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Minimally invasive endoscope based abdominal procedures provide potential advantages over conventional open surgery such as
reduced trauma, shorter hospital stay, and quick recovery. One major limitation of using this technique is the narrow view of the
endoscope and the lack of proper 3D context of the surgical site. In this paper, we propose a rapid and accurate method to align
intraoperative stereo endoscopic images of the surgical site with preoperative Magnetic Resonance (MR) images. Gridline light
pattern is projected on the surgical site to facilitate the registration. The purpose of this surface-based registration is to provide 3D
context of the surgical site to the endoscopic view. We have validated the proposed method on a liver phantom and achieved the
surface registration error of 0.76 ± 0.11mm.

1. Introduction

In this paper, we develop a new method for endoscopy-MR
image fusion of the liver organ for minimally invasive endo-
scope based surgery. Image guidance is an essential tool in
minimally invasive endoscope based abdominal procedures
[1]. Effective image guidance can compensate the restricted
perception during the operation, which is considered a
major limitation in endoscopic procedures. Without image
guidance, the surgeon cannot see through the surface of
the operation site and may accidentally cause damages to
the critical structures of the patient. A typical procedure in
image guidance is to map pre-operative high quality MR
images to intra-operative endoscopic video images, or the
patient thereby provides a good quality context to the real-
time endoscopic images. Thus, the surgeon will be able to
visually access the operation site during the procedure. As
a result, the damage to the critical organs or tissues will be
substantially minimized.

Fusion of endoscopic video images with high quality MR
images requires good match of these two modalities. In this
paper, we adopt a surface based image fusion because the
two modalities are different in acquisition and nature [2, 3].
In order to find the corresponding 3D surface model from

endoscopic images, we utilize stereovision to snapshot the
surgical site from two different angles and compute the 3D
location by using triangulation [4]. Cameras are calibrated
before triangulation is used [5, 6].

Although a liver phantom is used to validate the proposed
technique, our method is not restricted to the liver surgery.
The integrated image guidance can also be applied to other
endoscopic procedures. This paper is organized as follows.
Section 2 introduces the experimental setup and the camera
calibration of the stereo endoscope. Section 3 discusses
automatic surface reconstruction, and Section 4 presents
surface based registration and experimental results of image
fusion. Section 5 discusses the issues in this study. Section 6
presents the conclusion and future work.

2. Experimental Setup and Camera Calibration

Experimental setup is shown in Figure 1. In the experiments
of this study, we use the following major components: a
VisionsenseVSII stereo endoscope, anOptoma PK301 Pocket
Projector, a liver phantom, and a chessboard calibration
pattern. Optoma PK301 Pocket Projector is a small size
projector and can be easily mounted. The resolution of this
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Figure 1: Experimental setup for stereo endoscope and liver
phantom.
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Figure 2: Flowchart for automatic fusion of intraoperative endo-
scopic images to preoperative images.

projector is 848 by 480.The liver phantomwas printed using a
3D printer based on the liver model that was segmented from
MR images of a human subject.

In this study, robust 3D surface reconstruction requires
accurate camera calibration of the stereo endoscope. The
calibration process aims to find intrinsic parameters and
correct the optical distortion inherent in the endoscope
and to compute extrinsic parameters to capture the spatial
relationship between left and right cameras of the stereo
endoscope. We have modified the Camera Calibration Tool-
box for MATLAB [7] and performed calibration of the stereo
endoscope using a chessboard calibration pattern.

3. Surface Reconstruction from
Stereo Endoscope

In this section, we propose a novel approach to reconstruct
the surface of the surgical site from two stereo endoscopic

images. The reconstruction procedure is shown in Figure 2.
First, a gridline pattern is projected on the surgical site,
and both left and right images are acquired at the same
time. Second, the intersection points of the gridlines are
automatically detected and matched in both images. Then
we reconstruct the surface with the matched intersection
points. We will describe major steps in detail in the following
sections.

3.1. Conversion of Input Images to Grayscale Images. In order
to detect the intersections of the grid lines pattern of an
image, we use the image of binary format as algorithm input.
We first convert the color images acquired from the stereo
endoscope to grayscale images (as shown in Figures 3 and
4). According to the thinning algorithm used in the proposed
system, the gridlines of the light pattern should be bright to
detect their intersections.The grayscale image is thus inverted
tomeet this constraint. In this process, the dark areas become
bright and vice versa. Next, multiple steps are employed to
obtain good binary images.

3.2. Intensity Correction. The image intensity of the endo-
scopic images is not uniform given that variation in illumina-
tion and ambient lights exist. As a consequence, conventional
threshold methods cannot be directly used to achieve good
binary imageswhich can successfully separates gridlines from
the background. In this paper, we present an intensity correc-
tion technique to improve the image. The improvement aims
to equalize the contrast between gridlines and background
over the whole image. The new corrected pixel value is
calculated by

𝐼new = 255 − (
(𝐼ave − 𝐼𝑐)

2
+ 127) , (1)

where 𝐼
𝑐
is the intensity value of the current pixel, 𝐼ave is the

avarage intensity of its neighbourhood pixels, and 𝐼new is the
new intensity value after correction.

Figure 5 shows the image after intensity correction, in
which the contrast between the gridlines and background is
more uniform compared with the image before correction in
Figure 4(b). Figure 6 shows binary images by thresholding,
which will be used for intersection detection. With intensity
correction, all gridlines are clearly shown in the binary
image, while without intensity correction, only a part of
the gridlines is shown in the cluttered binary image. The
intensity correction also significantly improves the detection
andmatching accuracy with the successful rate of 98% versus
57% without intensity correction (see Table 1).

3.3. Detection of Region of Interest. In this paper, region of
interest (ROI) is defined as the region which only covers
the projected gridline light pattern in the endoscopic image.
Automatic detection of ROI is critical for accurate detection
and matching of intersection points in the gridline pattern.
During the image preprocessing step, the area out of ROI
should be cut out. ROI detection leads to automatic removal
of unwanted areas. This step significantly improves the
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(a) (b)

Figure 3: Original stereo endoscopic color images: (a) left image and (b) right image.

(a) (b)

Figure 4: Left (a) grayscale image and (b) negative image.

Figure 5: Intensity correction image.

correctness of gridline intersection detection as well as the
processing speed.

The ROI detection process aims to generate a mask
of the grid lines pattern. Following intensity correction,
we threshold the images in order to convert the corrected
grayscale image into a binary image for further processing.
Next, the dilation and the erosion operations are performed.

Eventually, as the consequence of dilation and erosion pro-
cesses, we obtain a binary mask image only covering the
region of the projected gridline pattern. Then, we apply the
mask image to the intensity corrected image to produce a
cropped image within the desired ROI. The cropped image
is then converted to a binary image by applying a threshold
to it, which is used for feature detection. Figure 7(a) shows
the detected ROI of the input image (ROI mask image), and
Figure 7(b) shows the cropped image within ROI.

3.4. Image Dilation and Erosion. Because of the conversion
to a binary image, some white pixels in the binary image
are far away from the gridlines. Hence, these types of pixels
could cause false positive pixels in the thinning process. By
using dilation, we can expand the gridlines to fill the gaps
between them and the protrusions pixels. Dilation process
followed by erosion process is used to return the structure
to its original state by removing the added structure of the
gridlines. As a result, we have smoother gridlines without
holes and protrusion pixels. Figure 8 shows the binary images
before and after dilation and erosion process, respectively.

3.5. Thinning and Intersection Detection. In order to detect
the intersections of the gridline pattern, we used a thinning
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(a) (b)

Figure 6: Binary image by thresholding (a) with intensity correction and (b) without intensity correction.

(a) (b)

Figure 7: (a) Detected ROI mask image and (b) intensity correction image within ROI mask.

process applied to the above processed binary image. The
thinning process generates an image with one pixel width;
that is, it generates a skeleton image of the input binary image.
Then we proceeded to detect the intersections of the image
gridlines.This processwas accomplished by applying a hybrid
approach for cross-point detection called the combined
cross-point number (CCN) method [6]. The CCN method
uses two techniques to detect intersections of gridlines:
simple cross-point number (SCN) and the modified cross-
point number (MCN). The CCN algorithm is used to detect
the intersection points of the gridlines.

In simple cross-point number, the image is iterated with
a small window of size 3 by 3 pixels [6], as a result we have
eight pixels surrounding the tested pixel. To test if the center
pixel of the 3 by 3 window is a cross-point pixel, we iterate this
window on the image and get the cross-point number (CPN)
for the center pixel. The CPN is calculated by

CPNSCN =
1

2

8

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑃𝑛 − 𝑃𝑛+1
󵄨󵄨󵄨󵄨 ,

(2)

where 𝑃
𝑛
is the pixel value of 𝑛th pixel of the 3 by 3 window

and 𝑃
8
= 𝑃
1
. A point is considered a cross point if its CPN is

four.

In modified cross-point number method, the image is
iterated by a window of size 5 by 5 pixels surrounding the
center pixel. The CPN is calculated by

CPNMCN =
1

2

16

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑃𝑛 − 𝑃𝑛+1
󵄨󵄨󵄨󵄨 ,

(3)

where 𝑃
17
= 𝑃
1
. The pixel is considered a cross-point pixel

if CPNMCN ≥ 4. In the combined cross-point number both
simple cross-point number andmodified cross-point number
methods are used. The simple cross-point number is used
in the inner 3 × 3 neighbors of the center pixel, while the
modified cross-point number is used in the outer 5 × 5
neighbors of the center pixel. Each pixel in the image has been
tested against CPN using the modified cross-point number
method, in which it is considered a cross point if and only
if it satisfies CPNSCN ≥ 4 and CPNMCN ≥ 4. Because of the
low quality of the images, we adjust the CPN of the combined
CPN to be in the range of 3.0 and 4.0. Figure 9(a) shows the
left skeleton image by thinning operation. Figure 9(b) shows
the detected intersection points plotted on the left image.
Figure 9(c) shows the detected intersection points and plotted
on the right image. Notice that there are false positive points
in both images, and as shown in Figure 10, these false points
are eliminated by our method using the epipolar geometry
matching constraint.
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(a) (b)

Figure 8: (a) Binary image before dilation and erosion (holes and spikes), (b) image after dilation and erosion process.

(a) (b) (c)

Figure 9: (a) An skeleton left image after thinning, (b) detected intersection points plotted on a left image, and (c) detected intersection
points plotted on a right image.

Figure 10: The matched points from both images.

3.6. Matching Grid Points. In order to reconstruct the surface
within the ROI using the triangulation technique, we need to
find the corresponding intersection points in the left and right
images. Since these grid points have similar features, these
correspondence relationships cannot be effectively obtained
using conventional feature matching methods such as Scale
Invariant Feature Transform (SIFT) and Speeded Up Robust
Features (SURF) based techniques. In this paper, we adopt the
method of epipolar constraints [2]. The intersection points
arematched column-by-column to achieve goodmatching in
our study.

We have validated the proposed approach using 19 pairs
of images acquired at different position and orientation of the

stereo endoscope. Figure 10 shows the matched grid points
superimposed in one image. Table 1 shows the actual number
of points in each image, the number of the points detected,
the number of correct points, the number of false positive
points (FPP), and the number of false negative points (FNP).
The average of sensitivity detection of the proposed method
is 0.9822.

3.7. Points/Surface Reconstruction. In general, a video image
generated from the endoscope is a 2D projection of the 3D
scene. This process can be represented using the pinhole
camera model [8]. After we obtain the camera calibration
parameters, we reconstruct a 3D point 𝑥 from left and right
image projections by using stereo triangulation. A smooth
surface can be reconstructed by fitting these reconstructed
3D grid points as shown in Figure 11(a). This figure has
demonstrated that the proposedmethod can achieve accurate
surface reconstruction from the stereo endoscopic images.

In order to investigate the impact of the previous image
processing procedures on the reconstructed surface, we
have performed the following experiments. We use image
intensity correction as an example to examine the effects in
detail. We repeat the entire process of the surface recon-
struction as shown in Figure 2, except that no intensity
correction is performed. Figure 11(b) shows the reconstructed
surface without intensity correction, and Figure 14 shows
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Table 1: It shows the actual number of points in each image, the number of the points detected, the number of correct points, the number of
false positive points (FPP), and the number of false negative points (FNP).

(a) With intensity correction

Image Number of points Detected points Correct points Sensitivity FPP FNP
Im1 77 73 73 0.9481 0 4
Im2 77 74 74 0.961 0 3
Im3 77 74 74 0.961 0 3
Im4 77 73 73 0.9481 0 4
Im5 77 76 76 0.987 0 1
Im6 77 78 77 1.0 1 0
Im7 77 77 76 0.987 1 1
Im8 77 76 76 0.987 0 1
Im9 77 76 76 0.987 0 1
Im10 77 76 76 0.987 0 1
Im11 77 76 76 0.987 0 1
Im12 77 76 76 0.987 0 1
Im13 77 77 77 1.0 0 0
Im14 77 76 76 0.987 0 1
Im15 77 77 77 1.0 0 0
Im16 77 76 76 0.987 0 1
Im17 77 76 76 0.987 0 1
Im18 77 76 76 0.987 0 1
Im19 77 76 76 0.987 0 1
Average 0.9822

(b) Without intensity correction

Image Number of points Detected points Correct points Sensitivity FPP FNP
Im1 77 51 51 0.66 0 26
Im2 77 48 48 0.62 0 29
Im3 77 25 24 0.31 1 53
Im4 77 53 52 0.67 1 25
Im5 77 53 53 0.68 0 24
Im6 77 39 38 0.49 1 39
Im7 77 42 42 0.54 0 35
Im8 77 39 39 0.50 0 38
Im9 77 60 60 0.77 0 17
Im10 77 56 55 0.71 1 22
Im11 77 53 53 0.68 0 24
Im12 77 52 52 0.67 0 25
Im13 77 44 44 0.57 0 33
Im14 77 42 41 0.53 1 36
Im15 77 42 40 0.51 2 37
Im16 77 41 40 0.51 1 37
Im17 77 36 35 0.45 1 42
Im18 77 36 35 0.45 1 42
Im19 77 41 33 0.42 2 44
Average 0.5653

the corresponding average registration error without inten-
sity correction. Comparing Figures 11, 13, and 14, we can
clearly see that intensity correction has significantly improved
the reconstruction accuracy. With intensity correction, the
average surface reconstruction error reduces from 1.86mm
to 0.76mm. Similarly, the proposed automatic detection
method for ROI improve the reconstruction accuracy as well.

In Table 2, we show how the average surface error is affected
by previous image processing procedures.

4. Surface Based Registration

4.1. ICP Registration. The Iterative Closest Point (ICP) algo-
rithm is widely employed to align two three-dimensional
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(b) Without intensity correction: left corner with large errors

Figure 11: Reconstructed surface from stereo endoscopic images.

Table 2: Average surface distance error (ASD) impacted by image
processing procedures.

Case Mean (mm) Standard deviation (mm)
Proposed method 0.76 0.11
Without intensity
correction 1.86 0.68

Without detection of
ROI 1.24 0.73

Figure 12: Overlay of 3D liver phantom surfaces after registration.
Red mesh: reconstructed from endoscopic images, yellow surface:
fromMR images.

surfaces. The ICP algorithm was first proposed by Besl and
McKay [9], which is an iterative two-step method. The first
step is to establish point correspondences by finding the
corresponding point closest to the second surface for each
point in the first surface. The second step is to calculate
a transformation based on these matched points, which
produces incremental transformations whose composition is
the registration results.

In this study, the ICP is employed to register the recon-
structed surface from endoscopic images with the surface
extracted fromMR images. Figure 12 shows the overlay of 3D
surfaces after surface registration.

4.2. Registration Accuracy. The projected gridline pattern
used to test the proposed approach consists of seven rows

and eleven columns, and we have 77 intersection points to
detect in each image. We used 19 pairs of left and right
images acquired by the stereo endoscope at different poses for
validation. After ICP surface registration, we calculated the
average surface distance (ASD) between two corresponding
surfaces as registration accuracy. The resulting ASD is 0.76 ±
0.11mm (see Figure 13). Figure 14 shows the corresponding
registration accuracy without intensity correction.

After surface based registration, we are able to fuse the
reconstructed surface from stereo endoscopic images with
pre-operative high qualityMR images and the corresponding
patient-specific models such as vessel centerlines as shown
in Figure 15. This will enable surgeons to see through critical
structures beyond the operational site surface.

5. Discussion

Developing a rapid and accurate approach to reconstruct the
surface from stereo endoscopic images is a very challenging
task especially for soft tissues with few features. Many tech-
niques have been developed to acquire or reconstruct surgical
surface such as using laser scanners and Time-of-Flight (ToF)
cameras [10–12]. Hayashibe et al. used a laser-scan endoscope
technique to reconstruct the shape and texture of the area
of interest [13]. A laser scanner was proposed to acquire
the liver surface for image-guided liver surgery, but it took
about 5–20 seconds [10]. Therefore it is not suitable for free-
breathing patients since average respiratory rates of children
are 16–30 breaths per minute. ToF cameras produce a depth
map that can be immediately used to generate a 3D surface
model in real time, but current devices are too large for
endoscopic procedures [11, 12]. For this study, we employed
a small stereo endoscope with the diameter of 4.9mm, which
can be used with a typical 5mm trocar in clinical practice.
For proof of concept, we used a general purpose projector to
project the light pattern of gridlines. In the future, this easy-
to-implement light pattern can be generated by using a very
small lithographic pattern generator with 10 𝜇m thick lines
at a distance of 50 𝜇m [14], which can generate a pattern of
50 × 50 lines within the size of 3mm × 3mm.
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(a) Image fusion of patient models and reconstructed
surface

(b) Close-up around field of view of the endoscope

Figure 15: Fusion of patient models and reconstructed surface from the stereo endoscope. Green mesh is the reconstructed surface from two
endoscopic images, red curves are the centerlines of vessels, segmented surface from MR images is shown in semitransparent yellow, and
background is one MR slice with bright vessels.

Many works [15–17], proposed to reconstruct the soft
tissue structures of the abdomenusing stereovision.However,
it is difficult to find the correspondences between the two
images, even when taking into account epipolar constraints.
Moreover, 3D surface reconstruction for abdominal proce-
dures is more challenging due to few or no features on
the surface of some organs such as the liver. To tackle
this, structured light based methods were presented in [18].
Traditionally, the structured light technique projects the
coded pattern onto the object and substitutes one camera
in the stereovision with a projector [19]. Consequently, the
correspondence problem becomes a decoding problem, and
we can determine the correspondences between the acquired
image and the original known coded pattern. Many light
patterns are proposed for 3D surface reconstruction in the

last decades [20, 21]. The design and realization of a new
endoscopic device by means of a robust structured light
coding are presented in [4]. However, the coded pattern
employed in [4] is not commercially available and is not easy
to be implemented for clinical use.

Since we mainly consider minimally invasive image
guided procedures, one major criterion of selecting light
patterns is easy implementation. In this study, we select the
gridline light pattern, which can be easily generated by a com-
mercial projector or a special device. However, this choice
of light pattern poses a great challenge for matching feature
points (i.e., intersections) of gridlines due to symmetry and
similar features of gridline points. Conventional methods
[22, 23] such as SIFT cannot be employed effectively for
surface reconstruction in our study. Based on the specific
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characteristics of the gridline light pattern in this paper,
we adopt a new method for robust feature detection and
matching.

In this study, we have proposed to use dedicated gridline
light patterns to create noninvasive artificial features on the
tissue surface, which is then used to robustly reconstruct
3D surface from stereo endoscopic images. This is a robust
3D surface reconstruction technique for procedures involv-
ing soft tissue organs especially with few surface features.
Another feature of the proposed system is the use of a stereo
endoscope for 3D surface reconstruction. The major advan-
tage of using stereo endoscope is that it can acquire two syn-
chronized images simultaneously, which provides necessary
information for 3D surface reconstruction and eliminates the
challenging temporal synchronization problem inherently
with mono endoscope for moving deformable targets. The
stereo endoscope not only provides two synchronized images
at the same time but also reduces intra-operative image
acquisition time and eliminates unnecessarymotion ofmono
endoscope to acquire two images at different poses which is
required for robust 3D surface reconstruction.

Effective and good display of virtual reality (VR) is
an important factor for clinicians to accept and support
the multimodality image guidance system in the clinical
environment. It is still an active research topic as to how
to present and fuse real images with patient-specific pre-
operative images and models in an optimal way so that they
register correctly in the physician’s brain. Stereo display is
one effective way to present the information to physicians.
Some 3D video stereo monitors do not require a separate
apparatus such as synch box, ZScreen, or active glasses.
In order to effectively use our stereo endoscope, we still
need 3D glasses in the current configuration; however, it
would be more convenient for physicians to watch 3D video
stereo monitor without glasses. Fused anatomy and models
can provide physicians with more information where all
supporting information becomes available. Multiple moni-
tors can be used to display different information separately.
For example, the first monitor can display real-time video
stereo endoscopic images, while a second monitor is used
to display the fused images/models. Thus in challenging
scenarios, doctors can selectively watch different monitors
to acquire needed information including surgical plans and
other critical structures such as tumors and blood vessels
without interference from unnecessary information.

6. Conclusion

In this study, we proposed a novel approach to match stereo
endoscopic images and MR images. The proposed surface-
based registration has proved to be an effective method for
registering these images of different imaging mechanisms.
Moreover, the light patterns of the gridlines facilitated the
surface reconstruction of surgical sites with few surface
features. In this paper, we validated the proposed method
with static objects; however, our method has the potential to
be extended to procedures involving moving organs.

We have demonstrated the effectiveness of our technique
in registration of the reconstructed surface with the surface
extracted from MR images of a liver phantom. We have
shown that various image processing techniques we used
before the image registration have a significant impact on the
resulting registration accuracy. We have achieved a surface
registration accuracy of 0.76 ± 0.11mm. The proposed
technique has the potential to be used in clinical practice
to improve image guidance in endoscope based minimally
invasive procedures. The fused image guidance may also be
applied to the endoscopic procedures of other organs in the
abdomen, chest cavity, and pelvis such as the kidneys and the
lungs.

Future work includes integration of our method into the
clinical image guidance system and further validation by
animal study and clinical study.
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