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Eosinophilic Granulomatosis with Polyangiitis (EGPA) is a rare multisystemic disease

classified both amongst hypereosinophilic disorders and ANCA-associated vasculitis.

Vessel inflammation and eosinophilic proliferation are the hallmarks of the disease and

main effectors of organ damage. Two distinct disease phenotypes have classically

been described according to ANCA-status: the ANCA-negative subset with eosinophil-

driven manifestation and the ANCA-positive one with vasculitic manifestations. An

analogous dichotomization has also been backed by histological findings and a distinct

genetic background. EGPA is typically consider a Th2-mediated disease and blood and

tissue eosinophilia represent the cornerstone of diagnosis. Besides, ANCA are known

for inducing endothelial injury and vascular inflammation by activating the circulating

neutrophils. Thus, the pathogenesis of EGPA seems to be mediated by two coexisting

mechanisms. However, the verbatim application of this strict dualism cannot always be

translated into routine clinical practice. In the present review we describe the current

knowledge on the eosinophilic and ANCA-mediated aspects of EGPA pathogenesis.

Finally, we review the rationale of the currently proposed EGPA dichotomy and future

research perspectives.

Keywords: Eosinophilic Granulomatosis with Polyangiitis, Churg-Strauss syndrome, eosinophils,

hypereosinophilic syndromes, ANCA-associated vasculitis, neutrophils, myeloperoxidase, EGPA classification

INTRODUCTION

Eosinophilic Granulomatosis with Polyangiitis (EGPA) is a rare disease characterized by
granulomatous and eosinophil rich inflammation and systemic necrotizing vasculitis affecting
small-to-medium sized vessels. EGPA occurs in patients with asthma and peripheral and tissue
eosinophilia, and ∼30% of the patients present antineutrophil cytoplasm antibodies (ANCA)
mainly specific for myeloperoxidase (MPO) (1). The disease is unique in its genre as it combines
asthmatic manifestations with hypereosinophilic disorders and ANCA-associated vasculitis (AAV)
features. Therefore, a full comprehension of its pathophysiology still lies beyond our reach.

An increasing amount of evidence indicates that EGPA’s clinical phenotypes tends to
segregate according to ANCA-status, as the major eosinophil-driven complications are most
frequently found in the ANCA-negative subset of EGPA, namely lung infiltrates, myocardiopathy,
and gastrointestinal manifestations. In contrast, MPO-ANCA-positive patients present a more
“vasculitic phenotype,” which comprises palpable purpura, peripheral neuropathy, rapidly
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progressive glomerulonephritis and, rarely alveolar hemorrhage
(2, 3) (Table 1). An analogous dichotomy is also supported by
histological findings, as biopsy-proven vasculitis is found more
frequently in ANCA-positive patients than in ANCA-negative
ones, whereas eosinophilic infiltrates and granulomas are found
with a similar frequency in the two groups (24).

The dualism between ANCA-positive and ANCA-negative
EGPA is also supported by genetic background. A recent
genome wide association study (GWAS) found differential
association of genetic variants between the two serological
subsets. MPO/ANCA-positive EGPA has a significant association
with HLA class II DQ haplotype, which is shared with the other
MPO-AAV (i.e., microscopic polyangiitis, MPA), while ANCA-
negativity is associated with GP33 and IL5/IRF1 loci, indicating a
possible mucosal/barrier dysfunction origin (25).

The pathogenesis of the disease also results from the
complex interaction among innate and adaptive immunity,
including eosinophils, neutrophils, T-helper lymphocytes, and B
lymphocytes (26).

Based on these premises, the present review will focus on
untangling the interactions between the two main pathogenic
processes in EGPA (i.e., eosinophilic vs. vasculitic). The validity
of the current two-faced model of the disease will also
be examined.

EGPA AS AN EOSINOPHILIC DISORDER

Eosinophils are granulocyte innate immune cells that have
classically been described in allergy, host defense against
parasites, myelo- and lympho-proliferative disorders, and
in autoimmune diseases. Particularly, blood and tissue
eosinophilia represent the diagnostic cornerstone of EGPA,
making it the prototype of eosinophilic vasculitis (5). From
a pathophysiological point of view, EGPA shares intrinsic
mechanisms with allergy and anti-helminthic response (27–30).
It is characterized by the en masse polarization of T helper
lymphocytes toward a Th2 phenotype, the upregulation of
eosinophil-selective eotaxin chemokines (particularly eotaxin-3),
and an increased secretion of eosinophilotropic cytokines
[i.e., interleukin (IL)-4, IL-5, IL-9, IL-13, and IL-25] (28, 31).
So-called “allergic granulomas,” consisting of palisading giant
cells surrounding a core of necrotizing eosinophils, are also
a distinctive histopathological feature of EGPA and are a
sign of chronic eosinophilic inflammation which have also
been described within persistent helminthic infections (29).
Eosinophil-mediated organ damage is a shared feature of
both EGPA and hypereosinophilic syndrome (HES), and
clinical aspects overlap considerably (32). From a pathogenic
standpoint however, a myeloid or lymphoid clonal origin can
be detected in nearly half of HES (32, 33), and sensitivity to
imatinib has been reported in a number of FIP1L1-PDGFRA
(F/P)-negative HES patients bearing other novel fusion genes
(34–36). Nonetheless, imatinib also anecdotally showed efficacy
in F/P-unmutated EGPA, while a F/P-positive EGPA patient was
reported, suggesting possible shared pathogenic mechanisms
with HES (37, 38).

Eosinophils’ Cytotoxicity
Eosinophils exhibit a wide spectrum of cytotoxicity, that is
mediated by an array of enzymes stored in cytoplasmic granules,
each of which associated with distinct type of clinically observable
organ damage (39) (Figure 1A). Cardiac involvement is the
major cause of mortality and morbidity in EGPA and has been
widely associated to eosinophilia (40–42). In vitro evidence
suggests that cardiotoxicity is mainly mediated by eosinophilic
cationic protein (ECP) by altering the membrane sodium
permeability of cardiomyocytes and inhibiting mitochondrial
respiration (41). ECP also mediates fibrogenesis by inducing
the release of fibrogenic cytokines transforming growth factor
β (TGF- β), IL-1α, and IL-1β (43). Consistently, the presence
of eosinophilic infiltrates and granule proteins has been widely
documented in fibrotic tissues, including endomyocardial biopsy
specimens of patients with EGPA (44, 45). The neurotoxic
properties of eosinophils are clinically evident in the form of
axonal neuropathy, a frequent finding in EGPA. Histologically,
this relates to the presence of infiltrating eosinophils in the
endoneurium and epineural vessels of EGPA patients (46).
Fiber damage is probably due to the activity of eosinophilic
neurotoxin (ENT) and ECP, which have been found to induce
it in vivo (47). Interestingly, ENT acts as activating factor for
myeloid dendritic cells by triggering the Toll-like receptor 2
(TLR2)–MyD88 signaling pathway, which is associated with
the secretion of Th2 type interleukins (48). Thus, ENT might
have similar properties to an endogenous alarmin, alerting
the immune system for preferential enhancement of antigen-
specific Th2 response (48). Airway remodeling, subepithelial
fibrosis, and ciliated cells destruction have been linked to
the activity of major basic protein (MBP) in vivo (49). MBP
is an abundant granule protein that can induce histamine
release from basophiles, superoxide generation by alveolar
macrophages, and fibrogenesis through TGF-β signaling (39,
50). Consistently, toxic-range concentrations of MBP were
found in sputum and pleural fluid from asthmatics (51).
An emerging aspect in eosinophils pathophysiology is their
ability to induce a prothrombotic microenvironment on the
endothelium. This clinically relates to an increased risk of
arterial and venous thrombosis, which can be observed in EGPA
(52, 53). Eosinophils can autonomously generate thrombin and
induce tissue factor exposure on endothelial cells. This leads to
increase platelet adhesion to the vascular wall and thrombus
growth (54). Intravascular eosinophil activation also induces
the formation of eosinophil extracellular traps, which can be
found in human thrombi and could have a potential role in
injury-related thrombosis (55). Prothrombotic alterations are
also linked to ECP- and MBP-mediated interference with the
coagulation cascade and to aberrant eosinophil-derived reactive
oxygen species (ROS) production (56–58). Eosinophil NADPH-
oxidase works in concert with eosinophil peroxidase (EPO) to
generate high levels of ROS from H2O2, which in turn interact
with endotheliocytes’ cellular signaling to upregulate genes for
adhesion molecules, tissue factor, and vasoactive substances
(58, 59). Most importantly, eosinophil-derived ROS promotes
lipoperoxidation, thereby contributing to atheromatous plaque
formation and destabilization (55).
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TABLE 1 | Prevalence of EGPA clinical characteristics according to ANCA-status and biomarkers of vasculitic and eosinophilic activity*.

Main EGPA clinical manifestations ANCA+ ANCA-

Asthma 95% 93.1%

ENT involvement 68.8% 54.5%

Lung involvement (all kinds)
†

60.6% 84.2%

Alveolar hemorrhage 16% 3.2%

Skin involvement (all kinds)# 50% 40.9%

Palpable purpura 30% 17.6%

Peripheral neuropathy 69.3% 50.6%

CNS involvement 9.7% 16.6%

Renal involvement (all kinds)§ 33.3% 13.1%

NCGN 23% 2.3%

Heart Involvement 14.5% 32.6%

Gastrointestinal involvement 26.2% 23.6%

Potential biomarkers of disease activity

Biomarkers of vasculitic activity Biomarkers of eosinophilic activity

ANCA Eosinophils

Patients with persistently elevated ANCA titer, or with re-appearance of ANCA or increase in

serum ANCA levels present an higher risk of vasculitis relapse (4).

Absolute eosinophil count correlates with disease activity and risk of

relapse with moderate sensitivity and specificity. In untreated EGPA.

However, treatment with glucocorticoids and immunosuppressants

may be a source of confoundment (5).

Urinary-MCP-1 IgG4

MCP-1 is a chemokine that attracts circulating monocytes in renal glomeruli. Urinary MCP-1

levels are elevated in patients with active renal vasculitis and correlate renal disease activity and

response to therapy (6).

Th2 cytokines promote Ig class switching to IgG4. Preliminary studies

suggested that IgG4 levels may reflect EGPA disease activity. However,

there is conflicting evidence from longitudinal studies on serum IgG4

and IgG4/IgG ratio. Routine determination is not yet recommended

(7, 8).

Urinary soluble-CD163 CCL26/Eotaxin-3

Urinary sCD163 is released by crescent macrophages. Its detection correlates with necrotizing

crescentic glomerulonephritis and it may represent a biomarker for active renal vasculitis (9).

The combination of elevated usCD163 plus either elevated uMCP-1 or new/worse proteinuria

improved the positive likelihood ratio of active renal vasculitis (10).

Eotaxin-3 is a highly eosinophil-specific chemoattractant. Preliminary

studies suggested that serum eotaxin-3 levels may be a sensitive and

specific marker for active EGPA. However, there is conflicting evidence

from longitudinal studies. Routine determination is not yet

recommended (7, 11).

Serum soluble CD25 and urinary soluble CD25 CCL17/TARC

CD25 is a T cell activation marker. Measurement of ssCD25 and usCD25 supports usCD163 in

the detection of active renal vasculitis (12).

CCL17/TARC is a chemokine that can induce the chemoattraction of

activated Th2 cells. Preliminary studies suggested that CCL17/TARC

levels may reflect EGPA disease activity. However, there is conflicting

evidence from longitudinal studies. Routine determination is not yet

recommended (7, 13).

Alternative complement pathway ECP

Serum C3a, C5a, soluble C5b-9, and Bb fraction correlate with disease activity in MPO-ANCA

positive renal vasculitis (14). Avacopan (C5aR antagonist) is being explored as a potential

therapeutic target, but specific data on EGPA are lacking (15).

ECP is a cardiotoxic and neurotoxic eosinophil granule protein. It was

correlated with EGPA disease activity and eosinophil count in

preliminary studies. A significant independent correlation with

atherothrombotic risk in EGPA was also described (16, 17).

Markers of B cells activation Periostin

Markers of B cell activation (BAFF) and B cell repopulation after rituximab therapy (high

frequencies of switched memory B cells and circulating plasmablasts—CD27+CD38hi) have

been shown to correlate with AAV disease activity and relapse. However, specific data on

EGPA are missing. Further studies are required to determine whether they may become

potential biomarkers for EGPA vasculitic activity (18–22).

Periostin has been implicated in eosinophil function and recruitment.

Serum periostin was modestly associated with EGPA disease activity

and was higher in EGPA compared to healthy controls and asthmatics

in a preliminary study (23).

*Percentages for every clinical feature were obtained by combination (weighted average) of data from Sinico et al. (2), Sablé-Fortassou et al. (3), and Comarmond et al. (24); data on

NCGN were obtained by combination (weighted average) of data from Sinico et al. (2) and Sablé-Fortassou et al. (3).
†
Lung involvement (all kinds) comprises migratory lung infiltrates, lung nodules, chest pain, pleural effusion, and alveolar hemorrhage.

#Skin involvement (all kinds) comprises urticaria, purpura, livedo, subcutaneous nodules, and ulcers.
§Renal involvement (all kinds) comprises raise in creatinine serum levels, proteinuria > 0,4 mg/24 h, haematuria> 10 red blood cells/high power field, and NCGN.

EGPA, eosinophilic granulomatosis with polyangiitis; ANCA, antineutrophil cytoplasmic antibodies; ENT, ear-nose-throat; CNS, central nervous system; NCGN, necrotizing crescentic

glomerulonephritis; u-MCP-1, urinary-monocyte chemoattractant protein 1; ECP, eosinophil cationic protein; BAFF, B cell-activating factor.
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FIGURE 1 | Overview of eosinophil-mediated and ANCA-mediated mechanisms of EGPA immunopathogenesis. On top, a schematic representation of the spectral

distribution of clinical features in MPO-ANCA-negative (red triangle) and MPO-ANCA-positive EGPA (green triangle). At the extreme ends of the spectrum, lung

involvement and rapidly progressive pauci-immune glomerulonephritis come as the result of predominantly eosinophilic and vasculitic mechanisms of organ damage,

respectively. In contrast, the other clinical manifestations of EGPA result from the combination of the two processes. (A) Eosinophil-mediated pathogenesis of EGPA.

Eosinophil granule proteins are highly cationic compounds that act synergically to mediate the cell’s cytotoxicity. Mayor Basic Protein (MBP) is associated with airway

remodeling and asthma, fibrogenesis, and procoagulant activity. NADPH-oxidase (NADPH) and Eosinophil Peroxidase (EPO) generate high quantities of reactive

oxygen species that contribute to endothelial dysfunction and thrombosis. Eosinophil Cationic Proteins (ECP) is implied in cardiac toxicity, procoagulant activity, and

nerve fibers degeneration. Eosinophil Neurotoxin (ENT) has marked neurotoxic potential in vivo. (B) Putative sequence of neutrophil-mediated endothelial injury.

Circulating neutrophils get primed for ANCA activation by inflammatory cytokines and C5a complement factor. Priming induces the exposition on neutrophils

cell-surface of ANCA antigens. Circulating ANCA bind to ANCA-antigens through F(ab)2 fragment and activate neutrophils by interaction with Fc receptor. Activated

neutrophils release cytotoxic enzymes and factors that activate the alternative complement pathway, producing C5a that further enhances neutrophils priming.

ANCA-activated neutrophils marginate and penetrate the vessel wall, where they undergo respiratory burst, degranulation, NETosis, and necrosis causing endothelial

damage.

Genetic Background of Eosinophilia
Our knowledge of eosinophils’ biology allowed their
identification as the sole perpetrators of non-vasculitic clinical
manifestations in EGPA. However, our current understanding
of the primitive pathological alterations underlying the triggers
and drivers of eosinophilic inflammation in EGPA is still
incomplete (25).

A predisposition based on immunogenetic factors is known.
EGPA is associated to HLA alleles DRB1∗04 and ∗07 and
with HLA-DRB4, suggesting a strong link with CD4+ T-
lymphocyte activation (60, 61). Furthermore, functionally
relevant variations of the IL-10 gene promoter were associated

with EGPA in general (62), whereas IRF1/IL5 and GPA33
genes variants were associated with MPO-ANCA-negative
EGPA (25). Interestingly, IL-10 and IRF1/IL5 both relate to
eosinophilic inflammation. IL-10 is pivotal for the activation
of the Th2pathway, while IRF1/IL5 can interact with the
regulatory regions of IL-4 and IL-5 (25, 62). Analyzed IRF1/IL5
variants were associated with an increased risk to develop
EGPA, higher eosinophils, and severe asthma (25). Intriguingly,
GPA33 encodes a surface glycoprotein that contributes to
intestinal and bronchial mucosal function, hinting at a
role of barrier dysfunction and innate immunity in disease
development (63).

Frontiers in Medicine | www.frontiersin.org 4 February 2021 | Volume 8 | Article 627776

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Fagni et al. EGPA: Dissecting the Pathophysiology

Adaptive and Innate Immune Response
and Eosinophils
Ultimately, a dysfunctional communication between innate and
adaptive type 2 immunity seems to be at the root of eosinophilia
in EGPA. EGPA is generally considered as a Th2-response-
mediated disease due to the high eosinophil activity and the
characteristically elevated serum levels of Th2cytokines (7, 28).
Amongst them, IL-5 has the most relevant impact on the
differentiation, proliferation, and survival of eosinophils and
proved to be a promising therapeutic target (64). Indeed, the
surface expression of the IL-5 receptor (CD125/CD131) is a
key terminal step in eosinophil haematopoiesis and circulating
IL-5 levels regulate the mobilization of eosinophils from the
bone marrow (65). At a tissue level, the Th2 differentiation
marker CD294 is abundantly present in biopsies from EGPA
patients (13), and a Th2-dominant transcriptomic profile
(STAT3, STAT6, GATA3, IL10, and IL4) was also described in
bronchoalveolar lavage (66). Tissue and circulating eosinophils
in EGPA also secrete IL-25, a potent eosinophilotropic cytokine
that induces their own proliferation and Th2-response, thereby
maintaining a vicious cycle (67). Eosinophils is EGPA are
also impaired qualitatively. This is revealed by an increase
in surface-expressed eosinophil activation CD69 and CD25,
and by evidence of dysfunctional apoptotic pathways (68, 69).
EGPA is associated with variants of the apoptosis-controlling
BCL2L11 and MORRBID genes (25), the latter of which is
dysregulated in hypereosinophilic syndromes (70). Furthermore,
several proapoptotic genes (BCL2L13, CASP2, and CARD4)
were found underexpressed in the eosinophils of EGPA patients
(69), and high circulating levels of soluble CD95 (an inhibitor
of Fas-mediated apoptosis) were also described (71). Finally,
although their role has yet to be fully characterized, it must
be mentioned that IL-5-producing innate lymphoid cells type
2 (ILC2) were also found elevated in EGPA and their blood
concentration correlates with eosinophil count and disease
activity (72). ILC2s are strategically embedded in peripheral
tissues and orchestrate the crosstalk between epithelial cells
and the immune system. Their activity has been linked to
the initiation of type-2 immune responses via IL-5 and IL-13
production, eosinophils and mast cells recruitment, and M2
macrophage polarization (73). Although their real contribution
to EGPA still needs to be investigated, their privileged position
as an interface between innate immunity and the adaptive Th2
response could be promising for future research developments
(74, 75).

EGPA AS A VASCULITIC DISORDER

Animal and Human Models of
ANCA-Mediated Vascular Inflammation
ANCA prevalence in EGPA varies from 30 to 40%. Of the
EGPA patients that test positive for ANCA, 90-to 100% have
MPO-ANCA specificity. Although the pathogenic role of anti-
MPO ANCA has not been overtly demonstrated in EGPA, it
is presumed that similar mechanisms to the ones known in
MPA occur. Several animal models have demonstrated the direct

noxious role of ANCA toward endothelial cells and their key
interaction with neutrophils in vasculitis pathogenesis as the
cause of necrotizing-crescentic glomerulonephritis (NCGN) and
pulmonary hemorrhage (76). The pathogenic potential of MPO-
ANCA has been documented either by injection of anti-MPO
IgG in mice (77), by injection of splenocytes containing anti-
MPO positive B-cells in Rag2−/− mice (which lack B and
T cell responses) (77) or by transplanting bone marrow that
contain MPO-positive myeloid cells in irradiated MPO−/− mice
previously immunized with MPO antigen (78).

However, the relationship between ANCA and EGPA
manifestations appears more complex as autoantibody titer
does not always correlate with disease severity and ANCA
can persist in remission phases or re-appear without clear
disease activity (79, 80). Furthermore, a percentage of patients
with vasculitic manifestations test negative for ANCA (81,
82), and conversely low-titer non-pathogenic ANCA have been
described in healthy individuals (83, 84). These elements suggest
that, despite ANCA being directly pathogenic, not all ANCA
appear effectively involved. Indeed, more than 20 MPO epitopes
have been identified. Antibodies to MPO specific for disease
active phases were proven to be strong ROS inducers from
neutrophils, whereas antibodies in healthy individuals evoked a
poor neutrophilic response (85).

Recently anti-lactoferrin antibodies have been described in
EGPA patients, but not in GPA and MPA, and have been directly
correlated to disease activity (86). However, anti-lactoferrin
antibodies can also be found in other several autoimmune
diseases. Thus, whether these autoantibodies are effectively
pathogenic or represent just an epiphenomenon is still unknown.
Nevertheless, their detection may suggest the presence of ANCA
directed toward alternative epitopes, which we are not able to
identify yet.

Studies on mouse models also showed that disease
manifestations could be limited by modification of ANCA IgG
glycosylation on the Fc fragment (87), affecting FcγR-antibody
interaction or through inhibition of p38 mitogen-activated
protein kinase (MAPK), which is thought to prime and activate
neutrophils (88). The scenario proposed for ANCA-mediated
vascular injury starts with neutrophil priming by circulating
inflammatory cytokines (Figure 1B). Once primed, neutrophils
expose a small amount of ANCA antigens (normally sequestered
in the cytoplasmic granules) on cell surface. ANCA F(ab)2
fragment binds to surface antigens, while the Fc fragment
interacts with FcγRIIa and FcγRIIIb, triggering the respiratory
burst (89). Activated neutrophils penetrate the vessel wall
and release ROS and toxic enzymes causing the necrosis of
endothelial cells and adjacent matrix. In addition, monocytes
can be similarly activated by ANCA. Activated monocytes
contribute to further neutrophil recruitment and activation and
to granulomatous lesions formation. Several studies have also
suggested the participation of alternative complement pathway
in ANCA-induced inflammation (90, 91). Activated neutrophils
release factors which activate the alternative complement
pathway, resulting in the generation of C5a fragment, which in
turn attracts neutrophils at the site of inflammation and primes
the incoming neutrophils for ANCA activation (92).
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ANCA and Adaptive Immune Responses
Adaptive immune responses also appear to be involved. A
significant contribution comes from T cells, which can be found
in NCGN biopsy specimens and in EGPA granulomatous lesions.
It has been shown that activated neutrophils do not only cause
endothelial injury but also deposit MPO-antigen in glomeruli
and in the basal membrane. Anti-MPO CD4+ T cells recognize
the planted glomerular MPO and amplify the immune-mediated
damage (93, 94).

Increased frequencies of Th17 lymphocytes in peripheral
blood samples from EGPA patients are reported during relapse
of vasculitic manifestations (95). It has been proposed that
MPO-ANCA activated neutrophils, through IL-6, IL-17, and IL-
23 production create a permissive environment for T cells to
differentiate toward a Th17 phenotype (96, 97). This generates
an amplification loop in which Th17 lymphocytes promote
neutrophils recruitment and activation (98).

Origin of Pathogenic-ANCA
If it is almost ascertained that ANCA play a direct role
in the pathogenesis of vasculitic manifestations, the initial
events leading to tolerance breakdown and to autoantibodies
production remain still enigmatic. Since GWAS studies have
linked MPO production with specific HLA haplotypes, it
is possible to theorize that in patients with a genetically
determined predisposition in antigen recognition, ANCA are
produced as an initially appropriate immune response, that
would lately transform into an aberrant autoimmune process.
The proposed antigens include microbial peptides (99, 100),
drugs (namely hydralazine, minocycline, propylthiouracil, and
levamisole-adulterated cocaine) (101) or endogenously produced
antisense transcripts of MPO or PR3 genes (102, 103). However,
such a process has never been proved neither for MPO or
PR3 ANCA.

Another factor that may influence ANCA production is
epigenetic modification of MPO expression, which appear
disrupted in AAV patients, potentially contributing to
overexpression of ANCA antigens on neutrophil surface
(104). Central loss of tolerance toward MPO was proposed
to be involved in ANCA production. MPO is expressed in an
AIRE-dependent manner in the thymus and its expression
is involved in the central deletion of potentially autoreactive
anti-MPO CD4+ T cells (105). Moreover, a defective activity
both in regulatory T cells (Tregs) and regulatory B cells (Breg)
have been reported in EGPA (106–108). From a functional point
of view, it appears that the depletion of Tregs and Bregs, which
normally would suppress immune responses, could facilitate
the production of ANCA from effector B cells. The role of
Bregs and autoreactive B cells is also suggested by the efficacy of
rituximab (anti-CD20 antibody) (109, 110). In patients treated
with rituximab, the peripheral Breg restoration rate correlates
with a more effective remission of the vasculitic process (111).
Finally, recent studies have focused on the possible role of a
mechanism known as NETosis in ANCA production. Neutrophil
extracellular traps (NETs) are a framework of chromatin
fibers and antimicrobial proteins, including MPO that are
released from dying neutrophils as a defense mechanism against

microbes. Even in the absence of infective stimuli, the formation
of NETs is enhanced in AAV patients compared to healthy
controls. NETs are thought to facilitates ANCA developing by
presenting antigens to the adaptive immune system (112, 113).

Intriguingly, ANCA have been detected in sputum samples of
EGPA patients, irrespective to their serum ANCA-status. Despite
unknown specific targets, sputum autoantibodies induced both
neutrophil and eosinophil extracellular traps in vitro, suggesting
their possible pathogenicity (114). It is tempting to speculate that
sputum-ANCA may preceded the development of serum-ANCA
positivity in a subset of EGPA patients.

Despite the presented evidence, the role of ANCA in EGPA
pathogenesis is still under query. ANCA-positive EGPA patients
suffer more, albeit not excursively, from vasculitis symptoms,
and contrarily, not all patients which developed vasculitic
manifestations display ANCA positivity.

Furthermore, the clinical differences of EGPA with other
MPO-positive vasculitis contribute to the puzzling picture.
Indeed, in ANCA-positive EGPA the prevalence of renal
involvement varies from 27 to 51% (2, 3, 24), while in MPA,
NCGN involves almost all patients (70 to 90–100%) (115, 116).
A similar gap may be found also for alveolar hemorrhage, whose
prevalence varies from 2 to 16% in ANCA-positive EGPA patients
(24, 117, 118) against 12–30% in MPA patients (116, 119). The
reasons for this attenuated vasculitic phenotype in MPO-positive
EGPA compared with MPA remains undercover.

WHAT IS MISSING IN EGPA DICHOTOMY?

Progressive improvements in our clinical and pathophysiological
understanding of EGPA have reflected into significant advances
in the early diagnosis and treatment of the disease. However,
the processes through whichmolecular- and cellular-scale disease
mechanisms translate into macroscopic clinical changes still
needs to be thoroughly elucidated.

While the pathophysiology of EGPA could be dichotomised as
either “eosinophil-driven” or “ANCA-driven,” the same principle
cannot be applied clinically. EGPA has been classically described
to evolve through a prodromic allergic phase characterized by
asthma and rhinosinusitis, an eosinophilic phase with blood
and tissue eosinophilia, and a vasculitic phase with organ
involvement secondary to small-vessel vasculitis. However, these
phases partially overlap and may not appear in such a defined
order.Besides, clinical features typical of vasculitis, such as
glomerulonephritis or neuropathy, can be observed in both
ANCA-negative and ANCA-positive EGPA regardless of the
disease phase (81). Moreover, some clinical manifestations
including cardiomyopathy and neuropathy could come as a
result of the overlapping influence of eosinophilic infiltration and
vasculitis (120, 121). These phases and the varied pathological
findings suggest that the pathophysiology of the disorder
might evolve over time. We could therefore speculate that
EGPA may represent a spectrum of disease phenotypes that
cannot be perfectly encapsulated by a single serological or
clinical descriptor (Figure 1). For instance, a clear phenotypic
subdivision is not commonly observed in the clinical practice.
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Cluster analysis performed on the basis of clinical features
supports this observation, as it failed in demonstrating an explicit
dichotomy and an intermediate phenotype with frequent renal,
gastrointestinal, and cardiovascular involvement emerged (122).

Furthermore, the two subgroups share clinical, pathological
and genetic features. Indeed, patients display severe
asthmatic manifestations, and a percentage has a history of
allergy, independently from ANCA-status. Eosinophilia and
granulomatous lesions are found with analogous frequencies
in both subgroups and several genetic variants associated
with asthma and elevated eosinophil levels are shared (25).
We can therefore speculate that EGPA is primarily caused
by intrinsic eosinophil dysfunction, upon which a group of
genetically predisposed patients, which present HLA-DQ
variant, develop anti-MPO autoantibodies in response to an
unidentified stimulus.

Additionally, the clinical value of ANCA-positivity should
not be overestimated. Since MPO targeted epitopes have never

been characterized, it is tempting to speculate that alternative
MPO epitopes, other than MPA ones, develop in ANCA-positive
EGPA, thus contributing to a mitigated vasculitic phenotype.

Therefore, stronger efforts should be made to better
characterize the mechanisms underlying EGPA pathogenesis.
Further studies are required in order to molecularly characterize
clinical phenotypes by taking into account complex -omics data
(e.g., genomics, epigenomics, transcriptomics, proteomics, and
metabolomics). Shifting the subject of EGPA research from
clinical phenotype to molecular endotype would possibly allow
to identify valuable biomarkers and therapeutic targets that could
improve diagnostic precision and therapeutic outcomes.
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