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Lung disease caused by non-tuberculous mycobacteria (NTM), relatives of
Mycobacterium tuberculosis, is increasing. M. abscessus is the most prevalent rapid
growing NTM. This environmental pathogen is intrinsically resistant to most commonly
used antibiotics, including anti-tuberculosis drugs. Current therapies take years to
achieve cure, if cure if achieved. Thus, there is an urgent medical need to identify new,
more efficacious treatments. Here, we explore the possibility of repurposing antibiotics
developed for other indications. We asked whether novel two-drug combinations of
clinically used antibiotics can be identified that show synergistic activity against this
mycobacterium. An in vitro checkerboard titration assay was employed to test 180 dual
combinations of 41 drugs against the clinical isolate M. abscessus Bamboo. The most
attractive novel combination was further profiled against reference strains representing
three sub-species (M. abscessus subsp. abscessus, massiliense and bolletii) and a
collection of clinical isolates. This resulted in the identification of a novel synergistic
antibiotic pair active against the M. abscessus complex: the glycopeptide teicoplanin
with the glycylcycline tigecycline showed inhibitory activity at 2–3 µM (teicoplanin) and
1–2 µM (tigecycline). This novel combination can now be tested in M. abscessus animal
models of infection and/or patients.
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INTRODUCTION

Among the rapid growing non-tuberculous mycobacteria (NTM), M. abscessus is the most
common cause of lung disease (Griffith et al., 2007; Medjahed et al., 2010; Hoefsloot et al.,
2013). A poor rate of successful chemotherapeutic treatment makes M. abscessus disease a chronic
incurable infection (Griffith et al., 2007). The bacterium is intrinsically drug resistant to most
antibiotics (Brown-Elliott et al., 2012; Nessar et al., 2012). Currently, M. abscessus infections
are treated by a multi-drug regimen consisting of a macrolide (clarithromycin), amikacin and
either cefoxitin or imipenem (Benwill and Wallace, 2014; Ryu et al., 2016). Different clinics may
choose to add on additional antibiotics and recently, tigecycline has been used (Wallace et al.,
2014; Floto et al., 2016). The treatment issues are further complicated by the ability of two
out of three sub-species of M. abscessus to develop macrolide resistance upon exposure to sub-
inhibitory concentrations of the drug (Nash et al., 2009; Bastian et al., 2011; Maurer et al., 2014).
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Indeed, a recent study conducted in a hollow fiber model showed
that the standard regimen of clarithromycin, amikacin, and
cefoxitin exerted low sterilizing activity within the first 14 days
of treatment, and re-growth of the bacteria was seen after
this period due to inducible macrolide resistance (Ferro et al.,
2016). Demonstrated transmission of M. abscessus between cystic
fibrosis patients (Bryant et al., 2016) has increased the urgency to
identify novel treatments for this NTM pathogen.

Screening for synergy interactions of approved drugs
is an approach to new medicines that allows rapid bench-
to-bedside translation (Hill and Cowen, 2015). A series of
synergy studies have been conducted for M. abscessus and
among the combinations that have been identified so far
are imipenem + clarithromycin, imipenem + levofloxacin,
clarithromycin + linezolid, clarithromycin + vancomycin,
clofazimine + amikacin, tigecycline + clarithromycin,
tigecycline + clofazimine, tigecycline + linezolid,
clavulanate + meropenem, doripenem + rifampicin,
biapenem + rifampicin, avibactam + ertapenem,
avibactam+ tebipenem, and avibactam+ panipenem (Miyasaka
et al., 2007; Cremades et al., 2009; Shen et al., 2010; van Ingen
et al., 2012; Huang et al., 2013; Oh et al., 2014; Singh et al., 2014;
Kaushik et al., 2015, 2017; Mukherjee et al., 2017).

To identify novel synergistic combinations, we carried out a
large scale study using the checkerboard assay employing two
different strategies. The first strategy was to screen combinations
of β-lactams with β-lactamase inhibitors (Livermore, 1995;
Bebrone et al., 2010). M. abscessus harbors the blamab gene
encoding an Ambler class A β-lactamase (Soroka et al., 2014)
and an inhibitor might restore activity of β-lactams against
M. abscessus. The second strategy was to screen combinations
of cell wall-targeting antibiotics with antibiotics that engage
intracellular targets. This approach is based on our previous
findings that vancomycin displayed (moderate) activity against
M. abscessus (Aziz et al., 2017) and showed synergy with
clarithromycin (Mukherjee et al., 2017). We screened a total
of 180 dual drug combinations against a clinical isolate of
M. abscessus and found that the combination of teicoplanin and
tigecycline displayed synergistic activity. We characterized the
in vitro activity of this novel combination against M. abscessus
reference strains and diverse clinical isolates.

MATERIALS AND METHODS

Compounds
The 36 antibiotics and 5 β-lactamase inhibitors used in this
study were obtained from commercial sources and dissolved
according to the manufacturer’s recommendations. Teicoplanin
was obtained from Sigma-Aldrich, while tigecycline was obtained
from Adooq BioScience. Both antibiotics were dissolved in 90%
dimethyl sulfoxide (DMSO).

Bacterial Strains and Culture Media
Mycobacterium abscessus Bamboo (Yee et al., 2017) was used for
screening of combinations and the subsequent confirmation of
synergy hit combinations. For the checkerboard titration assay

determination of the activity of the teicoplanin + tigecycline
hit against the various M. abscessus subspecies within the
M. abscessus complex, M. abscessus subsp. abscessus (ATCC
19977), M. abscessus subsp. bolletii (CCUG 50184-T) and
M. abscessus subsp. massiliense (CCUG 48898-T) were used.
Reference strains were obtained from the American Type
Culture Collection (ATCC) and the Culture Collection
University of Goteborg (CCUG), respectively. For further
characterization of the teicoplanin + tigecycline combination
in the macrolide resistance induction assay, M. abscessus
subsp. abscessus (ATCC 19977) harboring the T28 sequevar of
erm41 gene, conferring inducible resistance upon exposure to
sub-inhibitory concentrations of macrolides (Nash et al., 2009;
Bastian et al., 2011) was used. For determination of synergy of
teicoplanin + tigecycline against a variety of clinical isolates,
strains were obtained from the strain collection of the clinical
microbiology laboratory at the National University Hospital,
Singapore. The strains were characterized by the lab as previously
described (Aziz et al., 2017). For the evaluation of the bactericidal
activity of the synergy combination M. abscessus subsp. abscessus
(ATCC 19977) was used.

Liquid cultures were grown in standard mycobacterium
medium, Middlebrook 7H9 broth (BD Difco) supplemented with
0.5% albumin, 0.2% glucose, 0.085% sodium chloride, 0.0003%
catalase, 0.2% glycerol and 0.05% Tween 80. Solid cultures were
grown on Middlebrook 7H10 agar (BD Difco) supplemented
with 0.5% albumin, 0.2% glucose, 0.085% sodium chloride, 0.5%
glycerol, 0.0003% catalase and 0.006% oleic acid.

Mycobacterium abscessus bacterial work was carried out under
BSL-2 conditions according to approved biosafety protocols.

Checkerboard Titration Assay
This assay was carried out in 96-well microtiter plates as
previously described (Hsieh et al., 1993; Kaushik et al., 2015),
with some modifications. Drugs were tested within the range of
concentrations of either 0–25 µM or 0–50 µM, at twofold serial
dilutions. For each combination, 8 concentrations of a drug were
tested for synergy against 11 concentrations of another drug.
Hence, for each two-drug combination screened for synergy, 88
different combination concentrations are tested. A total of 180
different two-drug combinations were tested in this study. For
the screening of combinations, this assay was carried out using
the Tecan D300e Digital Dispenser for dispensing of drugs. For
confirmation of the teicoplanin + tigecycline hit, as well as its
subsequent characterization against sub-species, clinical isolates
and induced cultures, drugs were dispensed manually. Results
were reproducible between the two methods of dispensing drugs
for this assay. Briefly, this assay was carried out in 96-well flat
bottom plates, with two different compounds, with a starting
inoculum of an optical density at 600 nm (OD600) of 0.05 (107

colony forming units or cfu/mL) in a final volume of 200 µL. The
culture for the starting inoculum was diluted from a pre-culture
at mid-log phase (OD600 = 0.4 to 0.6). The plates were sealed
using parafilm, put in an airtight container with moist tissue and
incubated for 3 days at 37◦C on an orbital shaker at 110 rpm.
Each plate had a media-only control, a drug free control as well
as a positive control of clarithromycin at 20 µM. After 3 days of
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incubation, the cultures in the wells were manually re-suspended
before OD600 was read in the plate reader (Tecan Infinite 200
Pro) and used to calculate growth inhibition percentage of each
well. The Fractional Inhibitory Concentration Index (FICI) was
used to analyze the results from the checkerboard assay. FICI
was calculated by using the concentrations at which at least 90%
inhibition of the culture in the well as compared to the drug free
culture was observed. It was computed as FICI = [(concentration
of drug A in combination/concentration of drug A when used
alone)+ (concentration of drug B in combination/concentration
of drug B when used alone)] (Hsieh et al., 1993). Synergy is
defined as FICI ≤ 0.5, indifference is defined as 0.5 < FICI ≤ 4,
and antagonism is defined as FICI > 4 (Hsieh et al., 1993).

Macrolide Resistance Induction Assay
M. abscessus subsp. abscessus (ATCC 19977) mid-log phase
culture was diluted to OD600 = 0.05 and treated with
clarithromycin at a sub-inhibitory concentration of 0.075 µM

(fourfold lower than clarithromycin MIC50 (concentration that
causes 50% growth inhibition). An untreated culture was set up
as a control. Cultures were grown to mid-log phase overnight and
then subjected to the checkerboard titration assay as described
above.

Bactericidal Assay
Bactericidal activity determinations were carried out in 14 mL
round bottom tubes with the compounds added at set
concentrations, with a starting inoculum of OD600 0.05
(107 cfu/mL) in a final volume of 1 mL. The culture for the
starting inoculum was diluted from a pre-culture at mid-log
phase (OD600 = 0.4 to 0.6). Tubes were incubated for 3 days at
37◦C with shaking at 160 rpm. After 3 days of drug exposure,
10 µL of the cultures were plated at different dilutions in 12 well
plates containing 2 mL of 7H10 agar in each well. The plates
were sealed with parafilm and incubated at 37◦C for 4 days and
then colonies were counted. We report fold-kill, which is the

TABLE 1 | Outcome of screening 110 combinations of β-lactams and β-lactamase inhibitors against Mycobacterium abscessus Bamboo: 6 two-drug hits.

β-lactamase inhibitors

Non-β-lactam- based β-lactam-based

AVI VAB CLA SUL TZB

β-lactams Carbapenems Biapenem I I N.D N.D N.D

Doripenem I I I I I

Ertapenem I I N.D N.D N.D

Faropenem I N.D I I I

Imipenem I I I I I

Meropenem I I I I I

Panipenem S S I I I

Tebipenem S S N.D N.D N.D

Cephalosporins Cefaclor I I I I I

Cefprozil I N.D I I I

Cefoxitin I I I I I

Cefdinir I N.D I I I

Cefditoren I I I I I

Cefixime I I I I I

Ceftiofur I I I I I

Cefoperazone I I I I I

Ceftazidime I I I I I

Cefozopran I N.D I I I

Ceftobiprole I N.D I I I

Penicillins Ampicillin S I I I I

Amoxicillin S I I I I

Cloxacillin I I I I I

Methicillin I N.D I I I

Piperacillin I I I I I

Ticarcillin I I I I I

S, synergistic; I, indifferent; N.D, not determined. Synergy is defined as FICI ≤ 0.5. However, FICI values cannot be calculated for combinations involving β-lactamase
inhibitors or other drugs that do not have MIC values when used individually. Hence, in the tables, synergistic interactions are defined as either combinations with FICI ≤ 0.5
or combinations that exhibit potentiation where a fourfold or more reduction in concentration of both drugs when used together is observed to inhibit 90% of growth as
compared to when they are each used alone. Indifferent is defined as 0.5 < FICI ≤ 4. Where FICI cannot be calculated, ‘indifferent’ is defined as a less than fourfold in
concentration of each antibiotic needed to achieve inhibition of 90% of growth when used together as compared to when the antibiotic is used alone. AVI, avibactam;
VAB, vaborbactam; CLA, clavulanate; SUL, sulbactam; TZB, tazobactam.
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reduction in cfu/mL of the treated culture compared to the time
zero untreated control.

RESULTS

Screening of 180 Two-Drug
Combinations for Synergy Against
M. abscessus Identifies 11 Hits
We screened a total of 180 two-drug combinations of approved
antibiotics for their growth inhibition potency against the clinical
isolate M. abscessus Bamboo using the checkerboard assay. Hits
were defined as combinations that showed at least a fourfold
decrease in concentration of each drug that was needed to
achieve 90% inhibition as compared to the concentration needed
to achieve that same level of inhibition when either drug
was used alone. Screening of β-lactam – β-lactamase inhibitor
combinations, identified 6 hits out of 110 combinations (Table 1).
Screening of combinations of cell envelope targeting drugs with
antibiotics that inhibit intracellular targets, identified 5 hits out of
70 combinations (Table 2). Taken together, the screen identified
11 primary hits (6.1% hit rate) which were re-confirmed with
fresh solids (Table 3).

Three of our combination hits, panipenem + avibactam,
tebipenem + avibactam, and amoxicillin + avibactam were
reported previously (Dubee et al., 2015a; Kaushik et al., 2017).

Out of our eight novel hits, the potencies of
ampicillin + avibactam, panipenem + vaborbactam,
tebipenem + vaborbactam, and ceftobiprole + linezolid
were only modest, with MIC90 (concentrations that inhibit
90% of growth) of 25 + 19 µM, 50 + 2 µM, 10 + 10 µM, and
38+ 19 µM (Table 3).

One of our novel hits involved the glycopeptide ramoplanin
in combination with clarithromycin, however, this is not

unexpected since we had previously reported synergy between the
glycopeptide vancomycin with clarithromycin (Mukherjee et al.,
2017).

Three novel hits showed encouraging synergy effects:
Ramoplanin + tigecycline, vancomycin + tigecycline and
teicoplanin + tigecycline inhibited growth at 5 + 0.8 µM,
2 + 1 µM and 3 + 1 µM, respectively (Table 3). Ramoplanin,
vancomycin, and teicoplanin are all glycopeptides. Ramoplanin
is not well absorbed and unstable in the bloodstream due to
hydrolysis of the lactone bond (Farver et al., 2005). This makes
ramoplanin unsuitable to repurpose for use in treatment of
M. abscessus lung infections. As teicoplanin shows systemic
exposure upon intravenous or intramuscular administration and
has been reported to have a better safety and efficacy profile
compared to vancomycin (Svetitsky et al., 2009), we characterized
the activity of teicoplanin in combination with the glycylcycline
tigecycline in more detail.

Teicoplanin + Tigecycline Displays
Activity Against Reference Strains
Representing the Three Subspecies of
the M. abscessus Complex
To determine whether the teicoplanin+ tigecycline combination
shows similar attractive potency across the three subspecies
of the M. abscessus complex, we carried out the checkerboard
titration assay to determine the FICI value of the combination
against the reference strains M. abscessus subsp. abscessus
ATCC 19977, M. abscessus subsp. bolletii CCUG 50184-T
and M. abscessus subsp. massiliense CCUG 48898-T. The
teicoplanin + tigecycline combination was synergistic against
all three subspecies (Table 4). These results suggest that this
novel combination is active across the phylogenetically divergent
M. abscessus complex.

TABLE 2 | Outcome of screening 70 combinations of cell envelope-targeting antibiotics with antibiotics targeting intracellular targets against M. abscessus Bamboo: 5
synergistic two-drug hits.

Antibiotics with intracellular targets

LZD LVX MXF AZM CLR TGC RFB

Cell envelope-targeting antibiotics β-lactams Doripenem I I I I I N.D I

Faropenem I I I I I N.D I

Imipenem I N.D I I I N.D I

Panipenem I I I I I N.D I

Cefoxitin I I I I I N.D I

Cefdinir I I I I I N.D I

Cefozopran I I I I I N.D I

Ceftiofur I I I I I N.D I

Ceftobiprole S I I I I N.D I

Glycopeptides Ramoplanin I I I N.D S S I

Vancomycin N.D N.D N.D N.D Sa S I

Teicoplanin I I I I I S I

Polymyxins Colistin N.D I I N.D N.D N.D N.D

S, synergistic; I, indifferent; N.D, not determined. For definition of terms see legend of Table 1. LZD, linezolid; LVX, levofloxacin; MXF, moxifloxacin; AZM, azithromycin;
CLR, clarithromycin; TGC, tigecycline; RFB, rifabutin. aReported previously in Mukherjee et al. (2017).
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Teicoplanin + Tigecycline Retains Its
Activity Against M. abscessus subsp.
abscessus ATCC 19977 Cultures
Displaying Induced Macrolide
Resistance
The checkerboard titration assay was performed using
M. abscessus subsp. abscessus ATCC 19977 cultures that
had been exposed to a sub-inhibitory concentration of
clarithromycin to induce macrolide resistance to determine
whether the teicoplanin + tigecycline combination retains
its activity under these conditions. The combination
still exhibited synergy against the culture with induced
macrolide resistance as seen by its FICI value of 0.22
(Table 4).

Teicoplanin + Tigecycline Shows Potent
Activity Against M. abscessus Clinical
Isolates
The teicoplanin + tigecycline combination showed potent
growth inhibition activity against the screening strain
as well as the reference strains representing the three
subspecies of M. abscessus. This suggests that most clinical
M. abscessus strains may be susceptible to this combination.

TABLE 3 | Reconfirmation of 11 two-drug hits identified from screening of 180
combinations against M. abscessus Bamboo.

Strategy Combination MIC90 (µM)

Alone Combined

β-lactams+ β-lactamase
inhibitors

Panipenem + >50 50
Avibactam >50 6

Tebipenem + 46 13

Avibactam >50 0.8

Ampicillin + >50 25

Avibactam >50 19

Amoxicillin + >50 25

Avibactam >50 25

Panipenem + >50 50

Vaborbactam >50 2

Tebipenem + 40 10

Vaborbactam >50 10

Cell envelope-
targeting+ antibiotics
with intracellular
targets

Ceftobiprole + >50 38

Linezolid >50 19

Ramoplanin + 30 5

Clarithromycin 0.7 0.2

Ramoplanin + 30 5

Tigecycline 7 0.8

Vancomycin + 17 2

Tigecycline 6 1

Teicoplanin + 25 3

Tigecycline 8 1

The synergy or potentiation concentration of the 11 drug pair hits identified in the
screens shown in Tables 1, 2 are reported. Results shown are the mean of two
replicates. Standard deviations were ±50% of shown values.

To provide evidence for a widespread susceptibility of
M. abscessus to the teicoplanin + tigecycline combination,
we tested its activity against a collection of clinical
isolates covering various subspecies of M. abscessus,
including clarithromycin resistant as well as clarithromycin
sensitive strains. The combination displayed synergy
against 70.4% of the isolates with FICI values ranging
from 0.32 to 0.48 (Table 5). This result indicates that this
combination is active against a large number of M. abscessus
isolates.

Teicoplanin + Tigecycline Is Not
Bactericidal Against M. abscessus
subsp. abscessus ATCC 19977
To determine whether the teicoplanin+ tigecycline combination
shows bactericidal activity against M. abscessus, cultures were
treated with the drug combination and the effect on viability
was determined by cfu enumeration as described in Section
“Materials and Methods.” The teicoplanin + tigecycline
combination showed no bactericidal activity.

DISCUSSION

A synergy screen of 180 dual antibiotic combinations against
M. abscessus yielded a total of 11 hits. Six hits were
obtained from combinations of β-lactams with β-lactamase
inhibitors, and five hits from combinations of cell wall-
targeting antibiotics with antibiotics that have intracellular
targets.

From the analyses of combinations of β-lactams with
β-lactamase inhibitors, the most striking observation is that all
six hits involved a non-β-lactam-based β-lactamase inhibitor.
4 out of the 6 hits involved avibactam. This is consistent
with previous reports showing that this inhibitor is effective
against M. abscessusβ-lactamases (Ehmann et al., 2012; Soroka
et al., 2014; Dubee et al., 2015a; Kaushik et al., 2017). The
remaining 2 hits involved the novel non-β-lactam-based
β-lactamase inhibitor vaborbactam, which has not been
previously studied for activity against M. abscessus β-lactamases.
Activity of avibactam and now vaborbactam suggests that it
may be worthwhile to characterize other types of non-β-lactam
β-lactamase inhibitors like phosphonates, hydroxamates, or
vanadate-catechol complexes, in combination with β-lactams for
any potentiation effect of the combinations against M. abscessus
(Bebrone et al., 2010).

It is to note that out of the three sub-classes of β-lactams
we tested, avibactam appears not to improve the activity of
cephalosporins, in contrast to a previous report describing
potentiation between ceftaroline and avibactam against
M. abscessus (Dubee et al., 2015b). A recent study by
Kaushik et al. (2017) which focused on combinations of
avibactam, sulbactam and tazobactam with carbapenems
against M. abscessus reported 3 hits, with potentiation
observed for combinations of avibactam with ertapenem,
tebipenem, or panipenem (Kaushik et al., 2017). In this
study, we could confirm potentiation for combinations of
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avibactam with tebipenem or panipenem, however, we did not
observe any potentiation between avibactam and ertapenem.
Another study found potentiation between clavulanate and
meropenem, which we also did not observe (Kaushik et al.,
2015). The reasons for these discrepancies remain to be
determined (Fisher et al., 2005). One possible explanation
may be the use of different M. abscessus strains. This study
used the clinical isolate M. abscessus Bamboo in the initial
screening, while other studies used other strains including
M. abscessus subsp. abscessus ATCC19977. In comparison
to avibactam, vaborbactam improved the activity of selected
compounds only from the carbapenems but not from the
penicillins.

Vaborbactam is a new β-lactamase inhibitor and is the first
one to contain a cyclic boronic acid structure (Lomovskaya
et al., 2017). Despite its difference in structure from avibactam,

both β-lactamase inhibitors were able to potentiate the activity
of the same two carbapenems, panipenem and tebipenem.
Panipenem is an earlier carbapenem and the drug needs
to be administered together with betamipron to block its
deactivation by dehydropeptidase I (Papp-Wallace et al., 2011).
Tebipenem is a more recently discovered carbapenem and
is the first oral drug of this class (Papp-Wallace et al.,
2011).

From the analyses of combinations of cell wall-targeting
antibiotics with drugs that have intracellular targets, we
obtained five novel hits, with the teicoplanin + tigecycline
combination being most attractive. Teicoplanin + tigecycline
combination displayed synergy at a similar range across reference
strains representing the three subspecies of M. abscessus with
growth inhibitory combination concentrations of 2–3 µM
teicoplanin+ 1–2 µM tigecycline. The combination also retained

TABLE 4 | Synergy concentrations and FICI values of teicoplanin + tigecycline combination against M. abscessus screening strain and three reference strains of the
M. abscessus sub-species.

Conditions Strains MIC90 (µM) FICI

Teicoplanin Tigecycline

Alone Combined Alone Combined

(No pre-treatment) M. abscessus Bamboo 25 3 8 1 0.27

M. abscessus subsp. abscessus 10 2 6 2 0.42

M. abscessus subsp. bolletii 10 2 8 2 0.39

M. abscessus subsp. massiliense 14 2 7 2 0.36

Pre-treated with clarithromycin M. abscessus subsp. abscessus 7 1.2 8.5 1.6 0.22

‘Pre-treated with clarithromycin’ shows the respective data for a strain displaying induced macrolide resistance due to pre-treatment with a sub-inhibitory concentration of
clarithromycin (see section “Materials and Methods”). Results shown are the mean of two replicates. Standard deviation was ±50% of shown values. Synergy is defined
as FICI ≤ 0.5. Checkerboard assay was conducted with 7H9 broth.

TABLE 5 | Synergy concentrations and FICI values of the teicoplanin + tigecycline combination against 14 clinical M. abscessus isolates.

Isolate code M. abscessus
sub-species

erm41
sequevar

Clarithromycin
susceptibility

MIC90 (µM) FICI

Teicoplanin Tigecycline

Alone Combined Alone Combined

M199 abscessus T28 Resistant 5 2 6 2 0.56

M337 abscessus T28 Resistant 5 2 7 2 0.51

M404 abscessus C28 Sensitive 6 2 4 1 0.53

M421 abscessus T28 Resistant 17 3 4 0.6 0.37

M422 abscessus T28 Resistant 6 1 6 1 0.44

M232 bolletii T28 Resistant 21 5 18 2 0.39

M416 bolletii N.D Sensitive 4 2 5 1 0.63

M506 bolletii C28 Sensitive 10 3 9 1 0.45

M111 massiliense Deletion Sensitive 10 2 10 2 0.48

M353 massiliense Deletion Sensitive 13 3 8 2 0.43

M357 massiliense Deletion Sensitive 12 2 8 1 0.33

M414 massiliense Deletion Sensitive 8 1 10 2 0.32

M444 massiliense Deletion Sensitive 7 3 6 1 0.48

M505 massiliense Deletion Sensitive 13 3 8 1 0.39

Results shown are the mean of two replicates. Standard deviations were±50% of shown values. Synergy is defined as FICI ≤ 0.5. Indifference is defined as 0.5 < FICI ≤ 4,
and antagonism is defined as FICI > 4. N.D, not determined.
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activity against most clinical isolates. A limitation of the
combinations tested in this category is, that we only tested
combinations of tigecycline with glycopeptides and not with
other classes of cell wall-targeting antibiotics such as β-lactams,
and this should be explored in future studies.

Teicoplanin is a glycopeptide and acts by interacting with the
D-ala-D-ala terminal of the muramyl-pentapeptide which results
in inhibition of the cell wall peptidoglycan synthesis (Parenti,
1986). The drug is reported to have good tissue and cellular
penetration (Parenti, 1986). Teicoplanin was found to have lower
adverse event rates compared to the glycopeptide vancomycin
(Svetitsky et al., 2009). Tigecycline is a glycylcycline acting via
inhibiting protein synthesis (Olson et al., 2006). Both teicoplanin
and tigecycline are administered intravenously, which may limit
their application. However, it is noteworthy that despite this
limitation tigecycline is used to treat M. abscessus infections
(Wallace et al., 2014). The exact molecular mechanism by which
the synergistic combination of teicoplanin+ tigecycline exerts its
activity remains to be determined. Tigecycline may have limited
ability to penetrate the bacterium to gain access to its intracellular
target. One may speculate that with the administration of
teicoplanin together with tigecycline, teicoplanin is able to
‘weaken’ the bacterial cell wall and allow greater penetration of
tigecycline into the bacterium.

CONCLUSION

This study has identified teicoplanin + tigecycline as a novel
synergistic combination against M. abscessus in vitro. The drug
pair can now be tested in M. abscessus animal models of infection
and/or in patients.
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