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Abstract

Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For
example, many social networks attach geo-location information to each user, allowing the study of not only topological
interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances
are associated with a cost, which may subtly influence the topology of the network. However, the cost function over
distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we
introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach
represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast
to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes
involved. For example, a node’s specific surroundings (e.g. network structure and node density) may make it more likely to
form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to
each node which represents a node’s spatial reach. These variables are inferred from the network structure using a Markov
Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial
networks (e.g. transportation, biological, infrastructure, and social). We apply our model to the task of link prediction and
achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we
show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see
much larger improvements over previous models.
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Introduction

Network analysis has been successfully applied to several

scientific fields of study including sociology [1–3], information

science [4,5], and ecology [6,7]. In many cases, the spatial

configuration of nodes is paramount in analyzing a network as it

plays a significant role in the formation and maintenance of links.

Despite the important relationship between space and structure,

many models and analyses are limited to only the network

topology. Obviously such models fail to capture important spatial

properties inherent in the data [8–10]. For example, in

transportation networks, it is more economical to create short

links between nodes [11,12]. Similarly, users in a social network

are more likely to form links based on physically proximity because

they have more interaction opportunities [3,13].

Although a plethora of spatial network models have been

introduced in the literature (e.g. [3,14–18]), they assume that there

is only one global link-cost function over the entire network, and it

is a function only of distance. For instance, the exponential

distance model [15,18] defines the probability of node i connecting

to node j as p(Aij~1)~
kikj

Z
exp({dij=d̂d), where the single

parameter, d̂d , is set to the average pairwise distance between all

nodes that share a link. Such models assume that the only node-

specific influence on forming connections is the degree.

We test the fit of an exponential distance decay function on four

real-world spatial networks: C. elegans neuron connections, social

connections between users in Gowalla (a social photo sharing

service), Internet server connections within California, and an

airline transportation network for the United States (details

provided in table 1). We show the distribution of the pairwise

distances of connected nodes in figure 1, as well as a maximum

likelihood fit to an exponential distribution. Although we see that

only the Gowalla network potentially fits well to an exponential

distribution, we perform a Kolmogorov-Smirnov (KS) test on each

network to quantitatively test the fit. In fact, all of the networks

reject the null hypothesis (that the data come from the same

distribution) with p-values 4:6e{152 (C. elegans), 2:2e{6 (Gowalla),

1:7e{55 (CA Internet), and 5:2e{29 (US Airline).

Additionally, the C. elegans and CA Internet networks contain a

small second mode in the tail of the distribution, caused by areas of

heavy spatial clustering of the nodes. This tight interaction

between the spatial distribution of nodes and the likelihood of

observing long-distance connections makes it difficult to describe

the distance with a single function over the entire network.

In this paper, we investigate the variable effects of distance on

individual nodes and how this influences network topology. To
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model these effects we combine ideas from previous spatial

network models [15,17,18] with latent parameter models [19,20].

We capture the effect of distance on each individual node’s ability

to form links of various lengths by attaching a latent radius

parameter to each node. Furthermore, we extend this idea by

adding a second node-specific latent variable which captures

space-independent community structure. Our experiments show

that our model achieves up to 35% improvements over other

methods in the task of link prediction (in terms of area under the

ROC curve). Moreover, we see the most significant improvements

(up to 80%) when predicting links between nodes with low degrees,

where many link prediction techniques fail.

Related Work

The development of mathematical models of network structure

has played an important role in advancing the area of network

science [4,5,21–25]. In this section we review the relevant research

work in the areas of spatial network models and analysis and

statistical network models.

Spatial Networks
The existing work on modeling spatial networks can be split into

three general types of models: (i) Waxman models, (ii) geometric

models, and (iii) preferential attachment and scale free spatial

models. Perhaps the earliest model to incorporate the pairwise

distance between nodes into the probability of a link was the

Waxman model [26]. Specifically, the authors proposed that the

probability of a link is proportional to Be{dij=L, for some constant

B and scaling coefficient L. The Waxman model can be construed

as the spatial equivalent of the Erdos–Renyi random graph model

(ER) [22] since as L??, the model converges to the ER

attachment model. While this spatial model has been shown to

replicate some real world networks (e.g. [27]), it fails to capture the

preferential attachment that has been observed in a variety of

networks [4,5,11,12].

The class of geometric models, describe the probability of a link

forming between two nodes as a function of distance which

approaches one as the distance between two nodes decreases.

Typically the probability of attachment is formulated as a logistic,
1

1ze{A(dijzB)
, where A is a scale parameter controlling the slope of

the logistic and B controls the shift of the function. Pure geometric

networks, where an edge between two nodes exists if the distance is

less a certain threshold, can be considered a special case of a

logistic function with A??. Many works have studied the

theoretical network statistics of these thresholded graphs under the

assumption of uniform spatial distribution [28,29]. Additionally,

Wong et. al. [3] propose a similar logistic spatial model for social

networks that replicates several statistic of real world networks.

Several existing network models have been adapted to

incorporate spatial information as well. Typically, the probability

of attachment in these networks is proportional to kie
{dij=L or

kid
A
ij , such that one is able to generate random networks with a

given expected degree distribution, where the probability of any

two nodes forming a link decays exponentially or as a power law

with distance [14,18]. Properties of these networks have been well

studied [30–32], particularly that as L and A vary, the structure of

the spatial networks can change from scale–free networks with

little clustering to large networks with intense clustering [30].

While these models are adept at modeling the evolution of

complex spatial networks such as the Internet [33], they still

assume a homogeneous spatial effect throughout the network.

In addition to modeling, several authors have studied the

structural properties of spatial networks and understand the role

that space plays in the network topology. Specifically, there has

been a large amount of work merging traditional network models

with spatial models, and determining how these network models

change under spatial constraints [8–10,14,30,34,35]. For instance,

in [10], the authors discuss how scale–free networks can be

analyzed in a geometric space. The resulting models can be

applied to several types of data to analyze the structural properties

and provide insight into the link creation process. Such analyses

are especially important in understanding biological networks

[27,36].

The distribution of nodes in space also affects the types of

connections, and therefore the global structural properties of a

spatial network. Bullock et al. [37] discuss several properties of

Figure 1. Distribution of the pairwise distances between linked nodes along with a maximum likelihood fit to an exponential
distribution.
doi:10.1371/journal.pone.0071293.g001

Table 1. Properties of the real-world spatial network datasets
we examine in this paper [59].

Name Type Nodes Edges Area
Index of
dispersion

C. elegans Biological 277 1,918 0.012 mm2 7.163

Gowalla Social 600 340 776,000 km2 23.098

Internet Infrastructure 501 2,661 809,000 km2 11.317

US Airline Transportation 476

2,773 16,140,695 km2 1.564

The last column refers to the index of dispersion, a measure of complete spatial
randomness (CSR) of the nodes [65]. Values close to 1 indicate that the nodes
are likely to be distributed uniformly over the space, whereas values greater
than 1 result from too little dispersion (e.g. nodes tend to cluster in space).
doi:10.1371/journal.pone.0071293.t001
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spatial networks and how the spatial distribution of the nodes

effect these properties. For instance, when nodes are distributed

uniformly in a given space, there is a sharp phase transition in the

size of the largest component of the network, whereas nodes

distributed in an inhomogeneous manner, exhibit a smooth

transition in the number of connected components and their

sizes. Additionally, Voges et al. [38] study the network properties

(e.g. degree correlation, shortest path length, cluster coefficient,

and spatial concentration) of networks embedded into a lattice.

The authors experimented by adding some jitter to the node

positions and studying the resulting of network statistics. They

found that these properties are very sensitive to the randomness of

the node locations. This further corroborates the importance of

including the spatial properties of networks when studying their

structural properties.

Beyond analyzing the structure of spatial networks, recent

approaches to community detection in spatial networks propose

new null network models, based on gravity models [39], which are

implemented within the modularity framework [40]. The idea is to

incorporate the pairwise distance between nodes into the

expectation of whether or not a link exists between them, thus

more accurately representing the spatial network structure [15,17].

In Cerina et al. [15], the authors propose a model in which the

probability of a link forming between two nodes declines

exponentially as the distance between them increases. In Expert

et al. [17], the authors build an empirical distribution of the

probability of connection conditioned on the distance from the

observed network and use that to weight the connection

probability. In both cases, the authors assume that the effect of

distance remains constant throughout the entire network. Both of

these models have shown to improve community findings in spatial

networks over the originally proposed null model (i.e. the

configuration model:
kikj

2
P

t kt

).

In addition to descriptive modeling, Lennartsson et al. [41]

introduce SpecNet, a general spatial network model that is capable

of generating networks with a full range of values for clustering

coefficient, degree assortativity [42], and fragmentation index.

Whereas previous models were only able to create networks with a

very limited range of possible statistics, SpecNet is able to produce

networks that can nearly cover the range of possible theoretical

values for such measures. Such generative models provide a more

concrete link between the various components of the network and

how these relate to the structural properties.

Latent Parameter Network Models
Hoff et al. [19] introduce a latent space approach for modeling

social networks. The authors construct a model in which the

objective is to infer node positions in a latent social space such that

links are more likely between nodes that are close together in this

latent space. In fact, given each nodes’ location in this latent social

space, all of the network links are conditionally independent. This

model is able to effectively represent a large number of social

networks due to its ability to capture homophily. That is, nodes

close together in latent space typically have similar distances to

other nodes as well. Others have introduced interesting theoretical

properties of this model as well as offered their own extensions

[43–45]

Additionally, Hoff et al. [20,46,47] have further developed more

general latent factor models which have been shown to generalize

[19]. In [20,47], the basic idea is to model network connections as

yi,j!bXzuDuT , such that each link is a function of a set of

covariates as well as a low rank approximation of node-wise

random effects. The authors show that this model weakly

generalizes the latent space and class models previously proposed,

and provides high quality predictions for a wide variety of

networks (e.g. social networks, word relationship networks, and

protein interactions). In contrast, our objective in this work is to

separate the set of dependent variables such that we isolate the

spatial term from the others. As our hypothesis is that spatial effects

vary over the network, we want to study the effect on each node in

the original space.

Related are the class of exponential random graph models or p�

graphs [48,49]. The p� model is a probability distribution over

networks that takes the form: p(Y Dh)~
exp(hs(y))

c(h)
, where Y is the

adjacency matrix of the network, s(y), is a vector of sufficient

statistics over the network, h is a vector of parameters, and c(h) is a

normalization term which depends on the parameter vector.

Because the statistic vectors, s(y), are collected over the entire

network, p�, models are often used to capture complex interactions

in social networks. However, this flexibility comes at a severe cost

in that the normalization constant is typically intractable,

containing a sum over an exponential number of parameter

configurations, greatly complicating parameter estimation and

inference algorithms for these models [48].

Lastly, block models are another form of latent variable models,

often used for community detection, in which each node is

associated with a latent group parameter such that nodes are more

likely to form connections within a group than between groups

[50–52]. These models assume nodes fall into equivalence classes

such that the probability of a pair of nodes connecting is

conditionally independent given the latent group identifiers of

nodes. The inferential problem is then to compute the latent class

identifier for each node, given the network structure. For a more

Figure 2. Illustration of how the radii summarize the local network and spatial structure for each node.
doi:10.1371/journal.pone.0071293.g002
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comprehensive survey of the work in this area, we refer the reader

to [1].

Additionally, there has been research in embedding complex

networks into an underlying, often hidden, metric or geometric

space [53–57]. For example, Papadopoulos et al. [56] introduce a

geometric interpretation of the preferential attachment model.

The authors embed a network into a geometric space, and

introduce a model that combines node similarity, defined by

closeness in space, and popularity in order to compute linkage

probabilities. As a new node is added to the network, it selects a

subset of existing nodes to which it will connect proportional to the

hyperbolic distance between the nodes [58]. This ensures that

nodes connect to others which are not only popular, as in the case

of preferential attachment, but also similar, as defined by their

pairwise distance. As with other latent variable models, these

approaches aim to embed an observed network into a hidden

space such that pairwise distances capture node similarity whereas

our objective in this work is to understand the relationship

between node distances in their true Eulidean space with the

resulting network structure.

Methods

In this section we introduce a novel probabilistic model for

analyzing spatial networks in which spatial effects are captured at

the level of individual nodes. To capture the variable effects of

space throughout the network, we introduce a latent, positive real-

valued, parameter referred to as the radius at each node. We

introduce two models which incorporate this idea, Radius and

Radius+Comms. The first model, Radius, only models the node-

specific spatial effects and node popularity. The second model,

Radius+Comms, adds a component to capture community structure

within the network which cannot be explained by factors

incorporated in the Radius model.

Figure 2 illustrates how the radius summarizes the local

structure and node density in the Radius model. First, we notice

Figure 3. Illustration of how the radii from different nodes interact with each other and the pairwise distance to determine the
existence of an edge.
doi:10.1371/journal.pone.0071293.g003

Figure 4. The different mechanisms that may influence the probability of a connection between two nodes. In each of the instances,
the distance from node A to B and from node C to B are equal. In figure (a) the link probabilities are determined by the combined radii of the nodes. It
is much more likely that nodes B and C will form a link due to their radii. In figure (b), the probably of a link between nodes A and B increases because
node A is a hub (i.e. high node degree), even though it still has a small spatial reach. In figure (c), nodes A and B have a high probability of forming a
link because they are both in the same community. In contrast the probability of a connection between B and C is reduced because they are in
different communities.
doi:10.1371/journal.pone.0071293.g004
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the tight cluster of nodes, A{F , all have fairly small radii. This is

because these nodes only share links with a small subset of other

nodes within the cluster, thus there is a strong penalty for growing

the radius of any node too large. Second, we see that although

node G has only one connection, it exhibits a large radius. This is

due to the observed connection with node B and the fact that B’s

radius is restricted by node A. Given the low degree for each of

these nodes, node G’s radius must overcome the distance gap to

node B in order to explain this connection. Lastly, we see that

although there is a connection between nodes C and D, there is a

significant gap between the nodes’ radii. This is due to the fact that

node C has a relatively high degree, thus this connection can be

partly explained away, reducing the constraints on the radii. Note

that we omit uncertainty in the size of the radii here for clarity,

though we would expect that the radii of nodes in dense regions to

have lower variability and nodes in regions of low density to have

higher variability.

Throughout this work, we assume that we are given as input a

spatial network. A network is represented by the adjacency matrix,

A, where Aij~1 if there is a link between nodes i and j. The

pairwise distances between nodes is given by the matrix, D, such

that Dij is the Euclidean distance between nodes zi and zj . The

degree, or importance, vector for the nodes, K, is considered in our

model as a constant (since it is always conditioned upon) and

provides a measure of how likely it is that this node will take part in

newly formed links given its current popularity. That is, since our

objective is to predict new potential links given a partially observed

network, we do not enforce ki~
P

j=i Aij on the inferred values of

Aij .

Basic Spatial Model: Radius
The Radius model is based on the idea that space may influence

each node differently. The model consists of two terms, (i) a spatial

term which favors creating a link between nodes when their

radius-corrected pairwise distance is small and (ii) an observed

popularity term which, all things equal, favors linking nodes that

already have many connections. We combine both of these terms

within the logistic function since the output is interpreted as the

probability of an edge existing between two nodes (i.e. a binary

outcome, either an edge exists: Aij~1, or it does not: Aij~0). The

probability of a link is defined in Eq. 1.

p(Aij jri,rj ,Dij ,K ,a,c)

~
1

1zexp {
1

a
(rizrj{Dij)z

1

c

kikjP
z kz

{M

� �� � ð1Þ

The first term,
1

a
(rizrj{Dij), describes the propensity of a pair of

nodes to form a link given their (latent) radius parameters and the

distance separating them. Although it is more costly to form long

distance links in general, the radii can reduce or even completely

overcome this cost. The scale parameter, a, controls the strength of

the distance term on the overall link probability. This parameter

also allows the model to automatically adapt to networks at

different scales.

Figure 3 illustrates the role of the radii in forming a link between

two nodes separated by distance, Dij . Although nodes may be

separated by a large distance, if the combined radii can make up

for this distance, or at least reduce it, a link between these nodes

becomes more likely. That is, we assume a simple linear

relationship between radii and pairwise distance: Dij{rizrj .

Since we would like to predict the output of 0=1, depending on

whether an edge exists or not, we place this term into a logistic

function.

The second term describes the propensity of nodes to form links

with popular nodes (i.e. nodes with a large degree). This is the

standard term considered in configuration-based models [40] for

adding network edges in a manner that is proportional to the

current node popularity (i.e. the rich get richer). The constant M is

defined as the midpoint between the average combined degrees of

the set of pairwise nodes that share an edge and those that do not.

That is, if kxkyvMvkikj , then, given no other information, we

would expect p(Aij)wp(Axy) simply due to the fact that there are

more possibilities for these two to share an edge. More formally,

we compute the value of M from the network as show in Eq. 2.

S~
kikjP

z kz

DAij~1

� �

ŜS~
kikjP

z kz

DAij~0

� �

M~
1

2
1=DSD

X
i
Siz1=DŜSD

X
i
ŜSi

� �
ð2Þ

Including this constant allows this term,
kikjP

z kz

{M, to take on

both positive and negative values. Because this term is placed into

a logistic function, this allows us to both increase and decrease the

probability of a link based on the combined node degrees. Thus

providing a mechanism to explain the existence of links due to the

popularity of the nodes or the absence of a link due to the fact that

the nodes have few observed connections.

The parameter, c, is again a scaling parameter which controls

the total influence of this term on the resulting link. The two

scaling parameters offer a large degree of flexibility to the model

since it is able to automatically adapt to networks with both very

strong and very weak spatial effects.

The posterior distribution for our model is given in Eq. 3. Our

objective is to infer values of the hidden variables, a, c, and R (the

vector of radii), given the observed network structure, A, node

degrees, K, and pairwise distances, D. We use truncated Gaussian

distributions, denoted Nw0(), for priors over all of the latent

variables in our model (since all of the variables are restricted to be

positive). We discuss the inference computation more in section.

p(R,a,cDA,K,D)!p(ADR,D,K ,a,c)p(R)p(a)p(c)

~p(a)p(c) P
n

iwj
p(Aij Dri,rj ,Dij ,ki,kj ,a,c)p(ri)p(rj)

~Nw0(a; ma,sa) Nw0(c; mc,sc)

| P
n

iwj
logistic

1

a
((rizrj){Dij)z

1

c

kikjP
z kz

{M

� �� �

|Nw0(ri; mr,sr) Nw0(rj ; mr,sr)

ð3Þ

Community Model: Radius+Comms
Although nodes that are physically close together are more

likely to form a link than nodes that are further apart, space is not

the only factor in deciding which nodes should be connected.

Previous literature [1,14] often identify three main explanations of

links: (i) close spatial proximity, (ii) node popularity, and (iii)

community structure within the network. These factors are

illustrated in figure 4.

(3)

A Node-Centric Model for Spatial Networks
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With the basic model in place, we develop an extension,

Radius+Comms, which allows us to simultaneously infer any space-

independent community structure within the network as well. To

describe the community structure, we attach a discrete latent

parameter to each node which identifies the node’s group label,

ci[f0, . . . ,Kg. Nodes within the same community should have

more links to other nodes within their community and fewer links

to nodes in other communities. We model this by adding a (latent)

Table 2. Metropolis within Gibbs sampling routine for Bayesian inference of our spatial network model.

a,c,riVi// Randomly initialize random variables:

for s = 1? T do

// propose new values for global variables

ĉc*N (cs{1,sc)âa*N (as{1,sa),

// compute acceptance ratio

acceptpatio~(logP(ADR,D,âa,ĉc)zlogP(âa)zlogP(ĉc)){(logP(ADR,D,as{1,cs{1)

zlogP(as{1)zlogP(cs{1))

u* unif(0, 1)

if log(u)v acceptRatio then

as~âa, cs~ĉc // accept samples

else

as~as{1 , cs~cs{1 // reject samples

end if

// propose new values for node variables

for j~1?n do

r̂ri*N (rs{1
i ,sr)

~(logP(Ai{ DR{i ,̂rri ,D,a,c)zlogP(̂rri)){(logP(Ai{ DR{i ,r
s{1
i ,D,a,c)zlogP(rs{1

i ))acceptRatio

u* unif(0, 1)

if log(u)v acceptRatio then

rs
i ~r̂ri // accept sample

else

rs
i ~rs{1

i // reject sample

end if

end for

end for

doi:10.1371/journal.pone.0071293.t002

Figure 5. Degree versus mean posterior radius for each network. The dotted line in each figure is the ordinary least squares regression fit to
this data, where degree is the covariate and radius is the response (i.e. radius~m degreezb). The Pearson correlation between mean posterior radius
and degree for the Radius (Radius+Comms) model for each network is (a) {0:07(0:23), (b) {0:03(0:32), (c) {0:14(0:11), and (d) 0:78(0:77).
doi:10.1371/journal.pone.0071293.g005
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random variable within the logistic function. This way the

community effects do not completely override spatial behavior of

nodes, rather they can strengthen or dampen the effects of distance

on a particular connection to make it a more probable outcome.

Unlike most community detection methods, we offer a don’t care

community (ci~0) which allows the formation of links between

nodes to follow only the previously described model. That is, for

nodes placed into the don’t care community, the probability of a link

involving this node remains unchanged, even if the link connects

to a node in another community. This formulation ensures that

our model will only capture salient network structure which

cannot otherwise be explained by other factors. The new

community term, b(ci,cj), is given in Eq. 4.

b(ci,cj)~

0 ci~0 or cj~0

w ci~cj

{w ci=cj

8><
>: ð4Þ

If nodes belong to the same community, we increase the

probability of a connection by adding w to the other terms within

the logistic function. Where w is a positive, real-valued random

variable to be inferred from the observed data. Combining this

with our previous model, the updated posterior distribution is

given in Eq. 5.

p(R,C,a,c,QjA,K ,D)!Nw0(a; ma,sa) Nw0(c; mc,sc) Nw0(Q; mQ,sQ)

|Pn
iwj logistic

1
a ((rizrj){Dij)

zb(ci,cj)

zc
kikjP

z
kz

{M

� �

0
BBBB@

1
CCCCA

|Nw0(ri; mr,sr) Nw0(rj ; mr,sr)

|multinomial(ci; hC ) multinomial(cj ; hC )

ð5Þ

The new random vector, C, encodes the community IDs for each

node and if ci~0, then this node is assigned to the don’t care

community. The interaction between nodes within the same

community and across communities is modified by the function

b(ci,cj) which is defined in Eq. 4. This adds one extra weighting

(positive, real-valued) variable, w. If ci~cj , then a large value of w

will increase the probability of a link between the two nodes,

whereas if ci=cj , then {w will decrease the probability of a link.

Note that this defines a symmetric relationship; within-group

connections are strengthened by the same amount that between-

group connections are penalized.

The number of clusters, K, should be set sufficiently large to

accommodate any structure that may exist. Because we include a

don’t care community, the specific setting of K is not critical since, if

there is insufficient evidence of clustering, nodes may simply be

assigned ci~0. However, as K increases, the rate of convergence of

our inference routine may slow, since it much search a larger

discrete space. In our experiments, we set K to 10% of the number

of nodes in the network. We have found that this provides a nice

trade-off between flexibility and efficiency as confirmed by our

analysis of the MCMC trace plots. In fact, many of the networks

we have tested identify fewer communities, and only the C. elegans

network places every node into a community.

Inference
To compute with our model, we employ a standard Markov

Chain Monte Carlo (MCMC) algorithm for approximate infer-

ence. We chose to apply Bayesian inference rather than maximum

likelihood or stochastic search optimization to ensure that all of the

uncertainty was appropriately propagated throughout the model.

Just as it is unlikely that there exists a single global function over

distance which can accurately capture the effects over the whole

network, we do not expect the inferred radius values to be exact

measures of the nodes’ spatial reach.

The sampling procedure iterates between proposing new global

parameter values (i.e. scaling parameters) with new radius values.

Algorithm Table 2 outlines the full MCMC algorithm for the

Radius model. Inference on Radius+Comms is a straightforward

extension of this algorithm where we also infer the value of w, the

global community penalty and reward as well as the ci’s, the group

ID’s for each node.

We use the notation logP to refer to the log of the probability

density function. The vector, R, is the set of all radii, whereas R{i

is all of the radiis except for ri. We use truncated Gaussians for all

of the prior distributions since all of the parameters are restricted

to positive values. Additionally, we set the parameters for the prior

distributions to be rather uninformative, though specific to each

network due to the differences in distance scales across our

datasets. Lastly, we have experimented with different block-

updating schemes, however, the one presented here, in which we

first update the global scaling parameters, then each of the node

parameters provided relatively fast convergence and good mixing

for all of the networks (more discussion on this in section.

Results

We experimentally evaluate our proposed model by applying it

to the task of link prediction on four different real-world spatial

networks (described in table 1) [59]. Furthermore, we offer

additional analysis of the model parameters and present interesting

interpretations by utilizing additional information about the

network nodes.

Analysis of Inferred Radii
We first investigate the inferred radii in more detail. Our claim

was that the radius was meant to capture a node’s spatial reach.

While this is related to the degree of a node, we show that the

radius will contain additional, unique information about a node’s

propensity to take part in long (short) distance connections. To test

this, we plot the mean posterior radius for each node against its

degree and test the amount of correlation in these values. We do

this for both models and compare our results, shown in figure 5.

From figure 5, we make three interesting observations. First,

there is a large variance in the inferred radii values corroborating

our claim that distances effect individuals in a different manner.

For example, in the C. elegans network, we see clusters around

different radii for nodes with similar degrees. This likely

corresponds to the spatial clustering of neurons in both the head

and the tail of the worm. Neurons in the head require a much

smaller spatial reach since they have many potential connections

within a short distance. Similarly, neurons in the tail also cluster

spatially, however, to a lesser degree, thus requiring a slightly

larger radius. We see a similar pattern in each of the networks,

though to a lesser degree since connections in these networks are

much more localized than in C. elegans.

Second, there is little correlation between node degree and

mean posterior radius. This indicates that the inferred radius

values are capturing the spatial tendencies of each node, rather
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than simply re-capturing a measure of node popularity. In fact,

only the Airline network shows any significant correlation between

these two values. We also notice that this is the only network for

which the nodes are distributed nearly uniformly at random (see

index of dispersion in table 1). When nodes are uniformly distributed,

there will be little difference in any node’s spatial reach since all

nodes must extend approximately the same distance in order to

reach another node. Thus nodes which take part in more

connections will tend to extend further.

Third, the distribution of radii is different for the two models

with no clear trend across all networks. The additional modeling

power in Radius+Comms is used primarily to explain away the

presence of abnormally long distance connections as well as the

absence of closely co-located nodes of medium to high degree. In

the first case, the radius for each of the nodes involved may be

reduced since the abnormally long link is explained by an

additional factor. In contrast, in the second case, the radii may

grow larger, since the penalty of the two nodes belonging to

different communities sufficiently explains why they do not

connect. Depending on the particular network, we will likely see

a mix of these two cases, thus causing some radii to grow and

others to shrink accordingly.

Lastly, in figure 6, we compare the node degrees from the

original networks to the expected node degrees using the

maximum a-posterior (MAP) parameters. Overall, we see a strong

correlation between the true and expected degrees, indicating that

the model is congruent with the observed networks. In the

Gowalla network, however, although a strong correlation does

Figure 6. Node degrees from the original networks ploted against expected node degrees from the maximum a-posterior model
parameters.
doi:10.1371/journal.pone.0071293.g006

Figure 7. Link prediction AUC over 10-fold cross validation.
doi:10.1371/journal.pone.0071293.g007
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exist, r~0:41, it is not as prominent as in the other networks. This

hints that the network may be less spatial in nature, as is

corroborated in our other experiments.

Link Prediction
We first evaluate our model by performing link prediction using

10-fold cross validation with a 90=10 split for training and testing

(i.e. 90% of the links are used for training the model and the

remaining 10% are predicted) over each of the spatial networks.

We compute the link predictions with our model in two different

manners: (i) the predictive link probability and (ii) the maximum a-

posterior (MAP) parameter configuration of the model. The

predictive link probability, given in Eq. 6, is defined by integrating

over the posterior probabilities of the model parameters to

compute the probability of a link existing.

p(Aij DDij ,ki,kj)~

ð
a,c,ri ,rj

p(Aij ,ri,rj ,a,cDDij ,ki,kj)dadcdridrj ð6Þ

Whereas using the MAP configuration simply requires plugging in

the set of parameters that maximized the posterior probability.

More formally, the MAP link prediction is given as follows:

p(Aij DDij ,ki,kj)~p(Aij Dr�i ,r�j ,Dij ,ki,kj ,a
�,c�) ð7Þ

fr�i ,r�j ,a�,c�g~argmax p(Aij ,ri,rj ,a,cDDij ,ki,kj)

where the node degrees, ki and kj , are computed from the

observed network (i.e. held out links are not counted). Note that as

we are predicting new links given an observed portion of the

network, the actual degree values may change. Thus we do not

constrain the model by enforcing that ki~
P

j=i Aij .

Both of these methods consistently gave similar predictions, thus

we only show results using the predictive link probability. To

provide a baseline, we compare our model to (i) the configuration

model (kikj=
P

z kz) (PA), (ii) exponential distance decay (ExpDist)

[15,18], and (iii) empirical distance decay (EmpDist) [17]. To

perform link prediction using these methods, we compute the

expectation of an edge for each pair of nodes using the statistics

collected from the training links. Because the normalizations used

in each of these methods is based on the total number of links in

the network, the expectation may result in values larger than 1.

These values are thresholded and simply taken to be 1.

To evaluate the link prediction quality of the different methods,

we employ area under the receiver operating characteristics

(ROC) curve (see [60] for more details). Figure 7 shows the area

under the ROC curve (AUC) aggregated over the 10-folds for

each dataset. From these results, we notice several interesting

trends. First, the configuration model (PA) (i.e. completely ignoring

space) performs surprisingly well, with AUC values typically over

75%. Thus, while space certainly plays an important role in the

formation of links in these datasets, node popularity is certainly an

influential factor in determining network topology which must be

taken into consideration. Second, EmpDist consistently outper-

forms both PA and ExpDist. Additionally, ExpDist performs only

marginally better than PA, except for in the C. elegans network

where it actually has worse performance. This is likely due to the

fact that the true link distance distributions is not actually

exponential, as we showed in our earlier analysis.

Lastly, Radius typically achieves better predictions than EmpDist,

though with much higher variability (over the 10-folds). This is

intuitive, since the radii provide more flexibility at the cost of

additional model variables which need to be inferred. By

accounting for additional community structure within the

networks, Radius+Comms, provides a substantial improvement over

Radius in all of the networks. In all of the networks except Internet,

Figure 8. AUC measured over separate quantiles of the test data, split by the pairwise distance between the nodes for which a link
is being predicted. The quantiles are shown on the x-axis, where 1 contains all node-pairs that are close together, and 5 contains those that are
separated by the greatest distances.
doi:10.1371/journal.pone.0071293.g008

Figure 9. AUC measured over separate quantiles of the test data, split by the combined degrees of the nodes for which a link is
being predicted, kikj . The quantiles are shown on the x-axis, where 1 contains all node-pairs in which both nodes have low degree and 5 contains
those in which both nodes have very high degrees.
doi:10.1371/journal.pone.0071293.g009
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Figure 10. The communities detected by the different methods in the Airline network (best viewed in color). The communities
identified by PA show a strong spatial structure, which is mostly maintained in ExpDist and EmpDist as well, although nodes on the fringe may switch
to neighboring communities. In contrast, Radius+Comms identifies much fewer, though much more strongly integrated communities (nodes not
belonging to any community are shown as black+’s) for which it is difficult to identify any real spatial structure.
doi:10.1371/journal.pone.0071293.g010

Table 3. Agreement between community detection methods.

C. elegans

Radius PA ExpDist EmpDist Radius+Comm

Radius 0.554 0.598 0.585 0.691

PA 0.554 0.629 0.699 0.538

ExpDist 0.598 0.629 0.693 0.533

EmpDist 0.585 0.699 0.693 0.525

Radius+Comm 0.691 0.538 0.533 0.525

Gowalla

Radius PA ExpDist EmpDist Radius+Comm

Radius 0.961 0.737 0.972 0.339

PA 0.927 0.737 0.973 0.321

ExpDist 0.942 0.940 0.740 0.436

EmpDist 0.941 0.950 0.945 0.321

Radius+Comm 0.961 0.935 0.927 0.934

CA Internet

Radius PA ExpDist EmpDist Radius+Comm

Radius 0.453 0.570 0.556 0.089

PA 0.791 0.444 0.482 0.099

ExpDist 0.856 0.786 0.531 0.092

EmpDist 0.846 0.803 0.884 0.088

Radius+Comm 0.881 0.802 0.870 0.880

Airline

Radius PA ExpDist EmpDist Radius+Comm

Radius 0.542 0.609 0.646 0.140

PA 0.712 0.493 0.542 0.132

ExpDist 0.790 0.663 0.639 0.150

EmpDist 0.829 0.750 0.897 0.144

Radius+Comm 0.882 0.751 0.852 0.885

The top triangular matrix contains normalized mutual information (NMI) scores comparing the resulting communities between the different methods. The bottom
triangular matrix shows NMI over just the subset of nodes that Radius+Comms placed into a community. The number of nodes considered for each network were: (C.
elegans) 277, (Gowalla) 134, (CA Internet) 28, (Airline)) 36. The first four rows (columns) are computed by using the referenced model as the null model and applying
modularity optimization [40]. The last row (column), with the blue tinted background, is the result of our Radius+Comms model, in which the community structure is
identified within the model itself.
doi:10.1371/journal.pone.0071293.t003
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we also notice that Radius+Comms has much lower variance in its

AUC (over the different folds) than Radius. This can be attributed

to the fact that pairs of nodes between which a link was uncertain

in the Radius model are likely to be fixed by adding these nodes to

the same community, thus explaining part of the link structure

more robustly. The high variance in the Internet network is the

result of few communities being detected. We investigate the

resulting communities in more depth in section.

Next, we break down the links according to distance and node

degrees to further understand our model’s performance. We split

the test data into 5 quantiles based on pairwise node distance and

degree, then compute the AUC over each quantile. The quantiles

are computed such that there is an even split of links (i.e. true

positives) in the testing data into each bin. Figures 8 and 9 show

our results for splits based on pairwise distance and node degree

respectively.

Comparing the methods by pairwise distance shows that the

Radius and Radius+Comms models consistently provide higher AUC

scores. The only surprise comes from the C. elegans and Internet

networks at the largest distances, where Radius declines while PA

and EmpDist both improve. Because PA improves in this quantile,

it suggests that these links may be explained by the node popularity

alone. Whereas the Radius model is putting too much weight on

the distance between these nodes, the other models, with much

weaker spatial components, capture these connections due to the

popularity of the nodes. The shortcomings in the Radius model

seem to be overcome in Radius+Comms, because the added

community variables are able to help explain long distance

connections.

Splitting the test data by combined node degrees shows an

interesting trend in that all of the previous (global) models are

universally bad at predicting edges between nodes with low

degrees. This is because the primary source of information used

for link prediction in these models is the node degree. Thus if a

node is observed as having few connections, it is unlikely to have

any more connections. In contrast, the Radius model encapsulates

information about the network structure local to each node, which

is critical to providing accurate predictions for these nodes. For

example, if a node is observed to have only one connection but is

in a region of low density (i.e. there are few nodes nearby), then

any connection made with this node will be further away than the

same node in a region of higher density. Whereas the other

methods employ a global function of distance which would

penalize this node for making such a connection, the radius in our

model captures that this is normal given the node’s surroundings.

The amount of improvement in link prediction quality our

models achieve on low-degree nodes is especially promising. Due

to the fact that many nodes are likely to have low degrees (since

many networks follow the power-law degree distribution) and

network structure alone provides very little information about

these nodes, our modeling approach offers a substantial advantage

over other techniques. Furthermore, these results emphasize the

importance of accurately modeling the link-distance cost function.

Community Detection
In this section, we investigate the applicability of our models to

the task of community detection in spatial networks. We compare

the resulting communities identified by our Radius+Comms model

with previous methods [15,17]. Additionally, we also use the

Radius model as a the null comparison within modularity

optimization [40]. Since no ground truth exists for the community

structure in these networks, we provide a pairwise comparison of

the different methods. We measure the consistency of the resulting

communities across all of the different methods using normalized

mutual information (NMI) [61]. By analyzing the similarity of the

identified community structures, we show that our proposed

model, Radius+Comms, captures only the very strongly connected

groups of nodes. These are the communities which persist, despite

the differences in the clustering objective functions (or the null

models).

We observe that all of the spatial, modularity-based models tend

to produce results more similar to each other than to the basic PA

null model. This is intuitive, as each of these models is considering

the same additional information about network structure, though

they are incorporating this information differently. Additionally,

the two baseline spatial null models, ExpDist and EmpDist, show

similar levels of agreement amongst themselves indicating that

even relatively small changes in the null model can force nodes on

the fringe of a community to switch to another group. This is

shown visually in figure 10.

In general, we see very little agreement between the commu-

nities discovered using the modularity-based approaches and

Radius+Comms. This is due to two major differences in the objective

function. First, modularity only optimizes within cluster edges and

does not explicitly penalize strong connections between clusters.

This is in contrast to our method which equally rewards within

cluster links as well as penalizes between cluster links. Second,

modularity forces all nodes to be placed into a cluster, whereas

Radius+Comms contains a special don’t care group for which nodes

are unaffected by community structure. This provides additional

modeling flexibility in that we can both find instances where

community structure helps explain link structure as well as

instances where nodes do not appear to be affected (i.e. link

structure can be explained by distance and popularity alone).

However, examining the subset of nodes which are explicitly

placed into communities in Radius+Comms, we find very strong

agreement across all of the clustering methods (bottom half of

tables ineach section in Table 3). The fact that much of the

community structure found using our method persists even when

the clustering objective function is modified, indicates that

Radius+Comms is identifying only the most significant communities.

In fact, the importance of the identified community structure is

orated by our link prediction results as well. Radius+Comms offers

substantial improvements over Radius in our ability to explain the

network structure, and thus predict missing links across all of the

data sets.

Figure 11. Nodes from the C.elegans neuronal network shown
in their original positions. Sample communities identified by
Radius+Comms are shown as black nodes.
doi:10.1371/journal.pone.0071293.g011
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Upon further inspection, we see that the communities identified

by Radius+Comms are in fact spatial anomalies. One such example

of this is in the Airline network where we find that the Lake

Charles Regional Airport in Lake Charles, Louisiana and the

Chris Hadfield Airport in Sarnia, Ontario which are placed into

the same community. These two airports are separated by more

than 1,700 km, and the airports have a total of 2 and 1 recorded

connections respectively. Given the size of these airports and the

large distance separating them, such a connection is truly not

expected.

Similarly, figure 11 shows an example communities identified in

the C. elegans network. Despite being spatially diverse, the

community is composed of functionally similar neurons. The

community includes Ventral cord motor neurons and interneurons

which play a role in locomotion. The functions of these neurons all

surround the task of locomotion as well as collision detection

[62,63]. These examples indicate that there is indeed a reasonable

level of coherence within the communities.

Inference Analysis
Lastly, we discuss the convergence and mixing properties of our

MCMC algorithm and provide a brief analysis of how the prior

distributions influence the inference algorithm. To guarantee good

mixing and quick convergence, we wish to provide a good

initialization of the parameters. For each network, we run a short

Markov chain and use the maximum a-posterior (MAP) config-

uration from that run to initialize the model parameters. While we

find that we are able to converge quickly for most of the datasets,

convergence on the airline network was particularly slow. We

observe a large initial jump in the log posterior after the first few

iterations when we move from the randomly initialized parameter

values into a more coherent configuration.

However, unlike the other networks in which the log-posterior

flattens out indicating that we have reached the mode of the

distribution, the airline network slowly improves over several

thousand iterations until it finally converges into a posterior mode.

Such a slow convergence indicates that the posterior distribution

may be rather diffuse for the given data and thus several

parameter configurations may provide similarly adequate fits for

the network. Figure 12 shows the log posterior from the C. elegans

and US Airline networks. Despite the slow convergence on the

Airline network, we still see consistent results across multiple runs.

Next, we investigate how the prior distributions on the model

parameters influence the inference algorithm and model quality.

We test this on synthetically generated networks to test how

changing the prior parameters influences accuracy of the inferred

Figure 12. Log posterior trace plots from initialization run of the (a) C. elegans network and the (b) US Airline network. For C. elegans,
we observe fast convergence of the log posterior in under 2,000 iterations, whereas for the Airline network, we observe the posterior is still rising, at a
very slow rate, past 4,000 iterations.
doi:10.1371/journal.pone.0071293.g012

Figure 13. Comparison of posterior distributions under different settings of the prior parameters (run on synthetic data). The top
row results from the prior N (10,80), and the bottom row uses N (50,80).
doi:10.1371/journal.pone.0071293.g013
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parameter values. We generated 10 synthetic networks using

Radius+Comms model’s generative process (after distributing nodes

uniformly over a given region of space) so that we know the true

parameter values. Then, we ran our inference algorithm on the

observed networks using different settings for the prior distribu-

tions. Figure 13 shows the resulting posterior distributions, as well

as the generating parameter values, for one synthetic network.

For all parameters, the top and bottom rows show the posterior

distribution when the prior mean was set to 10 and 50 respectively.

The prior variance was kept at 80 to capture our prior uncertainty

in these parameters. For both settings of the prior, we see that all

of the posteriors are centered around the the parameter value with

which the observed networks were generated. We do notice a

rather slight shift in the posterior when the prior mean was set to

50, though the posterior mode still converges to the correct area.

In our experiments on the real networks, we have noticed that

modifying the prior parameters has very little effect on the

resulting posterior distributions, as corroborated in this simple

analysis.

In our experiments on the real networks, table 4 describes a

generic method used to set the prior mean and standard deviation

for each variable based on the ROI and basic statistics of the

networks. The prior for the radius is set to be a function of the

median distance of linked nodes, so as to not over estimate the

effect of the radius. The prior parameters for the global scaling

variables, a and b are functions of the maximum distance between

a pair of linked nodes, Dmax~max(D(i,j)DAij~1). Notice that the

prior standard deviations are set to be rather high to encode our

level of uncertainty in the actual parameter values, allowing the

data to have a strong influence over the infered values. Lastly, c, is

simply set to N (1,100) because the scale of this term is dependent

on the pairwise distances.

We experimented with varying the prior parameters on the real

and synthetic networks and found the results to remain consistent

across trials, so all of our reported experiments set prior

parameters according to table 4.

Discussion

In the previous section, we showed that our proposed models

provide an accurate fit to several real world spatial networks. Next,

we analyze the inferred parameter values for Radius+Comms on the

C. elegans network. We focus on C. elegans because detailed

information about the nodes (i.e. neurons) is available, thus we are

best able to interpret and explain our findings [64].

The neurons with the largest radii are PVC[L/R] and DV[A/

B]. The DVA neuron functions in mechanosensory integration,

providing input to both the anterior and posterior touch circuits

[64]. Neurons taking part in such sensory integration naturally

need to interact with a wide variety of spatially disperse neurons in

order to collect this information, thus explaining the need for a

large spatial reach. The PVC[L/R] neurons are known to form

Table 4. Generic approach for setting the variance of the
prior distribution over model parameters.

Variable Prior Mean Prior Standard Deviation

r median(D(i,j)DAij~1) 0:5std(D(i,j)DAij~1)

a (Dmax{mr)=100 (Dmax{mr)=100

b (Dmax{mr)=100 (Dmax{mr)=100

c 1 100

doi:10.1371/journal.pone.0071293.t004

Figure 14. Posterior samples of the radius for the neuron PVCL, which has one of the largest (posterior average) radii in the
network (in both models).
doi:10.1371/journal.pone.0071293.g014

Figure 15. Connections formed by the AVA neurons (shown in
red).
doi:10.1371/journal.pone.0071293.g015
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synapses with the VB group of neurons (motor neurons) which are

located in the head of the worm, as well as the DB neurons (dorsal

motor neurons) which are located throughout the body of the

worm. Given that the PVC[L/R] neurons are located in the tail,

they must extend a long distance to form these links. We show

histograms of the posterior distribution of the radius of PVCL for

each of the models in figure 14.

The smallest radii belong to the AVE[L/R] and AVA[L/R]

neurons, all of which are located in the head of the worm.

Interestingly, it is known that the processes (axons and dendrites)

of the AVE[L/R] neurons are restricted to the area above the

vulva, which is typically found near the center of the worm body

[62,64]. This limited spatial reach, combined with the fact that the

neurons lie in the head of the worm, where neurons are most

dense, explain this node’s small radius. In contrast, the AVA[L/R]

neurons are the pair with the largest degrees, with 76 and 74

connections respectively. Moreover, these neurons run the entire

length of the ventral nerve cord as they function in forward and

backward movement [62,64]. Given the wide reach of these

neurons, it seems peculiar that they would not have larger radii.

However, upon further inspection, we see that although they form

many connections with neurons spread throughout the body of the

worm, they also neglect to form connections with many neurons in

the head (see figure 15). Because there is a high density of neurons

in the head of the worm, if these neurons do not form connections

with other neurons in this region, their radii will be penalized

heavily. Thus, many neurons in this area have very small spatial

reach and other nodes in less dense regions are forced to increase

their spatial reach to pick up the slack.

Conclusions

We have introduced a novel, node-centric approach for

modeling the link-distance cost function of a spatial network. To

learn this function, we attach a latent radius parameter to each

node which summarizes the local network structure. The radius

parameter is influenced by the local density of surrounding, as well

as the number of connections and their associated link distances.

Additionally, we have provided a natural extension to this model

which captures salient community structure, which cannot be

explained due to spatial or node popularity effects.

We have shown experimentally that our models, Radius and

Radius+Comms, result in higher quality link predictions across four

different real-world spatial networks than competing techniques.

Interestingly, the most substantial improvements came from

predicting links between nodes with low observed degrees. That

is, the nodes from which the network structure provides the least

amount of information. Furthermore, we analyze the model

parameters and offer interpretations of the inferred values on the

test networks.

Studying the role of space in networks is critical to further our

understanding of complex systems. In this work, we have

introduced a model which offers the flexibility required to

appropriately account for complicated link-distance cost functions

as well as other connection properties. Our model provides a

node-centric view of the unobserved link-distance cost function

which influences the network structure. This approach offers

greater modeling flexibility, and, as we have demonstrated, a more

accurate representation of the data.
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14. Barthélemy M (2011) Spatial networks. Physics Reports 499: 1–101.

15. Cerina F, De Leo V, Barthelemy M, Chessa A (2012) Spatial correlations in

attribute communities. PLoS ONE 7: e37507.

16. Daraganova G, Pattison P, Koskinen J, Mitchell B, Bill A, et al. (2012) Networks

and geography: Modelling community network structures as the outcome of

both spatial and network processes. Social Networks 34: 6–17.

17. Expert P, Evans T, Blondel V, Lambiotte R (2011) Uncovering space-

independent communities in spatial networks. Proceedings of the National

Academy of Sciences 108: 7663.

18. Yook S, Jeong H, Barabási A (2002) Modeling the internet’s large-scale topology.

Proceedings of the National Academy of Sciences 99: 13382–13386.

19. Hoff P, Raftery A, Handcock M (2002) Latent space approaches to social

network analysis. Journal of the American Statistical Association 97: 1090–1098.

20. Hoff P (2009) Multiplicative latent factor models for description and prediction

of social networks. Computational & Mathematical Organization Theory 15:

261–272.

21. Barabási A (2012) Network science: Luck or reason. Nature 489: 507–508.
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53. Boguná M, Krioukov D, Claffy K (2008) Navigability of complex networks.

Nature Physics 5: 74–80.
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