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ABSTRACT Streptococcus thermophilus strain B59671 is a Gram-positive lactic acid
bacterium that naturally produces a broad-spectrum bacteriocin, thermophilin 110,
and is capable of producing gamma-aminobutyric acid (GABA). The complete ge-
nome sequence for this strain contains 1,821,173 nucleotides, 1,936 predicted genes,
and an average G�C content of 39.1%.

Streptococcus thermophilus is a nonpathogenic lactic acid bacterium commonly isolated
from bovine mammary tissue and raw milk, and it is used as a starter culture for the

production of yogurt and cheese. Some S. thermophilus strains have been investigated for
their production of broad-spectrum antimicrobial peptides called bacteriocins. Several
strains naturally produce bacteriocins (1–7), while others require a synthetic 30-mer
quorum-sensing peptide, BlpC30, to induce production (8–10). The chromosomal locus
encoding BlpC30-induced bacteriocins was designated the bacteriocin-like peptide (blp)
gene cluster when characterized in strains LMD-9, LMG18311, and CNRZ1066 (11). The blp
gene cluster varied substantially within these strains, and only LMD-9 was induced to
express an active bacteriocin (8, 12).

Here, we report the complete genome sequence of S. thermophilus strain B59671,
which naturally produces a broad-spectrum bacteriocin, thermophilin 110, encoded
within the blp gene cluster (13, 14). Thermophilin 110 was reported to inhibit the
growth of Listeria monocytogenes (13), Streptococcus mutans, Streptococcus pyogenes,
and Propionibacterium acnes (15). In addition, similar to S. thermophilus strains Y2 (16)
and APC151 (17), strain B59671 expresses glutamate decarboxylase and is capable of
converting glutamate to gamma-aminobutyric acid (GABA) (18), a potent neurotrans-
mitter reported to have analgesic, antihypertensive, and antidiabetic activities (19).

Following growth in tryptone-yeast extract-lactose medium, cells were pretreated
with mutanolysin, and genomic DNA was isolated using the DNeasy blood and tissue
kit (Qiagen), according to the manufacturer’s protocol. Genome sequencing was per-
formed by the Genomics Core Facility, Clinical and Translational Research Institute,
Drexel College of Medicine (Philadelphia, PA) with a Pacific Biosciences RSII system
(PacBio, Menlo Park, CA). Single-molecule real-time (SMRT) sequencing was performed
with P6/C4 PacBio chemistry. De novo assembly was achieved with HGAP assembler
version 2.3, yielding a single contig supported by a mean coverage of 542-fold (20). The
genome was circularized by permutation to begin at the dnaA gene, and terminal
duplications were removed using Circlator version 1.0.2. The genome was resequenced
with RS_Modification_and_Motif_Anlysis version 2.3, and Prokka version 1.11 (21) and
Taxator version 1.2 (22) were used for analysis. The fully assembled genome consisted
of a single chromosome of 1,821,173 bp.
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Genome annotation was obtained by the NCBI Prokaryotic Genome Annotation
Pipeline (Bethesda, MD) and revealed a total of 1,936 genes, 67 tRNAs, and 6 rRNAs (16S
and 23S). In addition, there were 196 pseudogenes identified, which agreed with
previous reports showing that approximately 10% of the genes in S. thermophilus are
nonfunctional (11). The Clone Manager software (Sci-Ed Software, NC) was used to
identify homologs of blpA and blpX, which flank the blp gene cluster (11). In B59671, this
locus contained 10,067 bp, which was 2,501 and 2,172 bp less than the corresponding
loci in strains LMD-9 and LMG18311, respectively (11). The nucleotide sequence from
B59671 matched the sequences in LMD-9 and LMG18311 by 76 and 79%, respectively.
Further studies will aim to fully characterize the blp gene cluster in B59671.

Accession number(s). The complete genome sequence for S. thermophilus B59671

has been deposited in GenBank under the accession number CP022547.
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