, or fecal commensal flora were usually
Serratia liquefaciens, S. aureus, found in the gastric juice of patients
Streptococcus lactis, with GC.

Staphylococcus sarophyticus;

Lactobacillus spp., Bacillus spp.,

C. welchii, Bact. coli, Bact. Intermediate

type |, Bact. aerogenes type | & I,

Paracolon spp., Pseudomonas spp.,

H. influenzae; Candida spp.

Gatehouse 49 DU, 14 GU,  Gastric juice Firmicutes, Lactobacilli, S. viridans, Micrococci, The gastric juice was sterile in the healthy
etal, 35 GC Proteobacteria, Streptococci fecalis, Diphtheroids, controls, in 67% of DU, in 7% of GU,
1978% Actinobacteria, Escherichia coli, Neisseria spp. and in 0% of GC samples.

Bacteroidetes; Clostridium spp., Bacteroides spp., Oropharyngeal commensals were

yeast Hemophilus spp., S. albus, frequently isolated in the gastric juice.
Bifidobacteria, Proteus spp., non- The microflora of gastric aspirate is
hemolytic Streptococci, S. aureus, associated with gastric pathology and
K. aerogenes, Anerobic streptococci, gastric pH. Patients with GC had higher
Veillonella spp., B-hemolytic bacterial counts and higher numbers of
streptococci; yeasts different bacterial species.

Sjostedt 10 healthy, 10 Gastric juice Firmicutes, Staphylococcus, Neisseria, Streptococcus, Patients with GC harbored the most
etal, GC Proteobacteria, Bifidobacterium, Lactobacillus, microorganisms in the stomach and
1985% Actinobacteria, Veilonella, Klebsiella, Escherichia, the highest number of species. The

Bacteroidetes; Pseudomonas, Bacillus, Bacteroides cancer patients had more non-
yeast oropharyngeal species.

Sjostedt 23 GC Gastric juice, Firmicutes, Micrococci, Staphylococci, Streptococci, The gastric pH correlated with the total
etal, tumor, and Proteobacteria, Hemophilus Neisseria, Bifidobacteria, number of microorganisms in the
1987 non-tumor Actinobacteria, Lactobacillus, Enterococci, enteric Gram-  gastric juice; significantly higher

Fusobacteria, negative bacteria, Veilonella, numbers of different strains and
Bacteroidetes Fusobacteria, Leptotrichia, Bacteroides, anaerobic microorganisms colonized
Clostridium spp.; yeast the tumor compared to the gastric
mucosa.

Kato et al, 1 gastritis, 1 GU, Gastric juice and Firmicutes, Streptococcus spp., Staphylococcus spp., Impaired gastric acid secretion associated

20067° 5 early GG, 1 biopsy Proteobacteria, Neisseria spp., Bacillus spp., Veillonella with long-term H. pylori infection
gastric Bacteroidetes, spp., Bacteroides fragilis, Fusobacterium, enabled non-Helicobacter bacteria to
adenoma, 1 Fusobacteria Lactobacillus spp., Peptostreptococcus colonize the human stomach. Higher
dyspepsia anaerobius bacterial load (100-fold) correlated with

higher pH.

GU: gastric ulcer; GC: gastric cancer; PUD: peptic ulcer disease.
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Table 2. Summary of studies examining the relationships between gastric cancer and gastric microbiota.

H. pylori
Author, year Sample size Country Microbial diversity in GC Taxon differences
Dicksved 10 GC, 5 dyspepsia Sweden No difference N/A N/A
etal,
20097
Aviles- 5 NAG, 5 IM, 5 GC Mexico  a-diversity: NAG > IM > N/A t Lactobacillus, Lachnospiraceae from NAG, IM, to GC;
Jimenez GC | Saccaribacteria (TM7), Porphyromonas, Neisseria in GC
etal,
20147
Eun et al., 11 GC, 10 IM, 10 CG Korea t a-diversity in GC vs. IM N/A t Streptococcus, Lactobacillus, Veillonella, and Prevotella in GC
201474 & CG (not significant)
Wang et al,, 6 GC, 6 CG China No difference in a- N/A t Lactobacillus, Escherichia-Shigella, Nitrospirae, Burkholderia
20167 diversity fungorum, and uncultured Lachnospiraceae in GC
Joetal, 34 GC, 29 control Korea No difference in a- and N/A 1 Actinobacteria, Staphylococcus epidermidis in GC; 1
20167° B-diversity nitrosating/nitrate-reducing bacteria in GC (not statistically
significant)
Yu et al., 80 cardia GC, 80 non- 80 China, | a-diversity in GC | | Proteobacteria, 1 Bacteriodetes, Firmicutes, Fusobacteria,
201777 cardia GC 80 (Chinese cohort), but and Spirochetes in tumor (Chinese cohort)
Mexico not in Mexican cohort
Lietal, 8 healthy control, 9 Hong Kong 1 Shannon index in GC N/A t Flavobacterium, Klebsiella, Serratia marcescens,
2017% gastritis, 9 IM, 9 GC vs. gastritis Stenotrophomonas, Achromobacter, Pseudomonas, Delftia,
| phylogenetic Ralstonia, Rhizobium, Elizabethkingia meningoseptica,
diversity in GC vs. IM Methyloversatiis, Gp4, Cytophagaceae in GC
Castafo- 12 GG, 20 dyspepsia Singapore t a-diversity in GC N/A t Lactococcus, Veilonella, and Fusobacteriaceae
Rodriguez and (Fusobacterium and Leptotrichia) in GC
etal, Malaysia
201778
Hsieh et al., 9 gastritis, 7 IM, 11 GC Taiwan N/A | t Burkholderia, Enterobacter, and Leclercia, Clostridium,
20187° Fusobacterium in non-GC; 1 Lactobacillus in GC, C. colicanis
and F. nucleatum represent diagnostic markers for GC
Ferreira discovery cohort: 81 Portugal | a-diversity in GC | t Citrobacter, Clostridium, Lactobacillus, Achromobacter, and
etal, gastritis, 54 GC Rhodococcus in GC patients
2018%
Coker et al., 21 superficial gastritis, 23 China | a-diversity in GC and N/A t oral flora, Peptostreptococcus stomatis, Streptococcus
2018%° atrophic gastritis, 17 IM vs. SG anginosus, Parvimonas micra, Slackia exigua and Dialister
IM, 20 GC pneumosintes in GC; { Vogesella, Comamonadaceae and
Acinetobacter in GC
Hu et al., 6 GC, 5 CG China | bacterial richness in N/A t Neisseria, Alloprevotella, Aggregatibacter, Streptococcus mitis
2018%' GC, but not Shannon and Porphyromonoas endodontalis in GC; | Sphingobium
diversity index yanoikuyae in GC
Liu et al., 276 GC China | a-diversity in GC | | Prevotella copri and Bacteroides uniformis; 1 Prevotella
2019%2 melaninogenica, Streptococcus anginosus and
Propionibacterium acnes
Gunathilake 288 GC, 288 control Korea | a-diversity in GC t t Prevotella copri and Propionibacterium acnes in GC; 1
etal, Lactococcus lactis in controls
2019%
Park et al., 55 GC, 19 IM, 62 CG Korea N/A N/A t Rhizobiales in IM vs. gastritis; 1 Cyanobacteria in H. pylori-
20198 negative CG patients
Wu et al., 18 GC, 32 superficial China | a-diversity in GC N/A 1 Dialister, Helicobacter, Lactobacillus, Rhodococcus, Rudaea
2020% gastritis and Sediminibacterium in GC; 18 genera were depleted in
GC; | Bradyrhizobium and Mesorhizobium in tumor vs. non-
tumor
Gantuya 48 GC, 120 control (20 Mongolia  a-diversity: normal > IM | } Enterococcus, Lactobacillus, Carnobacterium,
etal, healthy, 20 gastritis, 40 > GC > gastritis and Glutamicibacter, Paeniglutamicibacter, Fusobacterium, and
2020%¢ atrophy, 40 IM) atrophy Parvimonas in GC

GC, gastric cancer; CG, chronic gastritis; NAG, non-atrophic gastritis; IM, intestinal metaplasia; N/A, not available.

provided this result without a supporting statistical
analysis.”* Castafio-Rodriguez et al. utilized an
RNA rather than DNA-based analysis and their
findings cannot be directly compared with other
studies.”® In addition to sample size and differences
in methodology, Cocker et al. and Stewart et al.
concluded that the discrepancies in the published
studies may result from demographic characteris-
tics, including gender, age, H. pylori infection sta-
tus, and ethnicity.***’

Previously published studies show reduced
H. pylori abundance in tumor tissue compared
with adjacent non-neoplastic areas,”””””**>%% sug-
gesting that bacteria other than H. pylori
may play a role in the development of gastric
cancer. To determine whether changes in gastric
microbiota play a role in the development of
gastric cancer or are secondary to the changes in
the gastric environment, studies of rodent model

systems have helped to identify important drivers
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Figure 1. The interplay between Helicobacter pylori and gastrointestinal (GI) microbiota.

(A) Case-control and epidemiology studies demonstrated H. pylori infection is inversely associated with Barrett’s esophagus and
esophageal adenocarcinoma. Studies suggest that the healthy esophagus is associated with a Type | microbiome, which is dominated
by Streptococcus, while Barrett's esophagus is associated with a Type Il microbiome, containing a lower relative abundance
of Streptococcus and a greater proportion of Gram-negative bacteria. Whether H. pylori directly or indirectly influences the esophageal
microbiome, and the relationship between H. pylori, Barrett’s esophagus, esophageal adenocarcinoma, and the esophageal micro-
biome still needs to be elucidated. (B) Schematic plot presentation of the influence of H. pylori on gastric and colonic microbiota. In
healthy, non-inflamed mucosa, the gastric mucosa comprises a thick layer of mucus, which serves as a protective barrier and as a highly
diverse, specialized niche for colonization of gastric microbiota. In H. pylori—positive patients with chronic (atrophic) gastritis,
Helicobacter dominates the gastric mucosa, resulting in reduced microbial diversity. Other bacteria, like Streptococcaceae,
Fusobacteriaceae, and Prevotellaceae, may be present to a lesser extent. After a long period of co-infection and co-colonization,
combined with the presence of risk factors that determine the gastric dysbiotic parietal cell loss with an increase in pH, the innate
immune response and gastric microbiota interactions promote the progression of pre-neoplastic lesions. In the later stages of
carcinogenesis, ranging from intestinal metaplasia to gastric adenocarcinoma, a reduction or depletion of H. pylori is seen in the
gastric mucosa. In gastric cancer, microbial diversity is reduced, and oral or intestinal-type bacteria are enriched. (C) In chronic H. pylori
infections, the H. pylori—experienced dendritic cells retain a semi-mature phenotype and induce immunosuppressive regulatory T cell
(Treg) differentiation, rather than Th1 or Th17 cells from naive ThO cells.”*'*¢'3” Tregs produced in the gastric mucosa are trafficked to
other lymphoid tissues in distant organs to exert a systematic immunoregulatory effect that influences the pathogenesis of various
immune-related diseases, such as asthma and inflammatory bowel disease.'*®'3¥40*! The immunoregulatory effect induced by H.
pylori strengthens the host’s resilience against microbiome perturbations and may result in increased colonic microbiota diversity.
Additionally, chronic H. pylori infection alters the acidic environment in the stomach, permitting more microorganisms to pass through
the gastric acid barrier and colonize the distal gut. The gut microbiota may also induce Tregs and in turn, regulate H. pylori-associated
immune responses, which includes complex crosstalk between H. pylori and colonic microbiota.
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and modifiers of diseases related to the micro-
biome. Studies using the insulin-gastrin (INS-
GAS) transgenic mouse model demonstrated
that mice infected with H. pylori together with
the colonization of commensal flora developed
more severe gastric lesions and had earlier devel-
opment of GI intraepithelial neoplasia compared
with H. pylori-infected germ-free INS-GAS mice,
highlighting the idea that the gastric microbiota
may participate in the cascade of events leading
to gastric cancer following H. pylori
infection.*””° Although a consensus has not yet
been reached regarding the dominant bacteria
potentially involved in human gastric cancer
development, an increase in several oral and
intestinal commensal bacteria has been reported
in several studies. Ferrairi et al. reported the
enrichment of Achromobacter, Citrobacter,
Lactobacillus, Clostridium, Rhodococcus, and
Phyllobacterium in gastric cancer microbiota.*®
Using a co-occurrence/co-exclusion network
analysis, Coker et al. identified the enrichment
of Peptostreptococcus stomatis, Streptococcus
anginosus, Parvimonas micra, and Slackia exigua
in gastric cancer and determined that Dialister
pneumosintes was crucial to the gastric cancer
occurrence network, and these findings were suc-
cessfully validated in the Inner Mongolian
cohort.*

The majority of the reported studies are based on
cross-sectional comparisons of individuals with and
without histological changes in the gastric mucosa.
This approach only provides a unique snapshot in
time, which does not allow us to derive information
about gastric carcinogenesis. A recent systemic review
failed to find significant differences in microbiota
profiles between individuals with superficial gastritis,
atrophic gastritis, and IM.*® Defining a gastric cancer
microbial signature without considering the under-
lying mechanism of the ensuing dysbiosis provides
a limited perspective with limited therapeutic poten-
tial. A recent study carried out in Shandong, China
analyzed 102 paired gastric biopsy samples taken
before and one year after H. pylori eradication.”®
Sung et al demonstrated Roseburia and
Sphingomonas were depleted in patients with persis-
tent inflammation one year after H. pylori eradication.
The emergence and persistence of gastric atrophy and
IM one year following H. pylori eradication were

associated with a cluster of oral bacteria comprising
Peptostreptococcus,  Streptococcus, ~ Parvimonas,
Prevotella, Rothia, and Granulicatella. This study sup-
ports the hypothesis that the presence of H. pylori
provides various microbiome niches contributing to
gastric cancer development. A larger multicenter,
multicultural, prospective study focusing on the gas-
tric microbiota during gastric carcinogenesis is war-
ranted to validate the results and to explore
underlying mechanisms.

Helicobacter pylori and colonic microbiota

The microbial component of the human digestive
tract is at its highest in the colon, with nearly a 10’-
fold increase in number compared with the
stomach.” The GI tract is a complex and dynamic
network with interplay between intestinal epithelial
cells, the immune system, food, host metabolism, and
commensal microbes. Numerous studies have
attempted to define the microbial signatures of var-
ious diseases and possible microbial therapeutic inter-
ventions. Considering the commensal microbiota and
the host form a unique entity in a continuum along
the GI tract, any changes in the GI microenvironment
may influence the homeostasis of the entire system.
The studies described in the previous section reveal
that H. pylori colonization has a great impact on the
gastric microbiome. Nevertheless, the effect of
H. pylori on colonic microbiota remains largely
unexplored.

Helicobacter pylori and colonic microbiota in rodent
models

Theoretically, H. pylori may influence colonic
microbiota through crosstalk with the host immune
system or through changes in the local gastric
environment. Kienesberger et al. infected neonatal
C57Bl/6 mice with H. pylori strain PMSS1 at four or
six weeks of age. The study demonstrated that
H. pylori not only influences the gastric microbial
community structure but also has systemic effects
and alters the distal gut microbiota.”” Studies have
shown H. pylori infection acts as an immunoregu-
lator of regulatory T cell induction through the
downregulation of IL-18 in H. pylori-infected
mice, which results in immunotolerance and the
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facilitation of H. pylori persistence.”>*> H. pylori
may regulate microbial composition in the distal
intestine in a similar fashion. The most significant
route of impact would possibly be through
H. pylori-induced hypochlorhydria in the stomach.
It is plausible that hypochlorhydria may promote
the entrance of acid-sensitive bacteria into the dis-
tal GI tract, resulting in the alteration of the colonic
microbiome. Heimesaat et al. investigated the GI
microbiota changes in Mongolian gerbils after
14 months of infection with H. pylori and reported
distinct shifts in microbiota composition of the
distal uninflamed GI tract of wildtype H. pylori-
infected animals.”* Gastric immunopathology with
reduced gastric acid and hypergastrinemia during
H. pylori infection has been put forward as
a hypothetical explanation for the distal gut micro-
biota changes. Additionally, reduced leptin and
ghrelin secretion in H. pylori-infected individuals
may indirectly influence the GI microenvironment
by modulating gastric acid secretion and the
immune response, which in turn alters the micro-
bial composition of the GI tract.”>”>"”

Helicobacter pylori and colonic microbiota in
humans

Compared to studies investigating the effect of
H. pylori on human gastric microbiota, relatively
few studies have addressed the influence of
H. pylori on colonic microbiota (summarized in
Table 3, Figure 1(b)).*7>*+%8-112 Most studies have
focused on the consequences of H. pylori eradica-
tion therapy.”®'"" Earlier studies using culture-
based approaches”®'” or fluorescent in situ
hybridization” suggested different compositions
of gut microbiota among H. pylori-infected and
uninfected individuals. Biihling et al. and
Myllyluoma et al. concluded that the total number
of anaerobes was significantly lower in H. pylori-
positive individuals compared with H. pylori-nega-
tive individuals.”®”” The advent of culture-
independent approaches, high-throughput sequen-
cing coupled with advances in computational
methods, have enabled genome-wide dissection of
H. pylori and gut microbiota interactions. Eleven
studies have assessed the gut microbiota in
H. pylori-infected individuals (Table 2). The

majority of these studies were in Asian populations
and children were included in three studies.
Microbiota composition was assessed from fecal
specimens by DNA amplification (in nine studies)
or by shotgun sequencing (in one study).”* One
study used reverse-transcribed RNA for 16S rRNA
gene sequencing to assess microbial communities

; . . 47
in fecal and colon biopsy specimens.

Except for one study,'"

higher54,101,106,108,110 or unchange
alpha diversity indices from the gut microbiota of
H. pylori-infected individuals compared to
H. pylori-negative controls. The two largest cohorts
enrolled 214 H. pylori-infected Japanese participants
and 212 H. pylori-infected German participants and
both showed higher alpha diversity compared with
matched H. pylori-negative controls,"*>''" while
Wang et al. reported no differences in alpha diversity
indices between 128 H. pylori-infected individuals
and 158 H. pylori-negative controls."”” High micro-
bial diversity is usually regarded as an indicator of
a healthy gut microbiome, while a reduction in diver-
sity is associated with poorer health or diseases. The
reason why H. pylori infection is associated with
higher diversity is not fully understood. It may reflect
the fact that H. pylori is ancestral and has co-evolved
with humans over tens of thousands of years.* It has
been suggested that H. pylori infection strengthens the
host’s resilience against microbiome perturbations or
Gl infections, which results in higher fecal microbiota
diversity in hosts."'® Another possible explanation for
this phenomenon is that chronic H. pylori infection
alters the acidic environment in the stomach, permit-
ting more microorganisms to pass through the gastric
acid barrier and reach the distal gut.

Seventeen studies reported differences when com-
paring fecal microbiota compositions of H. pylori-
infected and non-infected individuals. Among thir-
teen studies using NGS technology, six studies
observed differences in beta diversity between
H. pylori-infected and non-infected
populations,”*'”19- 11 while five studies showed no
differences in fecal microbiota
composition, ! *+19>19812 1t is possible that the
small sample size of the studies left them statistically
underpowered, and potential differences in micro-
biota composition between groups would be difficult
to detect. Chen et al. conducted the first study

most reports show
d47,104,105, 107,109



employing NGS technology to assess fecal microbiota
composition in patients infected with H. pylori." The
study revealed a significant difference of 22 bacterial
genera between H. pylori-positive and negative popu-
lations. However, the differential taxa of colonic
microbiota between infected and uninfected groups
have not been well characterized in the published
literature (Supplementary Table 1). A higher abun-
dance of Haemophilus, Howardella, Gemella, and
Streptococcus, alongside a lower abundance of
Pseudoflavonifractor, Fecalibactrium, Ruminococcus,
and Eubacterium ventriosum in fecal samples has
been reported in H. pylori-infected patients
(Supplementary Table 1). The inconsistency in differ-
ential taxa in fecal microbiota associated with
H. pylori infection may reflect the heterogeneity of
age, ethnicity, dietary habits, and gastric pathology in
the study populations. Iino et al. demonstrated that
Streptococcus was significantly more abundant in feces
of H. pylori-infected individuals with severe gastric
atrophy, compared with that in H. pylori-infected
individuals without atrophic gastritis.'® This suggests
H. pylori infection and the extent of gastric mucosal
atrophy may affect the composition of the gut micro-
biota in Japanese populations. In addition, Gao et al.
showed that alterations in the fecal microbiota, espe-
cially the dominant phyla of Bacteroidetes,
Firmicutes, and Proteobacteria, may be associated
with H. pylori-related gastric lesion progression in
a Chinese population.'™ The impacts of gastric
pathology severity on fecal microbiota require further
investigation because the evidence is still limited.

Colonic microbiota and consequences of H. pylori
eradication

Antibiotics break the homeostasis of gut microbiota
and result in short-term alterations in the healthy
gut microbiota and potentially long-lasting changes
in its composition and function.''”> One of the ways
that H. pylori influences the colonic microbiome
would be through H. pylori eradication therapies.
Jakobsson et al. revealed that a short-term antibio-
tic treatment for H. pylori eradication delivered
a profound insult to the GI flora and resulted in
a perturbed oral and colonic microbiome observed
one week after treatment and persisting up to four

GUT MICROBES (&) 190945911

years later.''® Several articles have reported short-
term and long-term changes in gut microbiota after
H. pylori eradication and are reviewed and sum-
marized in Table 4 and Figure 2.°%>>!0b112116-124
Most of the studies used triple therapy or bismuth
quadruple therapy. The short-term changes in gut
microbiota after these therapies have been reported
in nine studies wusing culture-independent
approaches.”®'0bH>1197124 ATl of these studies
showed significant perturbations in the diversity
and composition of gut microbiota immediately
after H. pylori eradication. Long-term changes
(over six months) were reported in seven studies,
although most had low numbers of cases. Of the
seven studies that assessed the long-term changes
in gut microbiota at least six months after H. pylori
eradication, most reported full recovery of bacterial
diversity. However, He et al. reported higher alpha
diversity after eradication therapy in children,™
and the largest cohort from Liou et al. demon-
strated reduced alpha diversity one year after era-
dication therapies in patients that received
regimens containing metronidazole (quadruple
therapy or concomitant therapy).'*” Additionally,
some studies observed notable changes in abun-
dance at the genus level over six months following
H. pylori eradication. A recent meta-analysis com-
pared the taxa changes at three different follow-up
periods after H. pylori eradication.'” In general,
Actinobacteria populations decreased compared
with baseline levels. Proteobacteria populations
increased during short-term follow-up and then
returned to baseline levels. Enterobacteriaceae and
Enterococcus increased in the short-term and
interim follow-up. However, there were no consis-
tent changes in Firmicutes, Bacteroidetes,
Bifidobacterium, or Lactobacillus, probably due to
sample size, ethnicity, and eradication regimens.
In summary, the human digestive tract is a complex
ecosystem and H. pylori infection alters not only gas-
tric acidity but also host-microbe interactions, which
may result in changes in colonic microbiome compo-
sition. Antibiotics are a double-edged sword. The
antimicrobial agents (including bismuth) used for
H. pylori eradication and gastric cancer prevention
have direct effects on the colonic microbiota during
short-term and possibly also long-term evaluations.
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Figure 2. The impact of Helicobacter pylori eradication on the gut microbiome.

Significant perturbation of the diversity and composition of gut microbiota develops soon after H. pylori eradication. The microbial
diversity recovers during the follow-up, but there is not yet sufficient data to confirm the changes in alpha diversity that occur at the
long-term follow-up. There is a reduction in Actinobacteria, relative to baseline, throughout the follow-up. Proteobacteria have a
higher relative abundance at the short-term follow-up, which then returns to normal. Only during the long-term follow-up was a

reduction in Bacteroidetes and a rise in Firmicutes evident.

Helicobacter pylori, gut microbiota, and H. pylori-
related extragastric disease

H. pylori has been associated with multiple extra-
gastric diseases, such as cardiovascular diseases,
neurological diseases, obesity, metabolic syn-
dromes, and  chronic  immune-mediated
disorders."*® The underlying pathogenic mechan-
isms are not yet understood. The gut microbiota are
involved in nutrient absorption, metabolism, and
development and stimulation of the host immune
system and digestive tract. It is hypothesized that
gut microbiota may play a role in H. pylori-asso-
ciated diseases. A large-scale cross-sectional study
in Japan demonstrated significantly higher low-
density lipoprotein levels and significantly lower
high-density lipoprotein levels in men who were
H. pylori seropositive, compared with H. pylori ser-
onegative men.'?’ Studies have shown a significant
increase in body mass index and body weight after
eradication of H. pylori,"*>'*® which may be par-
tially explained by the restoration of ghrelin secre-
tion, the relief of dyspepsia,”” or a reduced
Bacteroidetes-to-Firmicutes ratio.” In contrast to
weight gain, studies showed improvement in

insulin resistance, fasting glucose, total cholesterol,
and triglyceride levels following eradication
therapy.'**"** The improvement in these metabolic
parameters may be attributed to gut microbiota
alteration. He et al. demonstrated H. pylori infec-
tion resulted in alterations of gut microbiota and
metabolic phenotypes consistent with those
observed in a high-fat diet mouse model."*" This
study suggests there is complex crosstalk between
H. pylori and the microbiota. Treatment of H. pylori
may be beneficial for patients with impaired glu-
cose tolerance in addition to diet control.

As for autoimmune disorders, there is growing
evidence that H. pylori may protect hosts from
chronic immune-mediated disorders such as
asthma,” atopic disease,””” and inflammatory bowel
disease,*>"** which have been previously attributed
to the activation of Th1 cells and inhibition of the Th2
allergic response by H. pylori.'’

An animal study showed that gut microbes
belonging to the families Turicibacteraceae,
Erysipelotrichaceae, and Desulfobirionaceae, which
have been linked to changes in the host immune
response, are influenced by the presence of



e1909459-14 (&) C.-C.CHEN ET AL,

H. pylori in mice.”> Evidence suggested that the
maturation of the human gut microbiota progresses
by accruing microbes, followed by subsequent
development and enrichment of the microbiome
ecosystem throughout early childhood.'*® Chen
et al. identified a negative association between
H. pylori and asthma only in the younger age
group of children 3-13 years old.” Malaty et al.
examined the age of H. pylori seroconversion in
a prospective cohort and suggested the peak period
for newly acquired H. pylori infection was highest
among children aged 4-5 years.">® Since the gut
microbiome gradually develops its structure and
function during childhood,"” further exploration
is required to determine whether H. pylori by itself
or in combination with the gut microbiota altered
by infection protects the host against chronic
immune-mediated illnesses. Targeted studies
examining the impact of H. pylori during early
childhood are urgently needed to help address its
specific role in subsequent microbial colonization.

Conclusions

The advances in GI microbiota research allow inves-
tigators and clinicians to explore the role of the micro-
biome in various diseases including, but not limited
to, GI diseases. Culture-independent techniques, par-
ticularly those based on high-throughput or NGS
technology, have revolutionized our knowledge of
the GI microbiota. H. pylori, as one of the most
important microbial members of the human GI
tract, has been a significant focus for a long time due
to its importance within the pathophysiology of peptic
ulcer disease and gastric cancer. It is undisputed that
significant differences exist in the microbiota of indi-
viduals with different gastric pathology, atrophic gas-
tritis, IM, and gastric cancer, highlighting that
dysbiosis in the stomach is a dynamic process and
correlates with gastric carcinogenesis. The gastric can-
cer microbiota has drawn researchers’ attention and
has been found to be enriched with intestinal or oral
taxa. However, most studies on gastric microbiota and
gastric cancer development are retrospective and cor-
relational in nature. Longitudinal and prospective
studies are needed to identify the presence of specific
bacterial species or microbial consortia and the
underlying pathways as the microbiota changes dur-
ing gastric cancer carcinogenesis. It is possible that the

presence of certain changes could be used to develop
biomarkers to monitor disease progression and to
develop disease-modifying therapies to manipulate
the gastric microbiota and prevent the risk of devel-
oping gastric cancer.

The GI tract is a complex and dynamic ecosystem
with interplay between various gut mucosal cells and
their defense molecules, the immune system, food
particles, and resident microbes. The harsh acidic
environment of the stomach serves as a gated
entrance to the GI system. H. pylori infection reduces
gastric acid and changes the gastric microenviron-
ment, which may in turn influence subsequent GI
commensal microbiota colonization. Scientific efforts
have been focused on the benefits of treating and
eradicating H. pylori, and its relative absence provides
us an opportunity to investigate a more complex gut-
microbial-host-immune/metabolic axis. The current
investigations on the complex crosstalk between
H. pylori and the gut microbiota are far from con-
clusive. Most of the studies have been association
studies and the exact underlying mechanisms need
to be unraveled further. Longitudinal studies with
a focus on the gut microbiota and host phenotype
changes during H. pylori infection in humans are
missing, as well as studies specifically evaluating the
possible long-term effects of eradication therapies on
the GI microbiota. Multiomics approaches employing
shotgun sequencing or long-read sequencing technol-
ogy, in combination with metabolomics, are needed
to clarify the long-term implications of gut microbiota
and host physiology alterations following H. pylori
eradication. The newly acquired knowledge in this
field will provide insight into host-microbial crosstalk
and will make microbial-directed therapies against
diseases possible.
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