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A modeling method 
for the development 
of a bioprocess to optimally 
produce umqombothi (a South 
African traditional beer)
Edwin Hlangwani1, Wesley Doorsamy2, Janet Adeyinka Adebiyi1, 
Lanrewaju Ibrahim Fajimi3 & Oluwafemi Ayodeji Adebo1*

Bioprocess development for umqombothi (a South African traditional beer) as with other traditional 
beer products can be complex. As a result, beverage bioprocess development is shifting towards new 
systematic protocols of experimentation. Traditional optimization methods such as response surface 
methodology (RSM) require further comparison with a relevant machine learning system. Artificial 
neural network (ANN) is an effective non-linear multivariate tool in bioprocessing, with enormous 
generalization, prediction, and validation capabilities. ANN bioprocess development and optimization 
of umqombothi were done using RSM and ANN. The optimum condition values were 1.1 h, 29.3 °C, and 
25.9 h for cooking time, fermentation temperature, and fermentation time, respectively. RSM was an 
effective tool for the optimization of umqombothi’s bioprocessing parameters shown by the coefficient 
of determination  (R2) closer to 1. RSM significant parameters: alcohol content, total soluble solids 
(TSS), and pH had  R2 values of 0.94, 0.93, and 0.99 respectively while the constructed ANN significant 
parameters: alcohol content, TSS, and viscosity had  R2 values of 0.96, 0.96, and 0.92 respectively. 
The correlation between experimental and predicted values suggested that both RSM and ANN were 
suitable bioprocess development and optimization tools.

The heterogeneous nature of food complicates food bioprocessing operations through varying responses to 
process  conditions1. Thus, the development and application of dynamic optimization approaches is an important 
step towards ensuring robust process control, quality, and consumer  safety2,3. The technical application of these 
approaches, especially in a biologically complex product such as traditional beer has been  minimal4. Further-
more, variable microbial growth kinetics, process constraints, biochemical reactions, dynamic food matrices, 
and difficult bioprocessing requirements amplify complexities in bioprocess development and  optimization3,5. 
As a result, the combination of linear and non-linear techniques is an effective approach to describe, analyze, 
and predict bioprocess responses that impact the outcomes of the final  product3,6.

The use of a single technique may not be adequate in ascertaining the relationship between process input 
variables and the quality of the  product5. Nonetheless, standalone mathematical and statistical models have 
been previously successful in describing the linear, interactive, and quadratic effects of selected parameters in 
beer  bioprocessing6,7. Response surface methodology (RSM) and factorial experiment with their associated 
designs are traditional statistical models which have been applied extensively to screen and optimize factors in 
the biotechnology and food engineering  industries3,6. RSM consists of a group of empirical techniques which 
evaluate the relationship between a group of control experiment parameters to achieve an optimal  process8,9. 
In particular, RSM has been used as a statistical method to generate efficient models to optimize very large and 
complex bioprocesses in food  systems1,10. RSM determines the significance of a model and defines the relationship 
between process variables through analysis of variance (ANOVA) and the lack of  fit1,11. Moreover, the optimum 
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conditions are determined by the desirability  function10,11. However, traditional techniques show significant 
limitations in biological  processes3,6. For example, RSM disregards parameters deemed insignificant without 
accounting for the possible interactive effects on the output of bioprocess.

Artificial intelligence (AI) and machine learning (ML) tools such as fuzzy logic, ANN, particle swarm optimi-
zation (PSO), and genetic algorithm (GA) are emerging technologies appropriate for the research and develop-
ment of efficient  bioprocesses6,12. Recently, the application of 2-step or 3-step optimization approaches involving 
RSM, ANN, and GA has become standard practice for manufacturing and other biological  processes7,12. However, 
these tools and approaches have been rarely applied in the modeling and optimization of brewing and fermen-
tation  processes3. ANN has been successful in accurately approximating linear and non-linear functions from 
historic data devoid of cellular kinetics and metabolic fluxes, especially in multivariate  bioprocesses3,6. ANNs 
are mathematical emulations of the biological learning process occurring within the brain. It can arithmetically 
model the network structure of interconnected nerve cells, and thus “learns”, link associations, and adapts to 
make accurate value predictions from a specific sample  set13.

ANN possesses extraordinary processing abilities such as self-organization and data classification, pattern 
recognition, processing fuzzy and inaccurate information, good generalization capabilities, quicker processing 
time, noise and fault tolerance as well as high  parallelism12,13. Given its numerous benefits, the use of ANN 
as a non-linear multivariate tool in bioprocess development can improve both the bioprocess and the final 
 product14,15. For umqombothi bioprocessing, ANN presents a unique advantage in the improving developed RSM 
models since its standard framework has an inherent ability to use background information to solve  problems4,16. 
Bioprocessing approaches that apply both RSM with adaptive learning techniques such as ANN have been shown 
to have better accuracy, prediction, and dependence relation when compared to traditional, isolated  RSM17,18. 
As such, bioprocess development and optimization without carefully deliberated process designs will result in 
irreproducible and unreliable process  designs4,10. In this study, a modeling method for the development of a 
bioprocess to optimally produce umqombothi was investigated.

Methodology
Traditional beer (umqombothi) brewing process. Five hundred (500) g of pre-packaged King Korn 
malted sorghum (Mtombo – Mmela) (Tiger Brands, Bryanston, South Africa) was mixed with 1000 g of White 
Star maize meal (Pioneer Foods, Bryanston, South Africa) in a sterile 10 L bucket filled with 7 L tap water. 
The mixture was gently stirred, covered, and incubated (Labcon, Chamdor, South Africa) at 25 °C for 24 h to 
sour. Thereafter, the soured paste was stirred gently and cooked for 30 min at 45 °C to make a traditional beer 
porridge (isdudu). The porridge was allowed to cool to 25 °C after which 500 g of King Korn malted sorghum 
(Tiger Brands, Bryanston, South Africa) was added and gently stirred. The mixture was then incubated at 30 °C 
(Labcon, Chamdor, South Africa) for 24 h to ferment. The finished beer was then tested for physicochemical 
properties.

Experimental design using response surface methodology (RSM). Preliminary experiments (data 
not presented herein) were conducted to determine appropriate ranges for processing factors: cooking time, 
fermentation temperature, and fermentation time and their effects on alcohol content, total soluble solids (TSS), 
total titratable acidity (TTA), pH, and viscosity in umqombothi. The obtained data was then used for the design 
of experiments (DOE) (Fig. 1). Thereafter, appropriate ranges were determined for factors of interest (Table 1). 
Central Composite Design (CCD) in Design-Expert software version 11.0.0 (Stat-Ease Inc., Minneapolis, USA) 

Figure 1.  A flow chart of the complete experimental design and optimization techniques.
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was used to generate 20 experimental runs. The input factors were cooking time (hr), fermentation temperature 
(°C), and fermentation time (hr) (Table 1). Following experimental combinations (Table 2) subsequent experi-
ments were conducted.

Samples were withdrawn after each experimental run (done in triplicates) and alcohol content (°P), TSS 
(g/100 g), TTA (% lactic acid), pH, viscosity (cm/min) were determined. The Design-Expert software was also 
used to analyze and compute a second-order polynomial model to estimate and predict response values over a 
range of input parameter values by determining which input factors influenced responses, and the direction of 
that drive for the designed experiments as depicted in Eq. (1) below:

where Y  indicated the response variable (optimal production parameter), βo the intercept of the response vari-
able, while βi , βii , and βij were coefficients corresponding to the factor xi , xj ( i, j = 1, 2, …, n). The input variables 
that affected the response Y  were x1,x2 , x3 . The random error was represented by ε.

Neural network construction and fitting. Experimental data was organized and used for the develop-
ment of ANN prediction models. A matrix laboratory MATLAB R2020a (MathWorks, Massachusetts, USA) 
software was used for the design of function fitting neural network. A feed-forward neural network with two 
layers was used. The first layer was the input layer and the second layer was the output layer, both of which were 
triggered using the sigmoid activation function. Cooking time (hr), fermentation temperature (°C) and fermen-
tation time (hr) were used as network inputs and alcohol content (°P), TSS (g/100 g), TTA (% lactic acid), pH, 
and viscosity (cm/min), were each used as the outputs to develop several networks and to determine the optimal 
network topology. Experimental data were randomly divided for training, validation, and testing. For training, 
14 (70%) instances were used, 3 (15%) for validation and 3 (15%) for testing. The ANN model was then trained, 
validated, and tested by the Levenberg–Marquardt (LM) training algorithm. To further study the responses of 
the model, Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) training algorithms were also 
evaluated. The network was trained until the coefficient of correlation (R) was closer to 1.

(1)Y = βo +
∑

βi̇xi +
∑

βiix
2
+

∑
βijxixj + ε

Table 1.  Process parameters selected for optimization: cooking time, fermentation temperature, and 
fermentation time. hr hour.

Parameters Code High level (+ 1) Medium level (0) Low level (–1)

Cooking time (hr) X1 3 2 1

Fermentation temperature (°C) X2 35 30 25

Fermentation time (hr) X3 96 60 24

Table 2.  Experimental design of umqombothi. hr hour.

Experimental run Cooking time (hr) Fermentation temperature (°C) Fermentation time (hr)

1 2 38.41 60

2 2 30 60

3 3 35 24

4 2 30 60

5 2 30 60

6 3 25 24

7 2 30 60

8 1 35 96

9 3 25 96

10 1 25 24

11 2 30 60

12 1 25 96

13 3 35 96

14 3.68 30 60

15 2 21.59 60

16 1 35 24

17 0.32 30 60

18 2 30 120.54

19 2 30 60

20 2 30 0
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Determination of physicochemical properties. Alcohol content. The alcohol content of the finished 
beer was determined using a digital refractometer for brewing (Hanna Instruments (Pty) Ltd., Johannesburg, 
South Africa). A clean pipette was used to place 0.5–1 ml of the finished beer on the sample well. The Plato read-
ings were recorded afterward.

pH. The pH of the finished beverage was determined using a portable pH meter (Hanna Instruments (Pty) 
Ltd., Johannesburg, South Africa) after calibration with standard buffers of pH 4.00 and 7.00.

Total soluble solids. The total soluble solids of the finished beer were determined using a digital refractometer 
(Hanna Instruments (Pty) Ltd., Johannesburg, South Africa). A clean pipette was used to place 0.5–1 ml of the 
finished beer on the sample well. The refractive indices of the samples were then recorded accordingly.

Viscosity. The consistometer (Endecotts, London, United Kingdom) was used to determine the consistency of 
the finished beer (cm/min) by pouring 100 ml of the sample into the reservoir behind the gate of the consistom-
eter. The lock release lever was released to instantaneously open the gate, allowing the liquid to flow over the 
instrument’s graduated scale for 1 min.

Total titratable acidity. The American Association of Cereal Chemists (AACC) 02-3119 approved method was 
used to determine the total titratable acidity whereby 10 g of the sample was dissolved in 100 ml distilled water. 
The solution was well mixed and 0.5 ml of 1% phenolphthalein indicator was added. Finally, standardized 0.1 N 
sodium hydroxide was used to titrate the prepared solution until a faint pink color was observed. Titratable acid-
ity (in terms of lactic acid %) = volume (ml) required / 20.

Statistical analysis. All experiments and analyses were conducted in triplicates. ANOVA was employed to 
determine the significance of the generated models. Design-Expert software version 11.0.0 (Stat-Ease Inc., Min-
neapolis, USA) was used to determine the Response (Y) of the second-order polynomial equation, the coefficient 
of determination  (R2), the ‘predicted R-squared’ and ‘adjusted R-squared’, the coefficient of variance (CV), and 
the ‘probability F’ value.

Statement on experimental research and field studies on plants. We confirm that the use of 
plant-based cereals in our study complied with the relevant institutional, national, and international guidelines 
and legislation, in particular the IUCN Policy Statement on Research Involving Species at Risk of Extinction.

Results and discussion
The effect of cooking time, fermentation temperature, and fermentation time on the alcohol content, TSS, TTA, 
pH, and viscosity were investigated. Optimization of cooking time, fermentation temperature, and fermenta-
tion time is essential for maintaining consistent physicochemical properties, curbing undesired changes that 
may occur during bioprocessing, and understanding the interactions among these process variables at different 
 conditions1. In beer production, these are principal factors that influence the final product and its acceptance 
by  consumers20,21.

The effect of input factors on the physicochemical properties of the beer. Alcohol content. Sam-
ples fermented for a longer period (≥ 60 h) at a relatively higher temperature (≥ 30 °C) contained a lower alcohol 
content (Table 3, see experimental run numbers 1, 4, 7, 9, 15, and 20). Generally, a higher fermentation tempera-
ture affects the rate of sugar metabolism (i.e., leads to a rapid increase in alcohol content and other by-products 
such as volatile compounds)21. On a contrary, in this study, a higher temperature accompanied by a longer 
fermentation time led to a lower alcohol content (Table 3). Given these conditions, a low alcohol content may be 
attributed to evaporative ethanol loss. It’s not uncommon for product inhibition to occur during simultaneous 
saccharification and fermentation, whereby ethanol, a fermentation product, inhibits zymase over time while 
the products of saccharification inhibit hydrolytic  enzymes22. In addition, the synthesis of acetate and acids such 
as formic acid, acetic acid, and levulinic acid at concentrations above 100 mM may inhibit the bioconversion of 
 biomass22,23 and thus influence alcohol content.

TSS. Cooking the soured porridge for an adequate amount of time is essential for starch gelatinization and 
release of locked-up nutrients in yeasts  cells24. The cooking time was found to influence the alcohol content, 
TSS, pH, and viscosity (Table 3). The proliferation of fermentative microbes is driven by the hydrolysis of cooked 
starch to fermentable sugars by endogenous amylolytic  enzymes25. As the endosperm protein enclosing the 
starch granules is softened (during gelatinization), moving the grain to the retting water, thereby increasing the 
amount of  TSS26. This might explain the increasing trend in the amount of TSS with an increased cooking and 
fermentation time. As observed from Table 3, cooking for more than 1 h significantly increased the amount of 
TSS. A reverse trend was observed when the fermentation time was increased. This could be attributed to the 
growth patterns of microorganisms that correspond to the consumption of soluble solids over  time26.

The fermentation time largely contributed to the final product’s quality. The longer the fermentation was 
allowed to proceed, the lower the alcohol content, pH, and viscosity (Table 3). Fermentative microorganisms 
need sufficient time to adjust to environmental changes for optimal utilization of the substrate for building 
cellular components (RNA, enzymes, and metabolites)27. As cells complete the cell cycle, they enter the expo-
nential growth phase, where they are the healthiest and most uniform, rapidly driving alcoholic fermentation 
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 forward27. A fermentation time of 24 h was observed to have a relatively higher alcohol content, TSS, and TTA 
levels compared to 60 h and 96 h. It is possible that within this timeframe fermentative microorganisms entered 
the exponential phase growth phase which led to a higher microbial activity rate.

pH and TTA . The TTA and pH ranged between 0.50–1.54% lactic acid and 2.81–4.60, respectively (Table 3). 
Generally, umqombothi and other African traditional beers have a pH range of 3 to 4.2, and a lactic acid level of 
0.26% depending on how the beer is  brewed4,24. Changes in TTA may be a better measure of the success rate of 
the fermentation process than changes in  pH26. A biochemical relationship between alcohol content, TTA, and 
pH, whereby a lower pH was directly proportional to a high TTA and alcohol content, was observed in this study 
(Table 3). According  to25, as the microorganisms carry out alcoholic fermentation, a decrease in the TSS and pH 
are usually observed. Beers with decreased pH values, such as umqombothi (Table 3) have a longer shelf-life, 
better safety and quality, superior facilitation of microbial growth, and a higher concentration of antimicrobial 
 agents28. The low pH and elevated acidity in these beers aid in the elimination of certain pathogenic microorgan-
isms that could pose safety  threats29,30.

Viscosity. Cooking time had a direct influence on the final beer’s viscosity. This is because cooking increas-
ing the availability of starch, which imparts viscidness to food and describes the clarity of the finished  beer31. 
In addition, residual starch from incomplete hydrolysis into sugar contributes to a beer’s  viscosity25. As TTA 
increases and the pH is lowered, the joint action of malt α-and-β amylases is reduced, thereby reducing the beer’s 
viscosity, and giving body to the final  beer25. An increase in the α- amylase, Hitempase 2XL decreased the viscos-
ity in beer produced from malted  buckwheat32. In western beers, filtration of the beer may be difficult due to high 
viscosity, thus leading to starch hazes in the final  product32, while in traditional beers such as umqombothi, filter-
ing the beer may result in the loss of important fiber-imparting solids, giving the beer a higher  viscosity4,33,34.

Multi-response optimization of process parameters. In search for the solution, ANOVA, and Fish-
er’s F-values were used to examine the best fit of the generated RSM models. Model adequacy was determined 
by the coefficient of determination values  (R2) and lack of fit  tests1,20. For the response in view, the  R2 described 
the percentage contribution of the process variables (i.e., the amount of variation around the mean explained 
by the model). For high-confidence prediction purposes, a usable model demands percentage contribution of 
88%  (R2 > 0.88)35. The probability of significance was represented by p-values, with a high p-value indicating an 
inadequate model due to a significant lack of  fit36. The models for alcohol content, TSS, and pH all had p-values 
of 0.00, indicating that the lack of fit was insignificant at a 100% confidence level. Polynomial equations together 
with 3D response surface plots were used to describe the mathematical solutions of the models. Polynomial 
equations for alcohol content, TSS, TTA, pH, and viscosity are shown in Eqs. (2), (3), (4), (5), and (6), respec-

Table 3.  Responses from the investigated input parameters. cm centimetre, Exp experimental, Ferm 
fermentation, g gram, hr hour, min minute, temp temperature. *Each value is a mean of triplicates ± standard 
deviation of triplicates. Means with no common letters within a row significantly differ (p < 0.05).

Exp run

Inputs Responses

Cooking time 
(hr)

Ferm temp 
(°C)

Ferm time 
(hr) Alcohol  (°P) TSS (g/100 g)

TTA (% lactic 
acid) pH

Viscosity (cm/
min)

1 2 30 60 8.07de ± 0.70 7.37cde ± 0.31 1.18hi ± 0.03 2.90ab ± 0.05 15.33cde ± 0.58

2 2 30 60 8.70efg ± 0.30 7.73def ± 0.55 1.20ij ± 0.02 2.88ab ± 0.03 14.50 cd ± 0.87

3 3 25 96 7.77d ± 0.75 7.37cde ± 0.60 1.07 fg ± 0.06 2.91ab ± 0.01 10.83a ± 1.04

4 3.68 30 60 6.77c ± 0.06 6.63c ± 0.31 0.81e ± 0.08 2.90ab ± 0.05 17.17 g ± 1.15

5 1 25 96 5.10a ± 0.35 4.90ab ± 0.44 0.81e ± 0.03 2.95ab ± 0.08 19.17 h ± 0.29

6 1 25 24 9.50hi ± 0.20 9.27 h ± 0.31 1.54 m ± 0.04 3.62de ± 0.02 22.67j ± 0.58

7 0.32 30 60 7.00c ± 0.26 6.70c ± 0.26 0.72bc ± 0.02 2.90ab ± 0.05 25.00 k ± 1.00

8 2 30 0 10.47j ± 0.21 10.3i ± 0.30 0.50a ± 0.03 4.60f. ± 0.20 12.83b ± 0.29

9 2 30 120.54 4.70a ± 0.20 4.80a ± 0.26 0.72bc ± 0.03 3.26c ± 0.02 16.50 fg ± 0.87

10 2 21.59 60 8.73efg ± 0.81 8.37 fg ± 0.65 0.78cde ± 0.05 2.99b ± 0.01 14.17c ± 0.29

11 2 30 60 8.87fgh ± 0.32 7.90ef ± 0.46 1.21ij ± 0.05 2.92ab ± 0.03 16.17efg ± 0.29

12 2 30 60 8.13de ± 0.15 7.87ef ± 0.12 1.13gh ± 0.04 2.91ab ± 0.03 15.67def ± 0.58

13 2 30 60 8.43ef ± 0.29 7.87ef ± 0.38 1.22ij ± 0.02 2.90ab ± 0.07 15.00 cd ± 0.00

14 2 38.41 60 9.50hi ± 0.30 9.60hi ± 0.85 0.79de ± 0.03 2.86ab ± 0.05 17.33 g ± 0.58

15 1 35 96 7.07c ± 0.21 7.03 cd ± 0.15 0.68b ± 0.02 2.81a ± 0.03 14.17c ± 0.29

16 3 35 24 9.27gh ± 0.15 9.03gh ± 0.38 1.35 k ± 0.04 3.36c ± 0.03 14.33c ± 0.58

17 1 35 24 9.17gh ± 0.06 8.93gh ± 0.21 1.44 l ± 0.02 3.73e ± 0.25 20.83i ± 0.76

18 2 30 60 8.37def ± 0.35 8.10ef ± 0.17 1.25j ± 0.01 2.88ab ± 0.03 14.67 cd ± 0.29

19 3 25 24 10.07ij ± 0.12 9.50 h ± 0.78 1.05f. ± 0.05 3.51d ± 0.02 16.83 g ± 0.76

20 3 35 96 5.73b ± 0.15 5.60b ± 0.10 0.74bcd ± 0.02 2.84ab ± 0.04 12.33b ± 0.29
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tively. For better visualization, 3D response surface plots for alcohol content, TSS, TTA, pH, and viscosity are 
shown in Fig. 2a,b. Regression equations from the fitted models were used to generate 3D plots.

The models for optimizing the alcohol content (°P), TSS (g/100 g) and pH, in the beer, were found to be sig-
nificant as implied by high model F-values (F ≥ 10) and low p-values (p ≤ 0.05) (Table 4). For the alcohol content 
and TSS models,  X3,  X1X2,  X1

2 were significant model terms (p ≤ 0.05) (Table 4). Significant model terms for pH 
were  X3,  X1X3,  X3

2, with p-values of 0.00, 0.047, and 0.00 respectively (Table 4). The predicted determination 
(pred-R2) values for alcohol content and TSS were not as close to the adjusted determination (adj-R2) indicating 
a slight limitation with the model (Table 5). A consideration of outliers, model reduction, and response trans-
formation may improve the empirical  model37. In contrast, the predicted determination (pred-R2) of 0.89 in the 
pH optimization model was reasonably close to the adjusted determination (adj-R2) of 0.97, thus confirming 
the model’s accuracy in correctly predicting responses (Table 5). Adequate precision values above 4 indicated 
an adequate signal-to-noise ratio. This means the optimization models for alcohol content, TSS, and pH were 

Figure 2.  (a) 3D response surface plots demonstrating the effect of cooking time, fermentation temperature, 
and time on umqombothi samples: (A) Alcohol content, (B) TSS, (C) TTA. (b) A 3D response surface plot 
demonstrating the effect of cooking time, fermentation temperature, and time on umqombothi samples: (A) pH, 
(B) Viscosity.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20626  | https://doi.org/10.1038/s41598-021-00097-w

www.nature.com/scientificreports/

suitable to navigate the design space and all of the model’s parameters showed that the developed models were 
able to predict the responses correctly. The optimization models for alcohol content, TSS had reproducibility 
above 90%  (R2 ≥ 0.90) and low coefficient of variation (C.V. %) values (Table 5), indicating a good precision for 
the capability of the process under evaluation.

The models for optimizing TTA and viscosity were insignificant as implied by low model F-values (F ≤ 10) and 
high p-values (p > 0.05) (Fig. 2a,b). Here, model reduction, consideration of outliers, and response transforma-
tion will not improve the model. The overall mean may be a better predictor of the designed responses than the 
current models. A higher-order model may also predict better in certain cases. None of the TTA optimization 
model terms were significant, while  X1 and  X1

2 were significant model terms (p ≤ 0.05) for viscosity. Both the 
models’ limitations were described by significant differences between the predicted determination. The TTA 
model had a pred-R2 of –3.34 and an adj-R2 of –0.09. Similarly, the model for viscosity had a pred-R2 of –1.05 
and an adj-R2 of 0.49. In this case, a negative predicted determinant (pred-R2) implies that the overall mean 
may be a better predictor of the designed response than the current  model38. A higher-order model may also 
predict better in certain cases. An adequate precision value of 2.99 in the TTA model indicated an undesirable 
signal-to-noise ratio. This means the model was not suitable to navigate the design space. The viscosity optimiza-
tion model had an adequate precision above 4, meaning the model was suitable for navigating the design space. 
The low reproducibility of 42% (Table 5) for the TTA optimization model was indicated by a low coefficient of 
determination  (R2 = 0.424). In contrast, the coefficient of determination for the viscosity was 0.729, representing 
a 73% reproducibility. Although the reproducibility can be considered adequate, a C.V. % value of 15.22 may 
be alarming (Table 5). From the obtained experimental data, second-order polynomial equations showing the 
significance of linear, quadratic, and interactive terms in predicting the response were generated and shown in 
Eqs. (2), (3), (4), (5), and (6) below:

where  Y1 = response for alcohol content (°P),  Y2 = response for TSS (g/100 g),  Y3 = response for TTA (% lactic 
acid),  Y4 = response for pH,  Y5 = response for viscosity (cm/min),  X1 = Cooking time (hr),  X2 = Fermentation 
temperature (°C),  X3 = Fermentation time (hr).

The effect of input factors on the physicochemical properties of the optimal beer brew. Inde-
pendent variables, cooking time (hr) coded as  (X1), fermentation temperature (°C) coded as  (X2), and time (hr) 
coded as  (X3) were optimized. The optimization goal for all independent variables was set to ‘target’ as dictated 
by the nature of the study. The responses alcohol content (°P), TSS (g/100 g), TTA (% lactic acid), pH, and 
viscosity (cm/min) were considered for optimization. The software generated 100 optimization solutions each 
with a desirability value of 1. To select a suitable solution, prediction values of each solution were compared 
to prediction values of the constructed ANN. Yeast survival and proliferation, under-and-over cooking, shelf-
life associated spoilage, and conditions’ applicability in real-life (study objectives) were also considered. Taking 
these variables into account, a solution that favored these considerations was selected. A cooking time of 1.1 h, 
fermentation temperature of 29.3 °C, and fermentation time of 25.9 h were optimal bioprocessing conditions. 
The parameters (alcohol content, TSS, TTA, pH, and viscosity) were subsequently investigated and the results 
are provided in Table 6. The customary brew (CB) was prepared by cooking the mixed ingredients for 30 min 
and leaving the cooked slurry to ferment at 25 °C for 24 h. The CB was then compared with the optimized brew 
(OPB).

The OPB was found to have a low pH (3.27 ± 0.03) compared to the CB (4.23 ± 0.02) (Table 6). As a result, 
the OPB had a higher alcohol content (13.63 ± 0.12°P) and a higher TTA (0.68 ± 0.02% lactic acid). In preparing 
high-quality umqombothi, a 60 min cooking time has been suggested to be  ideal39. A cooking time of 1.1 h did 
not under-/over-gelatinize the starch and provided adequate nutrients to yeasts  cells24. In addition, the achieved 
gelatinization improved water absorption into the granules, thereby improving the  viscosity40. This was reflected 
in the viscosity obtained for the OPB, which had more a desirable viscosity value compared to the CB (Table 6). 
A fermentation temperature of 29.3 °C was optimal for higher production of alcohol in the OPB (Table 6). A 
higher TSS in the OPB (Table 6) described the type of sugar conversion and its dependence on temperature for 
a rich, finished  beer41. The slightly higher fermentation temperature and a relatively short fermentation time in 

(2)
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2
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2
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+ 0.105X2X3 + 1.8859X
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Source Sum of squares df Mean F-value p-value

Alcohol content

Model 44.749 9.000 4.972 16.435 0.000*

X1–cooking time 0.191 1.000 0.191 0.630 0.446

X2–fermentation temperature 0.001 1.000 0.001 0.002 0.964

X3–fermentation time 35.501 1.000 35.501 117.348 0.000*

X1X2 2.509 1.000 2.509 8.293 0.016*

X1X3 0.054 1.000 0.054 0.180 0.680

X2X3 0.140 1.000 0.140 0.464 0.511

X1
2 3.870 1.000 3.870 12.791 0.005*

X2
2 1.054 1.000 1.054 3.483 0.092

X3
2 1.028 1.000 1.028 3.399 0.095

Residual 3.025 10.000 0.303

Lack of fit 2.536 5.000 0.507

Pure error 0.490 5.000 0.098

Corrected total sum of squares 47.774 19.000

TSS

Model 40.620 9.000 4.513 15.685 0.000*

X1–cooking time 0.115 1.000 0.115 0.399 0.542

X2–fermentation temperature 0.192 1.000 0.192 0.667 0.433

X3–fermentation time 32.503 1.000 32.503 112.951 0.000*

X1X2 2.030 1.000 2.030 7.055 0.024*

X1X3 0.063 1.000 0.063 0.219 0.650

X2X3 0.171 1.000 0.171 0.595 0.458

X1
2 2.420 1.000 2.420 8.409 0.016*

X2
2 2.430 1.000 2.430 8.444 0.016*

X3
2 0.126 1.000 0.126 0.437 0.524

Residual 2.878 10.000 0.288

Lack of fit 2.578 5.000 0.516

Pure error 0.299 5.000 0.060

Corrected total sum of squares 43.498 19.000

TTA 

Model 0.678 9.000 0.075 0.819 0.613

X1–cooking time 0.001 1.000 0.001 0.009 0.925

X2–fermentation temperature 0.004 1.000 0.004 0.047 0.833

X3–fermentation time 0.214 1.000 0.214 2.320 0.159

X1X2 0.005 1.000 0.005 0.054 0.820

X1X3 0.101 1.000 0.101 1.100 0.319

X2X3 0.054 1.000 0.054 0.591 0.460

X1
2 0.070 1.000 0.070 0.761 0.404

X2
2 0.057 1.000 0.057 0.614 0.451

X3
2 0.217 1.000 0.217 2.356 0.156

Residual 0.921 10.000 0.092

Lack of fit 0.912 5.000 0.182

Pure error 0.008 5.000 0.002

Corrected total sum of squares 1.599 19.000

pH

Model 3.710 9.000 0.412 76.174 0.000*

X1–cooking time 0.018 1.000 0.018 3.249 0.102

X2–fermentation temperature 0.016 1.000 0.016 2.972 0.115

X3–fermentation time 1.825 1.000 1.825 337.227 0.000*

X1X2 0.005 1.000 0.005 0.834 0.383

X1X3 0.028 1.000 0.028 5.103 0.047*

X2X3 0.004 1.000 0.004 0.668 0.433

X1
2 0.002 1.000 0.002 0.404 0.539

X2
2 0.000 1.000 0.000 0.032 0.861

X3
2 1.798 1.000 1.798 332.180 0.000*

Continued
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Table 4.  Analysis of variance (ANOVA) for the alcohol content, TSS, TTA, pH, and viscosity quadratic 
models. *Significant at p ≤ 0.05.

Source Sum of squares df Mean F-value p-value

Residual 0.054 10.000 0.005

Lack of fit 0.053 5.000 0.011

Pure error 0.001 5.000 0.000

Corrected total sum of squares 3.764 19.000

Viscosity

Model 165.384 9.000 18.376 2.994 0.051

X1–cooking time 93.262 1.000 93.262 15.193 0.003*

X2–fermentation temperature 0.467 1.000 0.467 0.076 0.788

X3–fermentation time 10.541 1.000 10.541 1.717 0.219

X1X2 4.263 1.000 4.263 0.694 0.424

X1X3 0.583 1.000 0.583 0.095 0.764

X2X3 0.088 1.000 0.088 0.014 0.907

X1
2 51.275 1.000 51.275 8.353 0.016*

X2
2 0.000 1.000 0.000 0.000 1.000

X3
2 2.008 1.000 2.008 0.327 0.580

Residual 61.386 10.000 6.139

Lack of fit 59.399 5.000 11.880

Pure error 1.986 5.000 0.397

Corrected total sum of squares 226.770 19.000

Table 5.  Fit statistics of the quadratic model for alcohol content, TSS, TTA, pH, and viscosity optimization. 
C.V coefficient of variation.

Parameters C.V. % R2 Adjusted  R2 Predicted  R2 Adequate precision

Alcohol 6.815 0.937 0.880 0.529 13.942

TSS 6.928 0.928 0.874 0.474 13.657

TTA 30.056 0.424 –0.094 –3.335 2.986

pH 2.349 0.986 0.973 0.888 32.559

Viscosity 15.223 0.729 0.486 –1.045 7.005

Table 6.  Physicochemical properties of umqombothi. CB customary brew, OPB optimized brew. Each value 
is a mean ± standard deviation of triplicates. *Each value is a mean of triplicates ± standard deviation of 
triplicates. Means with no common letters within a row significantly differ (p < 0.05).

Sample Alcohol (°P) TSS (g/100 g) TTA (% lactic acid) pH Viscosity (cm/min)

CB 11.33 ± 0.21a 10.90 ± 0.10a 0.57 ± 0.02a 4.23 ± 0.02b 16.83 ± 0.76b

OPB 13.63 ± 0.12b 13.33 ± 0.21b 0.68 ± 0.02b 3.27 ± 0.03a 11.50 ± 0.87a

Table 7.  Training, validation, and testing performance indices. MSE mean squared error, R coefficient of 
correlation, R2 coefficient of determination, TSS total soluble solids, TTA  total titratable acidity.

Alcohol TSS TTA pH Viscosity

MSE R R2 MSE R R2 MSE R R2 MSE R R2 MSE R R2

Training 0.01 1.00 1.00 0.01 1.00 0.99 0.00 0.98 0.96 0.35 1.00 1.00 0.21 0.99 0.99

Validation 0.42 0.91 0.83 0.09 0.98 0.96 0.01 0.95 0.91 0.02 1.00 1.00 0.50 0.97 0.94

Testing 0.33 0.77 0.60 0.45 0.97 0.93 0.08 0.72 0.52 1.44 0.53 0.28 4.97 0.87 0.76

Overall 0.42 0.98 0.96 0.09 0.98 0.96 0.01 0.90 0.81 0.02 0.71 0.50 0.50 0.96 0.92
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the OPB appeared to improve the overall physicochemical properties of umqombothi. A fermentation time of 
25.9 h was ideal for the fermentation rate and final beer.

ANN training, validation, and testing on experimental responses. An appropriate ANN con-
struction involves the selection of network architecture, determination of hidden layers and number of neurons 
in each layer, learning—training—validation, and verification of the  data18. In building a better ANN model, the 
number of the hidden layers between inputs and output must be appropriately trained and  fitted18. To achieve 
this, the number of neurons in the hidden was varied (i.e., 5, 10, and 20 neurons in the hidden layer) (data not 
reported). To further study the responses of the model, three different training algorithms were evaluated. When 
10 neurons in the hidden layer were used, all the algorithms rapidly generated solutions with high R and  R2 val-
ues (data not reported). However, when the neurons were increased to 20, the number of reiterations increased 
in the BR algorithm, thus taking longer to generate a solution. In contrast, both the LM and SCG algorithms 
were not significantly affected by an increase or decrease in the number of neurons and maintained a higher 
rapidity in generating solutions. The SCG uses second-order approximation, resulting in fewer iterations and 
faster  learning42. This may be due to the algorithm using a step-size scaling mechanism that avoids a timewasting 
line search per learning  iteration43,44.

Adequate training, validation, testing, and overall prediction accuracy were observed when the LM algorithm 
was used (Table 7). The LM algorithm which may be the fastest of the three training algorithms specifically works 
with loss functions presented in the form of a sum of squared errors (SSE)45,46. Unfortunately, LM cannot be 
applied to the cross-entropy error and the root mean squared error  functions46. For functioning approximation 
problems, the LM training algorithm was able to obtain lower MSE than all other algorithms among regulariza-
tion techniques. As a result, the LM is the recommended choice with better performance in terms of rapidity and 
the overfitting problem when there are a few thousand instances and a few hundred parameters for training the 
 ANN46,47. In an unrelated study, the LM training algorithm was found to show the highest accuracy in comparison 
to different training algorithms in a MLP model that forecasted chemical elements distribution in the  topsoil45.

The ANN training using the LM algorithm stopped automatically when generalization stopped, indicated 
by an increase in the MSE of the validation samples. In measuring performance indices of the ANN, the MSE is 
the most used and simplest error  function48,49. The MSE measures the ability of the model to predict responses 
accurately, with a lower MSE showing a higher modeling  ability18. In combination,  R2 and MSE evaluated the 
overall accuracy of the  model18. The coefficient of correlation (R) was used to measure the correlation between 
inputs and targets. R = 1 described a close relationship, and R = 0 described a random relationship. ANN mod-
els for alcohol content, TSS, TTA, and viscosity had overall  R2 values of 0.96, 0.96, 0.81, and 0.92, respectively 
(Table 7). These values were closer to 1, suggesting high reliability in model prediction accuracy. The overall  R2 
value for pH was 0.50 representing a 50% reproducibility. Overall, a high correlation between inputs and targets 
was observed for alcohol content (0.98), TSS (0.98), TTA (0.90), and viscosity (0.96) (Fig. 3).

Apart from MSE values, the ANN was further assessed using performance curves. Performance curves dis-
play the network’s incremental training process and the direction in which it learns. These curves plot training 
record error values against the number of training epochs. Consequently, the learning curve is a plot describing 
a model learning performance over time or  experience50. Performance curves are useful in diagnosing problems 
with learning aspects such as unrepresentative training datasets, underfitting models, unrepresentative validation 
datasets, and overfitting  models50. The ANN best validation performance curves for the responses are shown in 
Fig. 4. The ANN achieved the best learning and the lowest error after a few iterations (epochs). The best valida-
tion performance for each network was taken from the epoch with the lowest validation error. Both alcohol and 
TTA had the shortest iterations before achieving the best validation performance. In contrast, TSS achieved its 
best validation performance at epoch 5. After more epochs of training, the error is generally reduced but may 
start to increase on the validation dataset as overfitting of the training data  occurs51. All the networks showed 
a good learning rate for the training stage and a high learning rate for the validation and testing  stages52. In 
addition, both the training and validation showed a good fit displayed by training and validation MSE (loss) 
values which decreased to a point of stability with relatively nominal gaps between the two final MSE (or loss) 
 values50. Overall better learning is described by error scores closer to 0, thus indicating that the training dataset 
was learned thoroughly and minimal mistakes were  made50.

Comparison between the RSM and ANN responses. An optimization prediction model developed 
by RSM was assessed by comparing its prediction accuracy with that of the ANN which was also used to validate 
the entire process. Table 8 shows the error comparison obtained from both and ANN predictions. The compara-
tive error analysis was used to verify the prediction accuracy and generalization capacity of both models in opti-
mizing the  bioprocess53,54. Overall, the ANN model showed lower error values than the RSM, indicating lower 
computational deviations and an advanced generalization  capability11,54. As a result, ANN displayed a higher 
prediction accuracy and better model  fitting18. On the other hand, RSM prediction values can be accepted with 
a higher degree of confidence since they are closer to experimental values and ANN prediction  values18,55. The 
results from Table 8 show a close correlation between the experimental values and RSM and ANN’s predicted 
values. Both RSM and ANN models showed a relatively high number of inexact predictions for viscosity.

The difference between predicted and experimental values directly contributed to the extent deviation in pre-
dictive capacity of each model. While RSM is recommended for modelling new processes, its sensitivity may be 
 limited55. Despite this limitation, RSM has an obvious way of showing the effect of individual elements and their 
interactions on a specific  system11. For example, the effect on a specific parameter is shown by a greater higher 
value of coefficients in  ANOVA57. On the other hand, a higher number of inputs are required for ANN than RSM 
to have better  predictions55. ANN cannot give such insights into the system directly since it is a ‘black box’56. 
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Nonetheless, ANN can universally describe high-level interactions in non-linear systems without prior specifica-
tion for suitable fitting  function55,57. Additionally, ANN can calculate multi-responses in a single  process53. As 
depicted by the close agreement between the experimental and predicted values, RSM and ANN are adequate for 
developing a bioprocess that optimally produces umqombothi. Advanced soft computing approaches like ANN 
may be preferred in the case of data sets with a limited number of observations in which regression models fail to 
capture  reliably18. The closeness of the experimental values and predicted suggest that the non-linear fitting effects 
of the model are good, recommending the use of the proposed  procedure18,57. A coupled modeling approach can 
thus be applied in bioprocess method development for umqombothi and related variations.

Conclusion
Both RSM and ANN were effective bioprocess development tools that facilitated the optimization of umqombothi. 
The effectiveness of RSM was shown by  R2 closer to 1. The  R2 values were 0.94, 0.93, 0.99, and 0.73 for alcohol, 
TSS, pH, and viscosity respectively, showing reliability and reproducibility above 70%. Similarly, ANN displayed 
a high degree of accuracy. Constructed ANN models for alcohol, TSS, TTA, and viscosity had  R2 values of 0.96, 
0.96, 0.81, and 0.92 respectively. As result, a good correlation between the experimental and predicted values 
suggests that a coupled approach may positively impact the bioprocess and the final product. However, further 
investigation of other key parameters (i.e., starter culture, the content and ratio of raw materials, souring time 

Figure 4.  Validation performance plot of the ANN: (A) Alcohol content (°P), (B) TSS (g/100 g), (C) TTA (% 
lactic acid), (D) pH, (E) viscosity (cm/min).
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and temperature, and cooking temperature) is still required. Furthermore, the use of an additional tool such as 
genetic algorithm may resolve computational and modeling limitations.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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Table 8.  RSM and ANN predictions values. cm centimetre, Exp experimental, g gram, hr hour, min minute, ml 
millimetre, Pred predicted, TSS total soluble solids, TTA  total titratable acidity.

Run

Alcohol (°P) TSS (g/ 100 g) TTA (% lactic acid) `pH Viscosity (cm/min)

Exp
RSM 
Pred

Error 
RSM

ANN 
Pred

Error 
ANN Exp

RSM 
Pred

Error 
RSM

ANN 
Pred

Error 
ANN Exp

RSM 
Pred

Error 
RSM

ANN 
Pred

Error 
ANN Exp

RSM 
Pred

Error 
RSM

ANN 
Pred

Error 
ANN Exp

RSM 
Pred

Error 
RSM

ANN 
Pred

Error 
ANN

1 8.07 8.738 0.243 10.57 − 0.10 7.37 8.117 0.237 10.30 0.00 1.18 1.115 0.134 0.47 0.03 2.90 2.914 0.032 4.60 0.00 15.33 14.138 1.094 12.85 − 0.02
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3 7.77 8.873 0.450 7.00 0.07 7.37 8.732 0.439 7.03 0.00 1.07 1.023 0.248 0.73 − 0.05 2.91 3.475 0.060 2.81 0.00 10.83 15.191 2.029 14.47 − 0.30

5 6.77 6.072 0.450 7.86 − 0.09 6.63 6.111 0.439 7.37 0.00 0.81 0.832 0.248 1.05 0.02 2.90 2.818 0.060 2.91 0.00 17.17 14.180 2.028 10.93 − 0.10

4 5.10 5.392 0.450 5.79 0.98 4.90 5.220 0.439 6.63 0.00 0.81 0.824 0.248 0.81 0.00 2.95 2.883 0.060 2.90 0.00 19.17 19.026 2.028 15.11 2.06

6 9.50 6.913 0.450 9.49 0.01 9.27 6.589 0.439 9.27 0.00 1.54 0.983 0.248 1.13 0.41 3.62 2.976 0.060 3.62 0.00 22.67 12.880 2.028 21.27 1.40

7 7.00 10.244 0.450 8.50 − 0.43 6.70 9.795 0.439 7.71 − 0.34 0.72 0.843 0.248 1.20 − 0.02 2.90 3.549 0.060 2.90 0.00 25.00 14.310 2.029 15.55 − 0.22

8 10.47 9.922 0.450 5.77 − 0.04 10.30 9.734 0.439 5.60 0.00 0.50 1.214 0.248 0.77 − 0.03 4.60 3.712 0.060 2.85 − 0.01 12.83 19.497 2.029 15.28 − 2.95
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14 9.50 9.729 0.250 8.50 − 0.37 9.60 9.178 0.244 7.71 0.16 0.79 1.158 0.138 1.20 − 0.07 2.86 3.489 0.033 2.90 − 1.99 17.33 16.216 1.125 15.55 0.12

15 7.07 6.685 0.257 8.50 − 0.07 7.03 6.318 0.251 7.71 0.16 0.68 0.999 0.142 1.20 0.02 2.81 2.848 0.034 2.90 0.00 14.17 13.487 1.157 15.55 − 0.55
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