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Abstract

Background: Development of new drugs is a time-consuming and costly process, and the cost is still increasing in
recent years. However, the number of drugs approved by FDA every year per dollar spent on development is
declining. Drug repositioning, which aims to find new use of existing drugs, attracts attention of pharmaceutical
researchers due to its high efficiency. A variety of computational methods for drug repositioning have been proposed
based on machine learning approaches, network-based approaches, matrix decomposition approaches, etc.

Results: We propose a novel computational method for drug repositioning. We construct and decompose
three-dimensional tensors, which consist of the associations among drugs, targets and diseases, to derive latent
factors reflecting the functional patterns of the three kinds of entities. The proposed method outperforms several
baseline methods in recovering missing associations. Most of the top predictions are validated by literature search
and computational docking. Latent factors are used to cluster the drugs, targets and diseases into functional groups.
Topological Data Analysis (TDA) is applied to investigate the properties of the clusters. We find that the latent factors
are able to capture the functional patterns and underlying molecular mechanisms of drugs, targets and diseases. In
addition, we focus on repurposing drugs for cancer and discover not only new therapeutic use but also adverse
effects of the drugs. In the in-depth study of associations among the clusters of drugs, targets and cancer subtypes,
we find there exist strong associations between particular clusters.

Conclusions: The proposed method is able to recover missing associations, discover new predictions and uncover
functional clusters of drugs, targets and diseases. The clustering of drugs, targets and diseases, as well as the
associations among the clusters, provides a new guiding framework for drug repositioning.
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Background

Developing a new drug experimentally is a time-
consuming and costly process. The process usually takes
13-15 years from the start of developing a new drug to
getting it into market and costs 2-3 billion US dollars on
average by report. However, the costs are still increas-
ing these years while the number of drugs approved by
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the US Food and Drug Administration (FDA) every year
per dollar spent on development is declining [1]. The gap
between the therapeutic needs and the limited number
of available drugs is a big challenge to pharmaceutical
research [2]. With the advances in genomics, proteomics
and systems biology, large amounts of omics data are
accumulated and promote the development of computa-
tional methods for drug discovery. Drug repositioning,
one of the approaches of drug discovery, aims to find
new therapeutic use of existing drugs that have passed a
significant number of toxicity and other tests and have
been approved by the regulatory agencies. Some estimates
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suggest that repositioning a drug takes around 6.5 years
and costs $300 million on average, which is more efficient
and much cheaper than the traditional drug development
process, and attracts a lot attention of pharmaceutical
researchers.

A variety of computational methods for drug reposition-
ing have been proposed. The basic strategy is to either
find new targets for existing drugs or discover new drug-
disease associations. The fundamental assumption is that
agents with similar properties have similar therapeu-
tic effects. The proposed methods of drug repositioning
can be categorized into three groups: machine learning-
based methods, matrix decomposition-based methods
and network-based methods. In machine learning-based
methods, each drug, target and disease is represented by a
feature vector based on their properties, such as chemical
structures, side effects and fingerprints of drugs, genomic
characters of targets, and phenotype information of dis-
eases. Then the machine learning models is trained on
the feature vectors and further provides new predictions
of associations [3, 4]. On account of the strong predictive
power of deep learning methods in recent years, various
deep learning models are applied to drug repositioning,
including multi-layer perceptron [5, 6], deep belief net-
work [7] stacked auto-encoder [8, 9], etc. When training
the machine learning models, both positive and nega-
tive training samples should be provided. However, it
is hard to select negative samples since there are rarely
experimentally verified negative samples in this field.

Drug repositioning is analogous to recommendation
systems, since it aims to recommend potential drugs
for diseases. Therefore, matrix decomposition methods,
which are widely used in recommendation systems,
are applied to drug repositioning. Different kinds of
information are used to measure the similarity of
drugs, targets and diseases, including chemical structures,
genetic variations and gene expression profiles. Xuan et al.
[10] measured the similarity of disease based on their
semantic similarity and Disease Ontology (DO). Zheng
et al. [11] proposed a collaborative matrix factorization
method combining more than one similarity matrices of
drugs and targets. They demonstrated that the same cal-
culation of similarity performed differently on different
datasets, while different calculations of similarity also per-
formed differently on the same dataset. Cobanoglu et al.
[12] performed probabilistic matrix factorization (PMF)
on drug repositioning and analyzed drug clusters derived
from PMF latent factors. Luo et al. [13] constructed a
heterogeneous network by integrating drug-drug, disease-
disease and drug-disease networks, and adopted Singular
Value Thresholding (SVT) algorithm on the adjacency
matrix.

In order to integrate heterogeneous data, network-
based methods are applied to drug repositioning. Diverse
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properties of drugs, targets and diseases have been used to
construct heterogeneous networks [14—16]. Luo et al. [17]
extracted low dimensional but informative vector repre-
sentations of drugs and proteins from different networks,
which were further used to find the best projection from
drug space to protein space. Lee et al. [18] integrated
protein-protein interactions (PPIs) and gene regulations
to their network. Semantic meanings of different meta-
paths in the heterogeneous network were considered
in [19].

Another strategy used for drug repositioning is profile-
based, using signature reversion techniques to find drug-
disease pairs that have anti-correlated expression profiles.
Kim et al. [20] identified drug candidates for gastric can-
cer using a computational reversal of gene expression
approach. Nagaraj et al. [21] found disease-associated
gene enriched mutational phenotype profiles of mouse,
and then prioritized drugs based on the similarities
between phenotype profiles of diseases and drugs. In
order to remove effects of background of tissues, Xu et al.
[22] derived non-tissue-specific core signatures (CSs) and
identified drugs with perturbation signatures. The profile-
based methods do not require prior knowledge on associ-
ations of diseases or drugs. However, noisy profiles might
lead to higher false positives when a drug or disease does
not demonstrate a strong perturbation on gene expres-
sion. Moreover, the methods might also fail when the
observed alterations are consequences of the disease but
not causes [2].

Recently, some other molecules are found acting as ther-
apeutic targets of drugs, such as miRNAs, which are used
to repurpose drugs for corresponding diseases [23]. There
are also studies investigating drug repositioning from
other perspectives. For example, Iwata et al. [24] regarded
molecular pathways as therapeutic targets and discovered
drug-disease associations by identifying drugs that could
inactivate the cancer-growth involved pathways or acti-
vate cancer-death related pathways of the disease. The
studies mentioned above investigate pairwise associations
among drugs, proteins, genes, diseases, pathways, etc.
However, most of the FDA-approved drugs were devel-
oped with the underlying molecular mechanisms uncov-
ered [14]. Thus, it is of significant importance to discover
the whole picture of drug-target-disease associations to
understand the underlying mechanisms.

In this paper, we propose a novel framework for drug
repositioning investigating drug-target-disease (DTD)
triplet associations. First, we construct three-dimensional
tensors representing DTD associations and decompose
the tensors to derive latent factors and discover new pre-
dictions. We investigate the role of different additional
information related to drugs and targets and the effects
of other factors. Then we examine the ability of predict-
ing new associations of the proposed method. The latent
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factors derived from the association tensor are analyzed to
uncover functional patterns of drugs, targets and diseases.
Finally, we apply the proposed method to a cancer data set
and identify drug candidates for several cancers.

Results

Recovering missing associations

Figure 1 illustrates the workflow of the proposed method.
We construct two association tensors, x 7% and x?, based
on the DTD subset using different strategies (Methods).
Each entry in x represents the existence of the corre-
sponding triplet association, meaning that for the corre-
sponding drug, target and disease, all of the three pairwise
associations exist. Each triplet association in x % indicates
that for the corresponding drug, target and disease, the
drug is associated with the target and the target is asso-
ciated with the disease, so that it is inferred that the drug
is associated with the disease. Each association tensor is
decomposed together with different kinds of additional
information separately, resulting in three factor matrices
for drugs, targets and diseases, respectively. We test the
ability of recovering missing associations of the proposed
method by 10-fold cross-validation, and use area under
the receiver operating characteristic curve (AUC) as well
as area under precision-recall curve (AUPR) to evaluate
the performance (Methods).

We find that the AUC and AUPR increase as the num-
ber of latent factors increases until the number of latent
factors approaches 250 (Fig. 2). One possible reason is
that more latent factors have higher ability to character-
ize the latent patterns of associations, so that they can
approximate the tensor better. However, when the number
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of latent factors increases further, the performance drops
because the derived latent factors are over-fitted to the
observations in the association tensor and hence have
lower generalization ability.

Factors affecting the performance
We investigate the factors that might affect the perfor-
mance of recovering missing associations, including the
tensor construction strategy, the use of different kinds of
additional information, and the sparseness of the tensor.
We compare the performance of decomposing x
and x?, which are constructed from different strategies.
The AUC of decomposing x* and x? are comparable
(Fig. 3a). However, the decomposition of x? outperforms
that of % in AUPR (Fig. 3b), indicating that the recon-
structed ¥ (compared to x“%) gives much more false
positives than the reconstructed b (compared to X 1t
is possible that some of the false positives in x”* decom-
position might be true positives in x? decomposition,
since there are more observations in x? compared to x*.
Figure 4 demonstrates the performance of decompos-
ing x? with different additional information, including
similarities of drugs and targets, pairwise associations, as
well as drug-drug interactions (DDIs) and PPIs (Methods).
When the number of latent factors is small, information
of similarity helps a lot in improving the performance,
which is consistent with the fundamental assumption in
drug repositioning that similar drugs and targets have
similar functional effects. As the number of latent factors
increases, the advantage of using additional information
becomes smaller since the large factor matrices are able
to characterize the patterns of the triplet associations.
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Fig. 1 Workflow of the proposed method. The association tensor is integrated from the pairwise associations, including drug-target interactions,
drug-disease associations and target-disease associations. It is decomposed, together with additional information, into three factor matrices
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Fig. 2 Performance of decomposing x ' with different number of
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information

However, when decomposing x ¥, information of similar-

ity induces worse performance in AUPR (Additional file 1:
Figure S1). One possible reason is that some of the triplet
associations are recovered according to the information
of similarity, but these associations do not exist in x %, so
that they are regarded as false positives, which might exist
in Xbi.

Since the association tensors are very sparse and sparsity
is always a crucial problem in recommendation systems,
it is of interest to investigate the effects of sparseness
on the performance of tensor decomposition. Therefore,
we generate five pairs of tensors with different sparse-
ness from the original data set [17] instead of DTD sub-
set. The two tensors in each pair, analogous to x and
x?, are constructed from the same set of drugs, targets
and diseases but using different strategies, respectively,
while the drugs, targets and diseases used in different
pairs are selected randomly (Methods). The proportions
of observed associations in the five pairs are summa-
rized in Table 1. Figure 5 illustrates the performance of
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decomposing the random tensors constructed by the first
strategy without any additional formation (Fig.5a, 5b) and
using similarity as additional information (Fig.5¢c, 5d).
The performance of decomposing random tensors con-
structed by the second strategy is illustrated in (Additional
file2: Figure S2). Unexpectedly, the second and third ran-
dom tensor pairs, which have the highest sparseness,
however, perform better than or comparable to the other
pairs. On the contrary, the first random tensor pair with
relatively low sparseness performs the worst. The results
indicate that the sparseness of association tensors is not
determinant to the performance.

In order to find other factors respect to data quality that
might affect the performance instead of sparseness, we
further look into details of the triplet associations in the
random tensor pairs, including the association enrich-
ment of individual drugs, targets and diseases, as well
as the similarity of their association patterns (Methods).
Association enrichment of a drug/target/diseases is
defined as the total number of corresponding triplet
associations, measuring the amount of functional infor-
mation provided for each drug/target/disease in the
tensor. We find that in the first random tensor pair, which
performs the worst among all the pairs, the association
enrichment of the drugs, targets and diseases are lower
compared to the other pairs (Fig. 6, Additional file 3:
Figure S3). It means that the associations are distributed
more equally to all the drugs, targets and diseases but
fewer to each in the first pair, while distributed more
unbalanced to all but more to part of them in the other
pairs. More unbalanced associations might result in
factor matrices which better characterize some of the
drugs, targets and diseases, and further contribute
to recovering unknown associations. In addition, we
investigate the pairwise-similarity of drugs, targets and
diseases in terms of their association patterns in each
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Fig. 3 Performance of decomposing association tensors constructed from different strategy. a Comparison of AUC. b Comparison of AUPR. No add
info, using no additional information. Pairwise, using pairwise associations as additional information. Similarity, using similarity of drugs and targets
as additional information. DD, PPI, using DDIs and PPIs as additional information. The number of latent factors is set to 250
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random tensor pair, which is calculated by the Jaccard
similarity of vector-represented triplet associations
(Methods). The drugs, targets and diseases in the first
random tensor pair demonstrate lower pairwise-similarity
in terms of association patterns (Fig. 7, Additional
files 4, 5, 6: Figure S4-S6), which might has an impact
on the performance. The pairwise-similarity in terms of
associations patterns of drugs, targets and diseases in
and y” are much higher compared to the random tensors
(Additional file 7, 8: Figure S7-S8), which might be a
reason for the better performance of decomposing y
and x”. Taking all above into consideration, it implies
that the proposed method makes use of existing triplet
associations of drugs, targets and diseases as well as
similar behavioral patterns to infer missing associations.
Association enrichment and similar functional drugs, tar-
gets and diseases are more important to the performance
than sparseness. Fortunately, comparing the performance
of using no additional information (Fig. 5a, 5b) and using
similarity as additional information (Fig. 5c, 5d), the use
of additional information helps a lot when the quality of
associations tensor is poor.

Comparison with Baseline methods

We compare the proposed method with three base-
line methods, which are SNScore [25], Network-based
Random Walk with Restart on Heterogeneous net-
work (NRWRH) [14] and Collective Matrix Factorization
(CMF) (Methods, Additional file 9: Figure S9), using 10-

Table 1 Statistics of proportion of observed data in the random

tensors

Pairs rand1 rand2 rand3 rand4 rand5
Strategy 1 3.12e-5 1.16e-6 8.67e-7 6.88e-5 797e-5
Strategy 2 1.96e-4 5.99e-6 4.76e-6 4.09¢e-4 421e-4

fold cross-validation. However, all of the three baselines
aim to infer pairwise associations among drugs, targets
and diseases instead of triplet associations. In order to
evaluate their capability of inferring triplet associations
and compare to the proposed method, we first project
the randomly selected triplet associations (test samples) in
cross-validation to pairwise associations, randomly mask
one of the three pairwise associations of each test sam-
ple, and predict the masked pairwise associations using
the baseline methods. Then, the inferred score of the test
samples is calculated by the product of the inferred proba-
bility or known binary value of the corresponding pairwise
associations (Methods).

It is found that the proposed method outperforms the
others significantly (Fig. 8). Although NRWRH and CMF
achieve relatively high AUC, they perform much worse
than the proposed method in terms of AUPR. In NRWRH,
CMF and the proposed method, exactly the same data are
used, including the pairwise associations among drugs,
targets and diseases, as well as similarity matrices of
drugs and targets. It is worth noting that CMF is very
similar to the proposed method, but decomposes two-
dimensional matrices of pairwise associations instead of
three-dimensional tensors. The better performance of
the proposed method indicates that the tensor structure
might contribute to the prediction of triplet associations,
especially in the comparison with CMF. One possible
reason is that, the proposed method extracts the func-
tional patterns from triplet associations, while the factor
matrices extracted in CMF method only capture the pair-
wise functional patterns, and random walk on networks
might loss some global topological information.

Identification and validation of new predictions
By recovering missing values in association tensor x using
the derived factor matrices, i.e. C, P and D, we get a
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new association tensor ¥ and the predicted score for each
unobserved associations inside (Fig. 1).

First, we compare the top predictions extracted from
tensor decomposition with different additional informa-
tion. Figure 9 shows the overlaps of predictions derived
from x“ (a) and x? (b). The decomposition of x”* has

38 predictions in common, while x% has 15 in common
using 4 different additional information settings. The top
predictions of x? diverse more since different additional
information rate high scores for different triplets. It means
that when there are more associations in a tensor, i.e.
more information to infer from, more diverse associations
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might receive high prediction scores. However, we
find that the overlap of predictions using similarity as
additional information and using other additional
information is consistently large in both x and x%,
which means that similarity is more robust than the
others. In addition, the predictions from decomposition
using similarity and no additional information have
the largest overlap, revealing that the result from these
two settings are more similar, again supporting the
fundamental assumption.

Since the performance of decomposing x? using simi-
larity is the best, and the result is robust and very similar
with using no additional information, we use the result
of it for new prediction validation. The statistics of newly
discovered pairwise associations in the top predictions
is summarized in Table 2. We search for literature val-
idation in both new version of Comparative Toxicoge-
nomics Database (CTD 2017) and PubMed to validate
the association predictions. We find support for most of
the target-disease associations but only a few of drug-
disease association predictions appeared in the top 50
predictions. The retrieved inference scores from CTD

are summarized in (Additional file 10: Figure S10). The
newly discovered and known associations in the top 50
predictions are visualized in Fig. 10. The grey lines and
red lines represent known associations and new predic-
tions, respectively. The purple lines are inferred with the
assumption used in constructing Xbi. However, there are
still three pairs of associations in yellow color that we find
no support for, which deserves further study.

We find no new discovered drug-target interactions in
the top 50 predictions. To investigate the ability of dis-
covering new drug-target interactions of the proposed
method, we validate the top 10 drug-target interaction
predictions appeared in the top 10,000 triplet predictions
(Table 2) by both literature search and computational
docking. Five of them are supported by existing literature.
There are two proteins without known 3D structure
among the top 10 pairs, which cannot be used for compu-
tational docking. Since the predicted interaction of one of
the two proteins has been validated by literature search,
we take the 11th-ranked pair for validation in replace-
ment of the pair without support. The support refer-
ences and docking scores are summarized in Table 3. The
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docking pockets and poses of three pairs are illustrated in
(Additional file 11: Figure S11). All of the above results
indicate that the proposed method is able to discover new
associations among drugs, targets and diseases based on
their observed associations and similarity information.

Analysis of latent factors

The latent factors derived from tensor decomposition
characterize the associations and functional patterns of
drugs, targets and diseases. Similar latent factors indi-
cate similar behaviors. Thereby, it is interesting to study
the latent factors to uncover the underlying behavioral
characteristics.

Latent factors derived from different additional information

We compare the latent factors extracted from associa-
tion tensor decomposition utilizing different additional
information. Figure 11 and (Additional file12: Figure S12)
illustrate the pairwise correlation of latent factors derived
from different settings. The latent factors from similar-
ity, as well as DDIs and PPIs show higher correlation
with latent factors using no additional information. It is

Table 2 Statistics of newly discovered pairwise associations in
the top predictions

Top 50 predictions Top 10,0000 predictions

Associations

Known Unknown Known Unknown
Drug-target 50 0 8608 1392
Drug-disease 14 36 4130 5870
Target-disease 0 50 1392 8608

consistent with the previous finding that the predictions
from using no additional information overlap the most
with those extracted from similarity, DDIs and PPIs. One
possible reason is that such additional information has
strong relation with the functional behaviors of drugs,
targets and diseases.

Clustering of drugs, targets and diseases using latent factors
We adopt Topological Data Analysis (TDA) to cluster
the drugs, targets and diseases into functionally simi-
lar groups based on latent factors and investigate the
properties of the groups [26] (Methods).

For drugs, we compare their clusters with their struc-
tural similarity, similarity of their associations with tar-
gets and diseases (Methods), their super classes and their
AHES codes, respectively. Drug clusters are illustrated in
Fig. 12, where nodes are drug clusters and colors indicate
properties of the nodes. Compared to the average pair-
wise similarity of all drugs, which is 0.2458, drugs in a
lot of clusters show higher intra-cluster chemical simi-
larity (Fig. 12a). It means that many structurally similar
drugs are clustered together due to their similar functions.
On the contrary, there are some clusters with low intra-
cluster chemical similarity, indicating that even though
their chemical structures are very different, they have
similar functional behaviors. For example, Amiloride and
Diclofenac demonstrate very low similarity in terms of
chemical structure. The efficacy of Amiloride includes
diuretic and epithelial sodium channel blocker, while
the efficacy of Diclofenac is analgesic, anti-inflammatory,
antipyretic and COX inhibitor. These two drugs are clus-
tered together by the latent factors, and we find that
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they share a common target Acid-sensing ion channel 1,
reflecting their similar underlying functions.

The Jaccard similarity of drugs in terms of associa-
tion with targets reflects their functional similarity with
respect to drug-target interactions. The average target-
association similarity of all drugs is 0.0139. Figure 12b
demonstrates that some drugs with similar target associ-
ations are clustered together. Meanwhile, a lot of clusters
show low similarity. The similarity distribution of drugs in
terms of drug-disease associations is illustrated in Fig. 12c.
Comparing Fig. 12b and 12c, it is found that, as a compen-
sation, clusters of drugs with low intra-cluster similarity of

Table 3 Supporting references and docking scores of the
top-ranking drug-target predictions

Drug Protein(Gene) Reference/Docking score
Miglitol Sl [45] / —6.4 kcal/mol
Tropicamide CHRM5 CTb/ -
temsirolimus FKBPTA [46] / —10 kcal/mol
Tacrolimus MTOR [471/ —7 4 kcal/mol
Dopamine ALDH2 CTD / —6.6 kcal/mol
Amifostine NT5C2 —5.6 kcal/mol
Vigabatrin GABBR2 —5.1 keal/mol
Verapamil KCNK1 —7.9 kcal/mol
Zonisamide AQP1 —7.1 kcal/mol
Metyrapone FDX1 —8.7 kcal/mol

target associations demonstrate relatively high similarity
of intra-cluster disease associations.

In addition, we compare the clustering of drugs with
their super classes and AHFS codes in DrugBank. A
lot of drugs from the same super class or same AHFS
class are clustered together in several nodes (Addi-
tional file 13: Figure S13). Classes with large num-
ber of drugs dominate more clusters in the network
and occupy very high proportion in these clusters. In
classes with a small number of drugs, most of the
drugs are gathered in a few clusters. For example, there
are 9 drugs from the class Nucleosides, nucleotides,
and analogues in our dataset. According to (Additional
file 13: Figure S13b), most of them are gathered in only
two clusters.

For targets, we compare the clustering result with their
similarity of amino acid sequences and Gene Ontology
(GO) annotations (Fig. 13). Similar to drugs, targets in
the same cluster also show higher similarity compared
to the average similarity, which is 0.1208. We collect GO
annotations of the targets and calculate the Jaccard sim-
ilarity of each pair of targets in terms of their associated
GO terms (Methods). A lot of clusters receive very high
similarity scores, indicating their similar functions, espe-
cially several clusters with more than 20 targets each.
TDA of diseases demonstrates similar results with drugs,
that diseases from the same class tend to appear in the
same cluster, meaning that diseases with similar molecular



Wang et al. BVIC Bioinformatics 2019, 20(Suppl 26):628

Page 10 of 19

10] —— 10 —— 10 . .
! | | ' ! ! : :
'
N . . .
. . i H .
N 1
: 05
: gl : —
g0 ¢ 8 e pairs
E N g E — E3 No add. info & DDI, PP
3 3 £ L E No add. info & Pairwise associations
5 % = £ No add. info & Similarity
5 5 — s E- Pairwise associations & DDI, PPI
2 . . = 1 = Similarity & DD, PP
° . N K] ® 0o ES Similarity & Pairwise associations
5 i H 5 o0 e ——— 5
o o o
vo| E=— L == : !
. .
. ] ] .
. . N s .
-05
05

Pairs of additional information

Fig. 11 Correlation of latent factors derived from x . Different kinds of additional information are used. a Latent factors of drugs. b Latent factors of
targets. ¢ Latent factors of diseases. No add. info, using no additional information

Pairs of additional information

Pairs of additional information

mechanisms are clustered together (Additional file 14:
Figure S14).

Drug repositioning for cancer

To repurpose drugs for cancers, we apply the proposed
method to the cancer subset, which is extracted from
the same original dataset provided in [17] (Methods).
We extracted 309 cancer subtypes in total, and keep all
of the targets and diseases provided. Since some of the
cancer subtypes are known to be targeted by their associ-
ated genes, we do not use any additional information, and
construct the association tensor for cancers using the first
strategy to avoid noise.

All of the predicted drug-cancer pairs ranking in the
top 100 are involved in validation. We visualize the net-
work of the top predictions in Fig. 14. After searching
for the drug-cancer association predictions in PubMed,

we find literature support for 23 out of 25 pairs. For
example, Prednisolone is known with its efficacy of anti-
inflammatory, congenital adrenal hyperplasia, psoriatic
arthritis, pemphigus, etc, and shows no anti-tumor effect
in KEGG DRUG. It ranks at top of our predictions by
its association with colorectal neoplasms. We find several
studies in recent two years reporting the use of Pred-
nisolone in colon carcinoma treatment [27, 28]. We also
discover associations between Etacrynic acid and adeno-
carcinoma [29], Etacrynic acid and pancreatic neoplasms
[29], Temsirolimus and neoplasm invasiveness [30], etc.
All of the drug-cancer associations with high prediction
scores as well as their supporting references are listed in
the (Additional file 15: Table S1).

Furthermore, we also find associations between drugs
and cancer subtypes not indicating new therapeutic
use, but showing adverse effects. For example, in our
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prediction, Leflunomide (LEF) is associated with pan-
creatic neoplasms, and we find that LEF is reported to
increase the risk for pancreatic neoplasms in several stud-
ies [31]. We also validate several adverse effect predictions
by literature search, including Malathion and kidney neo-
plasms [32], Magnesium cation and skin neoplasms [33],
as well as Valsartan and intestinal neoplasms [34].

In addition, we investigate the latent factors of drugs,
targets and cancer subtypes. KEGG NETWORK is a
database capturing knowledge on diseases and drugs in
terms of perturbed molecular networks [35]. So far, it
only provides networks about cancers. The perturbed
molecular networks of cancers reflect their mechanisms
from genome variation aspect. We retrieve the associated
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networks of cancer subtypes involved in our dataset from
KEGG NETWORK and get network information for 28
of them. Then we compare similarity of cancer subtypes
in terms of their latent factors and their associated per-
turbed molecular networks. Cosine similarity of the latent
factors and Jaccard similarity of associated networks are
calculated for each pair of cancer subtypes. Among 28
cancer subtypes, only 9 pairs receive high similarity scores
of associated networks, while most of them get very low
similarity below 0.25. For the 9 pairs with high network
similarity, the latent factors of 7 pairs also demonstrate
very high similarity, while the other 2 have medium simi-
larity (Fig. 15). For the other pairs with very low similarity
of perturbed molecular network, the latent factors show
very diverse similarity. The analysis supports that the
latent factors derived from association tensor decompo-
sition is able to capture the underlying mechanisms of
cancers from their associations with drugs and targets.
We cluster the drugs, targets and cancer subtypes
according to their latent factors (Fig. 16). A lot of small
clusters of targets, which are clustered far away from
the others, have no association with the drugs and can-
cer subtypes, such as SSTR1, PCCA, MDH]I, etc. All
of the clusters of drugs and cancer subtypes have asso-
ciations with other clusters, even if the cluster is very
small. Some clear patterns of associations between clus-
ters are found. For example, for known associations (grey
lines), targets in cluster 10 have stronger associations with
cancer subtypes in cluster 3, while drugs in cluster 6
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Fig. 15 Comparison of the similarity of cancers in terms of related
perturbed molecular networks (y-axis) and latent factors (x-axis). The
size of nodes indicates the number of cancers with approximate
similarity, shown as the legend on the right
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have more associations with cancer subtypes in cluster
2. For new predictions (orange lines), strong associations
between particular clusters are also obvious, such as drug
cluster 1 with cancer cluster 3, drug cluster 7 with cancer
cluster 6, drug cluster 2 with cancer cluster 7, and target
cluster 1 with cancer cluster 6. The results indicate that
there exist specific association patterns among the clus-
ters. For example, a kind of drugs tends to be associated
with particular kind of targets and cancer subtypes. This
finding suggests that the successful rate for drug repo-
sitioning might be improved if we repurpose drugs to
cancer subtypes which are selected from two clusters with
very strong associations.

Discussion

Drug discovery is the process to discover or design new
drugs for some purposes. The conventional method of
drug discovery is time-consuming and costly, which usu-
ally takes 13-15 years and costs 2-3 billions to develop a
new drug. Drug repositioning aims to discover new ther-
apeutic uses for existing drugs, which takes advantage
of drugs that have passed a significant number of toxic-
ity and other tests. A variety of computational methods
have been proposed for drug repositioning, which is much
more efficient and effective, including machine-learning-
based methods [6, 9], matrix decomposition-based meth-
ods [10, 13] and network-based methods [15, 16]. Most of
the studies investigate pairwise associations among drugs,
targets and diseases. However, pairwise associations can-
not uncover the whole picture of underlying mechanisms.
For examples, some indications of drugs have been discov-
ered without knowing the corresponding targets [14]. In
this paper, we have studied the triplet associations among
drugs, targets and diseases to uncover the triangular rela-
tionships among them.

The triplet associations are modelled as a tensor and
new associations are discovered by tensor decomposition.
Different strategies are used to construct the association
tensor and we find that the strategy involving inferred
associations achieves better performance. One possible
reason is that the tensor constructed by the this strat-
egy contains more information of the drugs, targets
and diseases. In addition, different kinds of additional
information are used, including similarity of drugs and
targets, DDIs and PPIs, as well as pairwise associations.
As expected, using similarity as additional information
improves the performance the most when the number of
latent factors is small, demonstrating the effectiveness of
similarity. Since the similarity information of drugs and
targets, as well as DDIs and PPIs are widely used in this
field, we investigate whether they could also contribute
to the triplet association study in this paper. However,
there are some other kinds of additional information to be
further studied which might perform better, e.g. network
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topological information. Similarity of diseases could also
be involved to provide more additional information. Fur-
thermore, since sparsity is crucial in recommendation
systems which are analogous to our problem, we inves-
tigate the effects of sparseness, association enrichment
and similarity of association patterns of the tensor on the
performance. It is found that lower association enrich-
ment and fewer similar drugs, targets or diseases in terms
of associations patterns, instead of higher sparseness of
the tensor, hurt the performance a lot, indicating that in
this problem, the quality of data plays a more important

role than the amount of information involved. It is worth
to identify other factors related to the performance.

The proposed method is compared to three baseline
methods which investigate pairwise associations among
drugs, targets and diseases. The proposed method out-
performs the others in both AUC and AUPR, which indi-
cates the advantage of the proposed method in predicting
triplet associations compared to the pairwise-focusing
methods. It is found that the predictions derived using
similarity as additional information overlap the most
with those derived from the single association tensor,
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which supports the widely accepted assumption in the
community that similar drugs bind to similar targets.
Most of the predictions ranking in the top 50 have been
validated by literature search. For example, one of the
top-ranking triplet prediction is the association among
Galantamine, neuronal acetylcholine receptor subunit
beta-4 (CHRNB4) and colitis, where the interaction
between Galantamine and CHRNB4 is known before the
prediction. Evidence for the anti-colitic effects of Galan-
tamine is reported in a recent study [36]. Adverse effect
associations between drugs and diseases are also found in
the top-ranking predictions, such as the triplet association
among Arsenic trioxide, inhibitor of nuclear factor kappa-
B kinase subunit beta (IKBKB) and major depressive
disorder. The association information between Arsenic
trioxide and IKBKB is included as known association in
DTD subset. It is reported that Arsenic down-regulates
expression of genes responsible for long-term potentia-
tion and depression [37]. In addition, some top-ranking
drug-target pairs have been validated by literature search
or computational docking, such as Zonisamide vs. AQP1,
Verapamil vs. KCNK1, as well as Metyrapone vs. FDX1.

The latent factors extracted from association tensors
capture the behavioral patterns and underlying molecular
mechanisms of drugs, targets and diseases. The latent fac-
tors derived from similarity, DDIs and PPIs have higher
correlation with that of using no additional information,
indicating that the underlying patterns reflected in sim-
ilarity of drugs and targets, as well as DDIs and PPIs,
are more similar to their association patterns. The drugs,
targets and diseases are clustered into functional groups
based on the latent factors and some intra-cluster prop-
erties are found, for example, drugs and targets clustered
together show higher structural and functional similarity,
and diseases from the same class tend to appear in the
same cluster. However, the number of drugs, targets and
diseases in DTD subset is limited to 549, 424 and 340,
respectively. Large-scale analysis is more interesting and
is worth of study in the future, which might discover more
triplet associations.

After the investigation of a variety of diseases, we focus
on cancers and apply the proposed method to a cancer
subset. New associations between drugs and cancer sub-
types are identified. It is found that some of these new
discovered associations indicate new therapeutic uses of
drugs, including the anti-tumor effect of Prednisolone,
while others demonstrate adverse effects, for example,
LEF might increase the risk for pancreatic neoplasms.
When investigating the latent factors of cancer subtypes,
we find that most of the pairs of cancer subtypes with high
similarity of KEGG NETWORK associations receive sim-
ilar latent factors. It supports that the proposed method is
able to capture the characteristics of cancer mechanisms.
In the in-depth study of the clusters of drugs, targets
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and cancer subtypes, we find clear behavioral patterns
between particular clusters. It provides a new guiding
framework for drug repositioning: We can repurpose
drugs to diseases that come from two clusters with strong
associations, instead of inferring new drug-disease associ-
ations only by finding drugs with similar chemical struc-
ture to the disease-associated drugs, since in many cases,
functional similar drugs have very different chemical
structures.

Conclusion

In this paper, we have proposed a novel framework for
drug repositioning based on decomposing the triplet asso-
ciation tensors of drugs, targets and diseases. The pro-
posed method is able to recover missing associations
and predict unobserved triplet associations. Most of the
top ranked predictions have been validated by litera-
ture search and computational docking. The proposed
method have outperformed some baseline methods in
both AUC and AUPR. The drugs, targets and diseases
have been clustered into functional groups based on the
extracted factor matrices. We have also applied the pro-
posed method to a cancer dataset and discovered strong
associations between particular clusters, which provides a
new guiding framework for drug repositioning.

Methods

Data collection

We use the dataset in a recently published paper by Luo
et al. [17]. They have collected 708 drugs from Drug-
Bank [38], 1,512 targets from Human Protein Reference
Database (HPRD) [39] and 5,603 diseases from Comparative
Toxicogenomics Database (CTD) (2013) [40]. The corre-
sponding drug-target associations and DDIs are collected
from DrugBank. The corresponding PPIs are collected
from HPRD. The drug-disease associations and target-
disease associations are collected from CTD.

We construct two sub-datasets from the original
dataset, which are the DTD subset and the cancer subset.
For the DTD subset, in order to ensure the data qual-
ity and to reduce sparseness, we collect the most infor-
mative drugs, targets and diseases with relatively more
associations. We remove the drugs and targets with no
association, as well as diseases with less than 300 target-
disease associations or 100 drug-disease associations,
since the average number of associated targets of a dis-
ease is more than the average number of associated drugs
of a disease, resulting in 549 drugs, 424 targets and 340
diseases remained. We extract the corresponding asso-
ciations, DDIs and PPIs of the remaining drugs, targets
and diseases. Details can be found in our previous paper
[41]. For the cancer subset, we select all cancer subtypes
from the original dataset referring to the disease classi-
fication in CTD, and keep all of the drugs and targets.
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The corresponding associations, DDIs and PPIs are col-
lected. As a result, there are 309 cancer subtypes, 708
drugs and 1512 targets in the cancer subset. The similarity
between drugs is calculated by the Tanimoto coefficient
of the product-graphs of the chemical structures [17]. The
similarity between proteins is the Smith-Waterman score
based on their amino acid sequences.

Construction of the drug-target-disease association tensors
Since it is hard to collect triplet associations directly,
the association tensors are constructed from the pairwise
associations. We develop two strategies with different lev-
els of tolerance in tensor construction. In the first strategy,
if drug A interacts with target B, target B is associated
with disease C, meanwhile, drug A is associated with
disease C, then we believe that the triplet association
among drug A, target B and disease C exists, repre-
sented by one at the corresponding entry in the tensor.
Otherwise, the triplet association is regarded as unknown
and represented by zero in the corresponding entry. The
second strategy is based on weaker conditions under
an assumption that, if drug A is associated with tar-
get B, and target B is associated with disease C, then
it can be inferred that drug A is associated with dis-
ease C [42]. Thereby, in the second strategy, we regard
the triplet association as an observation if both of the
corresponding drug-target interaction and target-disease
association have been discovered. By applying the two
strategies on the DTD subset, we construct two triplet
association tensors with different sparseness, which are
x™ with ~ 0.33% observations (constructed by the
first strategy) and x? with ~ 0.76% observations (con-
structed by the second strategy), respectively. For the
cancer subset, we only adopt the first strategy to avoid
noise and construct a tensor x* with ~ (1.37E — 2)%
observations.

Predicting triplet associations among drugs, targets and
diseases based on tensor decomposition

In this paper, the problem of triplet association predic-
tion is modeled as tensor completion (Fig. 1). A three-
dimensional association tensor x is factorized into three
matrices, called factor matrices, which capture the func-
tional patterns of drugs, targets and diseases, respectively.
By multiplying the factor matrices, another tensor yx is
generalized, which contains the approximation of the
observations in x and new predictions recovered from the
functional patterns. However, due to our limited knowl-
edge, the association tensor x constructed from known
associations is very sparse, which means that the infor-
mation of the drugs, targets and diseases that can be
inferred from is deficient, making it hard to extract the
truly underlying patterns. To integrate more useful infor-
mation, different kinds of additional information, e.g.
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similarity information, DDIs and PPIs, are involved. The
model of the proposed method is as follows:

min  opainlx — [C, T,D]|12
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where ||.|| is Frobenius norm. x is an association tensor. C,
T and D are the factor matrices of drugs, targets and dis-
eases, respectively. S; is a matrix for particular additional
information, while A; and B; are the factor matrices of S;.
The number of additional information matrices used in
the model is represented by M. In order to integrate infor-
mation from different sources, common factor matrices
are shared between the association tensor and additional
information, which means that both A; and B; are one of C,
T and D in our cases. Equations of models using particu-
lar additional information are discussed below. Since there
might be different scales in different data sources, we use
d; to model the scaling difference. In general, the first line
of the equation minimizes the difference between x and x
(¥ = [C, T, D]), which is recovered by the factor matrices.
The second part minimizes the error of decomposing the
additional information matrices. The third part aims to
minimize the norm of the factor matrices in order to avoid
over-fitting. wyain, @; and wyeg are weights controlling the
importance of each part.

In this paper, we use three kinds of additional informa-
tion, including (1) the similarity between the drugs and
targets (Eq. 2), due to the widely accepted assumption
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that similar drugs might interact with similar targets, (2)
DDIs and PPIs (Eq. 3), which reflect the functional pat-
terns of drugs and targets, and (3) pairwise associations
among drugs, targets and diseases (Eq. 4), since some pair-
wise associations are lost in the tensor construction stage.
The equations of decomposition using different additional
information differ slightly (Eqs. 2—4), where Sccs and Sy
are similarity matrices of drugs and targets, respectively.
Saqi and Spp; are DDI and PPI matrices, respectively.
Sct» Scq and S;; are matrices of drug-target interactions,
drug-disease associations and target-disease associations,
respectively. d. is the scaling difference between triplet
associations and drug similarity matrix, while dy is the
scaling difference between triplet associations and target
similarity matrix. dgg; and d,,p; are the scaling differences
between triplet associations with DDI and PPI matrices,
respectively. d.s, d.y and dy; model the scaling difference
between the pairwise associations and triplet associations.
It is worth noting that the decomposition of similarity
matrices, as well as DDI and PPI matrices, can be symmet-
ric non-negative matrix factorization (NMF). In addition,
when using pairwise associations as additional informa-
tion, for each triplet association in the test set, all of the
three related pairwise associations are removed by setting
the corresponding values to zero in S, Sy and S;;. For
example, if X is in the test set, then S, Seq, and Std/k
are set to zero in the pairwise association matrices.

Generation of random tensors for sparsity study

Since the triplet association tensors are very sparse,
it is of interest to investigate whether the sparseness
affects the performance of tensor decomposition. To con-
struct random tensors with same size with x* and x%,
we first randomly select the same number of drugs,
targets and diseases, which are 549, 424 and 340, respec-
tively, from the original dataset [17]. Then random asso-
ciation tensors are constructed using the two strategies,
respectively. By repeating this process five times, 5 pairs
of random association tensors with different groups of
drugs, targets and diseases, as well as different sparseness,
are constructed. The proportion of observations in the
random tensors are summarized in Table 1.

Enrichment and similarity of triplet associations

In an association tensor x, we define the association
enrichment of drug i, represented by E;, as the number
of all corresponding observed triplet associations of the
drug in x, which is E;, = zjzlzle Xijko where J and K
are the total number of targets and diseases in x, respec-
tively. Similarly, the association enrichment of target j and
disease k is Ey; = 2{:1E/I<<:1Xijk and £y, = 21.1212/[:1)(,7/(,
respectively, where I is the total number of drugs in x.
The association enrichment of drugs, targets and dis-
eases reflect the amount of useful interactive information
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of them, which might has an impact on the veracity of
the extracted functional patterns, and further affects the
accuracy of the predictions.

In order to calculate the similarity between drugs in
terms of their triplet associations, we first flatten the ten-
sor into a matrix by the first dimension, where each row
is a vector representation indicating all triplet associa-
tions of a drug. Similarly, the vector representation of
all triplet associations of each target and each disease is
derived by flattening the tensor by its second and third
dimension, respectively. Then Jaccard similarity is calcu-
lated between drugs, targets and diseases based on their
association vectors by equation 5.

|(vik 7 vii) N (Vi 7 0) U (vjx # 0))]
|(vik # 0) U (vix # 0)]

Sj=1- (5)

where S;; is the similarity of association patterns between
drug/target/disease i and j, v; and v; are the corresponding
vector representation of triplet associations.

The baseline methods

In this paper, we compare the proposed method to
three methods, which are SNScore, NRWRH and CMFE.
SNScore adopts the number of in-between nodes of two
nodes to calculate the probability of their connection.
NRWRH is proposed to infer drug-target interactions
using random walks on a heterogeneous network. In order
to involve diseases into the method, it is generalized
to networks with three different kinds of nodes instead
of the original two. A heterogeneous network including
associations among drugs, targets and diseases, as well
as similarity between drugs and targets is constructed
(Additional file 9: Figure S9a) using the DTD subset.
CMF is the two-dimensional version of the proposed
method, which investigates pairwise associations modeled
by 2D matrix factorization. In CMEF, three pairwise asso-
ciation matrices together with the similarity additional
information from DTD subset are factorized collectively
(Additional file 9: Figure S9b). Thus, NRWRH, CMF and
the proposed method are performed on exactly the same
dataset.

Evaluation of the proposed method and baselines

The proposed method The proposed method is evaluated
by AUC and AUPR under 10-fold cross-validation. In the
experiments investigating the performance of the pro-
posed method (Results), we find that the performance of
decomposing x % is better than that of decomposing
(Fig. 3). In addition, using similarity as additional informa-
tion for x % achieves the highest AUC and AUPR (Fig. 4),
especially when setting the number of latent factors to
250 (Fig. 2). Therefore, the above setting, where x? is
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decomposed together with the similarity matrices into 250
latent factors, is used in the comparison.

SNScore, NRWRH and CMF The baseline methods are
proposed to infer pairwise associations instead of triplet
associations. The ability of predicting triplet associations
of the baseline methods are evaluated by the follow-
ing steps: (1) Same with the proposed method, a subset
(10%) of triplet associations are randomly selected from
the association tensor (x%) as test samples, which is
represented by Ties. (2) The triplet associations in Tiey
are projected to corresponding pairwise associations. For
example, a test sample Xi?li € Tyt is projected to three
pairwise associations, including the interaction between
drug i and target j (Scti}.), the association between tar-
get j and disease k (S, ), as well as the association
between drug i and disease k (S¢g,). (3) One of the three
projected pairwise associations of each test sample is ran-
domly masked by setting the corresponding value to zero
in the pairwise association matrices in CMF or removing
the corresponding edge from the heterogeneous network
in NRWRH. (4) Running the baseline methods to infer
the probability of the masked pairwise associations. (5)
The inferred score (Pyug tar_ais) of each test sample is
calculated by the following equation:

P drug_tar_dis = P drug_tar x P, tar_dis (6)

where Pyyyq tar is the inferred probability or known binary
association between the corresponding drug and target.
Pyar gis is the inferred probability or known binary asso-
ciation between the corresponding target and disease.
(6) The AUC and AUPR are calculate based on the test
samples and their inferred scores. (7) Steps (1)-(6) are
repeated 10 times, and the average AUC and AUPR are
calculated and used in comparison.

For SNScore, since the source code is not available, we
only search for the pairwise associations to be inferred
in the above steps on SNScore platform to calculate the
inferred score for test samples. For NRWRH, we use grid
search to optimize the parameters, including the value
of maximum iteration, restart probability and transition
probability, which are finally set to 400, 0.5 and 0.2,
respectively. For CMF, we check the performance with
different number of latent factors and find that the per-
formance does not vary much when the number of latent
factors is in range of 150 to 250 (Additional file 16:
Figure S15). We finally set the number of latent factors in
CMEF method to 160 in the comparison study.

Topological Data Analysis

TDA is proposed to extract information from high-
dimensional data, which is often incomplete and noise,
and hard to visualize. It performs dimensionality
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reduction and provides a way to study the shape of data
and manifolds. Mapper [26], a TDA method, constructs
a graph from data which is able to reflect important
connectivity features and is easy to visualize. In the graph
constructed by Mapper, each node is a cluster of items
and each edge between two nodes means that the two
clusters share at least a common item. We adopt Mapper
to cluster the drugs, targets and diseases separately, and
investigate the properties of the clusters. Since the latent
factors reflect the association patterns of the three kinds
of entities, the clusters indicate their functional groups.
We use two-dimensional scaling projection to project the
latent factors and use k-means for clustering. For drugs
and targets, to determine the settings of the major param-
eters in Mapper, including the number of clusters, the
resolution and the overlap of clusters, we use the assump-
tion that structurally similar drugs/targets have similar
functions as a measurement. Experiments show that the
more clusters, the higher intra-cluster similarity. How-
ever, it is meaningless to study clusters with only a little
drugs/targets each. Thus, we balance the intra-cluster
similarity with the three parameters to derive less clusters
with relatively high intra-cluster similarity. The number
of clusters of drugs and targets are 9 and 8, respectively.
The resolution of drugs and targets are 8 and 11, respec-
tively. The overlap is set to 0.4. For diseases, without any
assumption and measurement, we use the default setting
of resolution, ie. 10, and keep the selected setting of
overlap for drugs and targets, i.e. 0.4. Since the number of
diseases is less than that of drugs and targets, we set the
number of clusters in local clustering for diseases to 5.

In the result graphs, each node represents a cluster of
drugs/targets/diseases, and each edge indicates that the
two nodes share at least a common drug/target/disease.
The color of nodes demonstrates different properties of
clusters. For drugs, we use color distribution to illustrate
the intra-cluster structural similarity, Jaccard similarity of
their associations, as well as class distributions on the
graph. The intra-cluster structural similarity is calculated
by averaging the chemical similarity of each drug pairs in
the cluster. The target/disease associations of each drugs
is represented by a one-hot vector. The Jaccard similar-
ity of target/disease associations of a pair of drugs is
calculated by equation 5. The super classes and AHFS
codes of drugs are collected from DrugBank. For targets,
The sequence similarity of target proteins and Jaccard
similarity of GO annotations are displayed on the tar-
get clustering graph by colors. The GO annotations are
collected from Gene Ontology [43, 44]. The Go annota-
tions of each target is represented by a one-hot vector.
The Jaccard similarity of GO terms of a pair of targets is
calculated by equation 5. For diseases, the distribution of
disease classes over the clusters are illustrated. The classes
of diseases are collected from CTD.
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Clustering of drugs, targets and cancer subtypes in cancer
subset and associations between clusters

We cluster the drugs, targets and cancer subtypes using
their latent factors by hierarchical clustering. We set the
number of clusters of drugs, targets and cancer subtypes
to be 17, 15 and 10, respectively. Then the hierarchical
clustering is cut by the determined number of clusters.
We construct a graph (Fig. 16) illustrating the associations
between the clusters. The nodes represent different clus-
ters and the lines represent the associations between the
clusters. If a drug in one cluster is associated with a disease
in another cluster, then these two clusters are connected
by a line. The width of a line indicates the number of asso-
ciations between the corresponding clusters. Thus, we can
find not only the existence of associations, but also the
strength of them.
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