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Exploring functional information among various brain regions across time enables

understanding of healthy aging process and holds great promise for age-related brain

disease diagnosis. This paper proposed a method to explore fractal complexity of the

resting-state functional magnetic resonance imaging (rs-fMRI) signal in the human brain

across the adult lifespan using Hurst exponent (HE). We took advantage of the examined

rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females)

from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to

investigate the effects of age, gender, and their interaction on complexity. In region-wise

analysis, we found that the healthy aging is accompanied by a loss of complexity in

frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe.

Meanwhile, differences in HE between genders were found to be significant in parietal

lobe (p = 0.04, corrected). However, there was no interaction between gender and age.

In voxel-wise analysis, the significant complexity decrease with aging was found in frontal

and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe,

and temporal lobe with aging. Meanwhile, differences in HE between genders were found

to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex

interaction in right parahippocampal gyrus (p = 0.04, corrected). Our findings reveal HE

variations of the rs-fMRI signal across the human adult lifespan and show that HE may

serve as a new parameter to assess healthy aging process.
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INTRODUCTION

As the elderly population increases, age-related cognitive changes across healthy lifespan emerges
as a major concern which can interfere with daily routines and has an impact on quality of life
(Hedden and Gabrieli, 2004; St John and Montgomery, 2010; Abrahamson et al., 2012). There is
thus a need of more profound comprehension of the law of brain functional changes associated
with healthy aging.

Functional magnetic resonance imaging (fMRI) provides non-invasive techniques to explore
aging human brain in vivo (Bandettini, 2007; Grady, 2008; Dosenbach et al., 2010; Uddin et al.,
2010). At present, fMRI study is generally based on task or resting state. Resting state studies
of spontaneous fluctuations in fMRI signals have demonstrated huge potential in mapping the
brain’s intrinsic functional features (Kruger and Glover, 2001; Yan et al., 2009). Ciuciu et al. found
that spontaneous brain activities had scale-free dynamics (Ciuciu et al., 2012). He suggested that
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brain activity observed at rs-fMRI signals exhibits a 1/f-like
power spectrum, and the irregular brain activity contributing to
this “1/f slope” of the power spectrumwas scale-free brain activity
(He, 2014). And “scale-free” is the equivalent terminologies for
“self-similar” (Expert et al., 2011). Thus, Hurst exponent (HE)
has attracted researchers’ attention on assessment of spontaneous
signal fluctuations in fMRI due to its well displaying the scale-
free dynamics by representing the self-similarity of a time series
(Maxim et al., 2005; Park et al., 2010). Wink et al. utilized HE
to quantify fractal complexity and describe pathological and
physiological features, then found that HE increased in bilateral
hippocampus with healthy aging (Wink et al., 2006). Liu et al.
(2013) suggested that the fractal complexity of resting state
BOLD time-series may provide a viable measure to probe the
complexity of the underlying brain activity and they found a
trend of decreasing complexity of brain endogenous oscillations
measured by mean approximate entropy in gray matter with
healthy aging. Here complexity can be described as the presence
of similar patterns in the rs-fMRI signal. Lipsitz (2004) found that
complexity of physiological signals decreased with aging. Further
characterizing resting-state brain activity across time with HE
analysis could provide new insights into healthy aging process.

In addition, brain healthy aging may differ between genders.
Some studies found gender-related differences in prefrontal and
limbic regions with emotional and cognitive tasks (Boghi et al.,
2006; Hofer et al., 2006; Mcrae et al., 2008; Schulterüther et al.,
2008; Keller and Menon, 2009). Ni et.al explored age and gender
effects using multifractal analysis of the rs-fMRI series in default
mode network (Ni et al., 2014). Lopez-Larson et al. (2011)
sought to assess the effects of age and gender, by measuring
local brain connectivity of healthy controls using rs-fMRI data.
They found that there existed decreased regional homogeneity
with aging, and the fastest decline was in the temporal lobe
and anterior cingulate. However, their sample size was not large
enough to support their findings and using Kendall’s coefficient
of concordance to compute regional homogeneity values may be
sensitive to random noises.

In this study, we proposed a HE basedmethod to detect fractal
complexity of the rs-fMRI signal in the human brain across the
adult lifespan. Adopting a large sample, we further investigated
whether there exist gender difference and interaction between
gender and age in HE.

MATERIALS AND METHODS

Subjects
Images used in the study are from the Nathan Kline
Institute/Rockland Sample (NKI-RS) (Nooner et al., 2012), which
is publicly available at the International Neuroimaging Data-
sharing Initiative online database. The initial release of the
NKI-RS included 207 participants. After excluding subjects with
diagnosed mental disorders, who all underwent multimodal
brain scans and a battery of psychiatric assessments, 116 healthy
subjects with mean age of 44.3 years (age range: 19–85 years,
SD= 19.4, median= 43, 67 males and 49 females) were selected.
Demographic characteristics of the subjects are displayed in
Table 1.

TABLE 1 | Demographic characteristics of the participants.

Characteristics Males Females Significance (p-values)

subjects 67 (57.8%) 49 (42.2%) –

Age, years 42.5 ± 18.0 46.8 ± 21.2 0.25

Participants all went through a scan session utilizing a Siemens
Tim Trio 3.0 T 8 channel MRI scanner. All participants were
instructed to keep their eyes closed, relax their minds, and
not move during the scanning. Each subject completed a 650 s
rs-fMRI scan and then a scan session comprised 260 functional
volumes. Rs-fMRI scans were collected using an echo-planar
imaging sequence [time echo (TE)= 30ms, time repetition (TR)
= 2.5 s, field of view (FOV) = 216 × 216 mm2, flip angle (FA) =
80◦, matrix size = 64 × 64, number of slices = 38, voxel size =
3.0 × 3.0 × 3.0 mm3, 260 volumes]. Each image was viewed to
ensure that the whole brain was covered.

Data Preprocessing
All the preprocessing was performed utilizing the Data
Processing Assistant for Resting-State fMRI (DPARSF1, Yan and
Zang, 2010) which is based on Statistical Parametric Mapping
(SPM2) and Resting-State fMRI Data Analysis Toolkit (REST3,
Song et al., 2011).

Preprocessing of rs-fMRI images included the following:
(i) discarding of the first 10 volumes from each scan for
signal equilibration and to make the subjects adapted to the
environment, (ii) correcting for temporal shifts in fMRI data
acquisition (slice timing correction), (iii) correction for head
motion, and participant with head motion >2 degree of rotation,
or >2mm of translation in any direction was excluded, (iv)
the Friston-24 model (Friston et al., 1996) was used to regress
out head motion effects based on Yan et al.’s (2013) study, and
then the signals from white matter and cerebrospinal fluid were
regressed out to reduce respiratory and cardiac effects (Fox and
Raichle, 2007). Final step is (v) spatially smooth the result data
using a 6mm full width at half maximum (FWHM) Gaussian
kernel. Since spontaneous activities may persist in higher
frequency bands (Chen and Glover, 2015), temporal filtering was
excluded.

Calculation of HE
The HE is a scalar which measures long-range correlations of
a time series. Rescaled Range (R/S) analysis, which is the most
common (Hurst, 1951), can effectively examine the temporal
complexity of a time series. In this study, we use R/S analysis for
HE calculation.

The principle of R/S analysis is demonstrated as follows: given
a time series T whose length is L, and then T is divided into
N intervals and the length of each interval is A(1 ≤ A ≤ N),
A×N = L. The i-th interval ismarkedwith Ii and the j-th element

1http://www.restfmri.net
2http://www.fil.ion.ucl.ac.uk/spm
3http://www.restfmri.net
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in Ii is marked with xi,j,j = 1, 2, 3 . . .A, and ei is the mean value
in Ii interval, so

yi, j =
j

6
a=1

(xi, a − ei), j = 1, 2, 3 . . .A (1)

Ri = max
1≤j≤A

{yi, j} − min
1≤j≤A

{yi, j} (2)

Si = [
1

A

A
6
a=1

(xi, a − ei)
2]

1
2 (3)

(R/S)A =
1

N

A
6
i=1

(Ri/Si) = cAHE (4)

Where c is a constant and HE was defined as the slope of the
line fitting the pairs (lnA, ln (R�S )A) in a least-square sense. The
calculation was implemented by home-made scripts with Matlab
2012 (MathWorks, Natick, MA).

HE > 0.5 indicates persistent long memory in the time
series, HE < 0.5 implies an anti-correlated time series, and
HE = 0.5 reflects a random white-noise time series (Gentili
et al., 2015). Therefore, Time series can be divided into three
categories (Figure 1). Existed fMRI study (Maxim et al., 2005)
showed that HE of voxels in gray matter is about 0.8, and
voxels with HE < 0.5 concentrate in cerebrospinal fluid. With
the characteristics above, HE is believed to have the capacity to
measure brain activity complexity. A higher HE corresponds to a
lower fractal dimension, and higher HE means lower complexity
accordingly.

Age Effect of HE Based on AAL Brain Atlas
Here we applied Automated Anatomical Labeling (AAL) brain
atlas (Tzourio-Mazoyer et al., 2002) to calculate regional HE.

This atlas consists of a parcellation of 90 brain regions which is
normalized toMontreal Neurological Institute coordinates (MNI
coord.) space, and distributed by WFU Pickatlas (Maldjian et al.,
2003) software.

The voxel-wise HE were averaged in each of 90 brain regions
so that we got the region-wise HE of all the regions for all the
subjects. In each brain region, Pearson correlation coefficient was
used to measure the correlation between the acquired HE and
age. Then, these results were adjusted for multiple comparisons
using a False Discovery Rate (FDR) threshold of q < 0.05.

Gender Comparison Based on AAL Brain
Atlas
The brain cortex was divided into 7 lobar regions including the
frontal lobe, insula, limbic lobe, occipital lobe, parietal lobe, sub
cortical gray nuclei, and temporal lobe with 90 AAL regions.
Values of HE for male and female participants were compared in
each lobar region using 2-tailed t-test. Then, further assessments
were performed on each AAL region within the lobes where
there were significant gender differences. These results were
adjusted for multiple comparisons using a FDR threshold of q <

0.05.

Age Effect of HE Based on Voxel-Wise
Analyses
Statistics analyses were performed using the REST. Linear age-
related effect was estimated by calculating the Pearson correlation
coefficient between age and HE within each brain voxels.
Significant activations were detected with the cluster size of at

FIGURE 1 | Exemplificative illustrations of time-series with different HE. Lower: time- series with HE of 0.8; Middle: time-series with HE of 0.5; Upper: time-series

with HE of 0.2.
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lowest 20 voxels, and these results were adjusted for multiple
comparisons using a FDR threshold of q < 0.05.

Gender Comparison Based on Voxel-Wise
Analyses
HEs of each of the voxels for males and females were compared
using 2-tailed t-test. Significant gender differences were detected
with the cluster size of at lowest 20 voxels, and these results
were adjusted for multiple comparisons using a FDR threshold
of q < 0.05.

Interaction between the Age and Gender
The regions with significant age effect of HE were defined as
regions of interest (ROIs), and then interaction between the age
and gender was assessed within the ROIs.

RESULTS

For all age effect analyses, gender was entered as covariate of
interest. The mean HE of whole brain gray matter showed
significant positive correlation (r = 0.35, p < 0.01) with age
which indicated that complexity of BOLD activity decreased with
normal aging.

Age Effect of HE Based on AAL Brain Atlas
Figure 2 depicts that 33 of the 90 brain regions show less
complexity with increasing age. Positive age effect was most
significant in parietal lobe, including left angular gyrus (r = 0.21,
p = 0.03, corrected) and left superior parietal gyrus (r = 0.17,
p = 0.04, corrected). Significant negative age effect was observed

in right insula (r = −0.21, p = 0.03, corrected), and in limbic
lobe including left parahippocampal gyrus (r = −0.25, p = 0.03,
corrected) and right parahippocampal gyrus (r=−0.21, p= 0.03,
corrected). Also, significant negative age effect was observed in
temporal lobe, including left superior temporal gyrus (r=−0.20,
p = 0.03, corrected), left superior temporal pole (r = −0.20,
p= 0.03, corrected), and right superior temporal pole (r=−0.23,
p= 0.03, corrected).

Scatter plots illustrating significant correlations between age
and the HE of the AAL regions are shown in Figure 3.

Gender Effect of HE Based on AAL Brain
Atlas
The overall mean HEs of males and females were significantly
different (p= 0.04). Then, the differences in HE between genders
were further assessed in the 7 lobar brain regions, and we found
significant differences between genders in parietal lobe (p= 0.04,
corrected) where males had smaller HE (see Figure 4).

Furthermore, an examination of the AAL sub regions in
parietal lobe was taken. The results showed smaller male HE in
the regions listed in Table 2.

Age Effect of HE Based on Voxel-Wise
Analysis
There is significant positive age effect in frontal and parietal
lobe, including left middle frontal gyrus, left triangular
part of the inferior frontal gyrus, bilateral superior parietal
gyri, bilateral inferior parietal but supramarginal and
angular gyri and left angular gyrus. Meanwhile, negative
age effects in insula, bilateral parahippocampal gyri,

FIGURE 2 | Correlation for the 90 brain regions between HE and age. The brain gray matter was subdivided into 7 lobar regions based on the 90 AAL regions.
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FIGURE 3 | Scatter plots for the significant correlations between age and the HE of the AAL regions. (A) ANG.L, left angular gyrus; (B) SPG.L, left superior parietal

gyrus; (C) INS.R, right insula; (D) PHG.L, left parahippocampal gyrus; (E) PHG.R, right parahippocampal gyrus; (F) STG.L, left superior temporal gyrus; (G) TPOsup.L,

left superior temporal pole; (H) TPOsup.R, right superior temporal pole. X-axis, age; Y-axis, the mean HE of the AAL regions. The p-values were corrected using the

FDR method.

bilateral fusiform gyri, and temporal lobe were found. All
results are illustrated in Figure 5 and Table 3, where the
positive r values indicate a decrease of complexity with
age.

Gender Effect of HE Based on Voxel-Wise
Analysis
Differences in HE between genders were assessed in the whole
brain gray matter voxels and significant differences were found

Frontiers in Neuroscience | www.frontiersin.org 5 February 2018 | Volume 12 | Article 34

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dong et al. Hurst Exponent Analysis of Complexity

FIGURE 4 | Mean HE of the 7 lobar brain regions between males and females.

Significant differences were observed in parietal lobe. Error bar represented

standard error. FL, frontal lobe; LL, limbic lobe; OL, occipital lobe; PL, parietal

lobe; SCGN, sub cortical gray nuclei; TL, temporal lobe. The p-values were

corrected using the FDR method.

in voxels of frontal lobe, limbic lobe, occipital lobe and parietal
lobe (p= 0.01, corrected) (see Figure 6 and Table 4).

Interaction between the Age and Gender
Only in voxel-wise analysis, a statistically significant interaction
between the age and gender was found in right parahippocampal
gyrus (F = 1.89, p = 0.04), but there was no interaction in the
other regions.

DISCUSSION

Rs-fMRI is based on low frequency fluctuations in the BOLD
signal, and these fluctuations arise primarily from endogenous
oscillations of brain metabolism and neurophysiological activity
(Fox and Raichle, 2007; Yan et al., 2009). The complexity of
resting-state BOLD signals could provide some evidence of
dynamics of intrinsic brain activity (Yang et al., 2013). In this
study, we quantified the complexity of rs-fMRI based on HE
analysis in a sample of healthy male and female subjects between
the ages of 19–85 years old, and found that there existed a
significant (p < 0.01) positive correlation (r = 0.35) between the
mean HE of whole brain gray matter and the age of all subjects
which means HE increases with age, that is to say, complexity of
BOLD activity is reduced with age. Normal aging is accompanied
by a loss of complexity in various physiological processes (Lipsitz,
2004; Yang et al., 2013), and aging was found to be associated
with significant decrease of complexity in bilateral hippocampus
(Wink et al., 2006). Furthermore, aging may facilitate the erosion
of both local and long-range connections in the brain, so it could

TABLE 2 | Differences in HE between genders in the AAL sub regions.

AAL regions Side T p-values

Postcentral gyrus L 2.59 0.04

Postcentral gyrus R 2.57 0.03

Superior parietal gyrus R 1.76 0.04

Inferior parietal but supramarginal and angular gyri R 2.01 0.04

Precuneus L 1.89 0.04

L, left; R, right; T, Student’s t-test. The p-values were corrected using the FDR method.

decrease the complexity of spontaneous brain activity (Smith
et al., 2014).

In this study, we combined region-wise analysis and voxel-
wise analysis to explore complexity of resting-state BOLD signals.
The region-wise analysis where the mean of all voxels in one
region is given cannot reveal brain regional heterogeneity, and
can lead to misinterpretation when opposing effects come out
from a single structure. However, the voxel-wise analysis often
abide a great many voxels to be computed which provides a lot of
false positive results (Lebenberg et al., 2011). Therefore, region-
wise analysis and voxel-wise analysis are good complementary
tools in our study.

With the region-wise analysis, we found age-related loss of
complexity in parietal lobe, specifically the left angular gyrus,
and left superior parietal gyrus. With the voxel-wise analysis,
on the one hand, we also found this decreased complexity in
parietal lobe. On the other hand, we further found age-related
loss of complexity in frontal lobe with the voxel-wise analysis,
specifically left middle frontal gyrus, and triangular part of the
inferior frontal gyrus. With respect to age-related characteristics
of complexity of resting-state BOLD signals, some studies used
different metrics to investigate characteristics of complexity in
brain regions. Liu et al. found decreased complexity in the right
middle temporal gyrus, bilateral angular gyri, left middle, and
posterior cingulate, left supramarginal gyrus, and left calcarine
cortex in aged subjects compared to young subjects (Liu et al.,
2013). Compared to Liu et al.’s study, we also found decreased
complexity in left angular gyrus. However, we found inconsistent
results in right mid temporal gyrus, left mid cingulate, and left
calcarine cortex of this study. This may due to the difference of
sample size (n = 116 in our study vs. n = 16 in their study) and
age range (19–85 years old vs. two groups, young: age 23± 2 and
elderly: age 66 ± 3). And what’s more, we performed correlation
analyses between the HE and age to investigate the age effect
on complexity, however, Liu et al. used approximate entropy
as a measure of complexity in two groups of healthy subjects
consisting of old and young volunteers. Our results about age-
related decrease of complexity is most pronounced in parietal
and frontal lobe, which is consistent with the regions found by
Sokunbi et al.’s study (Sokunbi et al., 2015) where the age range
of subjects is similar with ours, and they measured rs-fMRI signal
complexity utilizing fuzzy approximate entropy.

Regarding themechanism for age-related loss of complexity in
these brain regions, we know that inferior frontal gyrus is integral
for language function and the mirror system (Lai et al., 2010) and
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FIGURE 5 | Correlation between HE and age, with positive values showing a decrease of complexity with age.

TABLE 3 | Correlation between HE and age.

AAL regions Side Cluster size Peak MNI coord. (mm) r

X Y Z

Insula, ParaHippocampal, Fusiform, Temporal_Pole_Sup, Calcarine R 765 42 9 −18 −0.47

Temporal_Sup, Temporal_Pole_Sup/Mid, Insula L 267 −42 −9 −9 −0.43

ParaHippocampal, Fusiform, Calcarine L 304 −30 −39 −12 −0.43

Temporal_Mid/Sup R 77 66 −45 9 −0.35

Frontal_Inf_Tri, Frontal_Mid/Sup L 103 −36 36 12 0.33

Parietal_Inf/Sup, Angular L 128 −36 −54 63 0.31

Parietal_Inf/Sup R 48 36 −60 60 0.28

Temporal_Pole_Sup, superior temporal pole; Temporal_Sup, superior temporal gyrus; Temporal_Pole_Mid, middle temporal pole; Temporal_Mid, middle temporal gyrus; Frontal_Inf_Tri,

triangular part of the inferior frontal gyrus; Frontal_Mid/Sup, middle/ superior frontal gyrus; Parietal_Inf, inferior parietal but supramarginal and angular gyri; Parietal_Sup, superior parietal

gyrus; L, left; R, right; r, Pearson correlation coefficient.
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FIGURE 6 | Differences in HE between genders based on voxel-wise analyses.

TABLE 4 | Differences in HE between genders.

AAL regions Side Cluster size Peak MNI coord. (mm) T

X Y Z

ParaHippocampal, Hippocampus R 79 30 0 −30 4.16

Fusiform, Temporal_Inf R 77 36 −69 −18 4.34

Frontal_Mid, Postcentral, Precentral R 108 45 15 42 4.10

Parietal_Inf, SupraMarginal, Postcentral L 55 −54 −24 42 4.29

Parietal_Sup, Precuneus L 169 −39 −39 54 4.21

Temporal_Inf, inferior temporal gyrus; Frontal_Mid, middle frontal gyrus; Parietal_Inf, inferior parietal but supramarginal and angular gyri; Parietal_Sup, superior parietal gyrus; L, left; R,

right; T, Student’s t-test.

important for cognitive control (Schlesinger et al., 2017). It has
been suggested that cognitive control is modulated by age (Treitz
et al., 2007). Our results about age-related loss of complexity
are in agreement with the Lipsitz model which demonstrated
healthier system exhibits more complexly in their physiological
output and complexity of system decreases with age (Lipsitz,
2004).

On the contrary, we found that age-related increase of
complexity is most pronounced in insula, limbic lobe (bilateral
parahippocampal gyri), and temporal lobe (left superior temporal
gyrus, bilateral superior temporal poles) using two level analyses.
The insula plays a vital role in interactions between motor,
affective, and cognitive functions (Mathys et al., 2014). We

speculate age-related increase of complexity in insula is due to
that insula is critical for emotional feeling (Gasquoine, 2014),
and with aging, the adult’s ability to regulate emotion remains
stable and improves in some aspects (Nashiro et al., 2012).
Superior temporal gyrus and temporal pole are necessary for
understanding perspective taking, movements, and convergence
of social knowledge (Lai et al., 2010). In addition, with the
voxel-wise analysis, age-related increase of complexity was found
in fusiform gyrus and right middle temporal gyrus. Generally,
fusiform gyrus is related to cognitive functions (Schenker-
Ahmed and Annese, 2013). Complexity increased with age
in these regions which suggested that potential compensatory
mechanisms may play a role (Sugiura, 2016).
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Brain aging may differ between genders. In our study,
differences in HE between genders were found to be significant
in the parietal lobe (bilateral postcentral gyri and left inferior
parietal but supramarginal and angular gyri) on both region-
wise and voxel-wise analyses, with females exhibiting higher
HE values. In addition, voxel-wise based analysis showed that
there were significant differences between genders in the right
parahippocampal gyrus and fusiform gyrus. The inferior parietal
lobule is a part of attention network, and parahippocampal
gyrus is correlated with short-term memory. We conjecture
that gender differences occur in the behavioral and cognitive
domains because women generally excel in language (Hyde and
Linn, 1988), emotional memories (Canli et al., 2002), and facial
emotion recognition (Rahman et al., 2004).

In addition, we tested the interaction between the age and
gender in terms of HE and found an interaction in right
parahippocampal gyrus (p = 0.04), suggesting that the age effect
on complexity was different between genders in this region.

There are several limitations in our study. We only focused
on functional changes without including any structural analysis
which could provide a broader view of age-related brain changes
by considering structural differences and their associations with
functional results. Moreover, cortical atrophy makes spatial
normalization difficult for older subjects, and can potentially
decrease the signal to noise ratio of the data. Therefore, further
investigations are needed to confirm current findings.
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