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TherapeuTic advances in 
neurological disorders

Plain language summary 

Can MRI help select appropriate therapy for recently diagnosed multiple sclerosis?

MS is a chronic autoimmune disease of the brain and spinal cord that causes physical 
and cognitive disability. Initially, most people with MS (pwMS) experience attacks of new 
symptoms and periods of partial recovery; this is called relapsing-remitting MS (RRMS). 
RRMS transitions to secondary progressive MS (SPMS), where there is a gradual worsening 
of disability. MS medications dampen parts of the immune system. They reduce the risk of 
relapses and delay transition to SPMS if started early. Once a person has SPMS, treatment 
can slow but not stop further deterioration. MS medications vary in their effects on the 
immune system, level of efficacy, and treatment risks. The course of MS is highly individual. 
When starting therapy, it can therefore be difficult to decide whether a drug with lower or 
higher efficacy is required. Some of the acute and chronic inflammatory changes in MS are 
shown as focal lesions (‘spots’) on MRI of the brain and spinal cord. They are very useful for 
diagnosing MS and determining disease activity. Even if there are no relapses, new lesions 
indicate that a MS medication is not fully effective. In addition, MRI provides a snapshot of 
tissue damage that has accumulated up to the examination. At the time of diagnosis, MRI 
reflects the natural history of MS in the individual, even before the first attack, and contains 
prognostic information. We review studies that investigate an association between certain 
MRI findings obtained early after the initial attack and the later course of MS. We propose that 
these metrics can be applied to a concept of grading and staging of MS as well as estimating 
functional reserve. We review thresholds that identify pwMS at risk of disability progression 
and transition to SPMS, who should be recommended highly effective therapy first line. 
Leveraging the prognostic capabilities of MRI may support initial treatment decisions.

Prognostic relevance of MRI in early 
relapsing multiple sclerosis: ready to  
guide treatment decision making?
Olaf Hoffmann , Ralf Gold, Sven G. Meuth, Ralf A. Linker , Thomas Skripuletz,  
Heinz Wiendl  and Mike P. Wattjes

Abstract: Magnetic resonance imaging (MRI) of the brain and spinal cord plays a crucial role 
in the diagnosis and monitoring of multiple sclerosis (MS). There is conclusive evidence that 
brain and spinal cord MRI findings in early disease stages also provide relevant insight into 
individual prognosis. This includes prediction of disease activity and disease progression, the 
accumulation of long-term disability and the conversion to secondary progressive MS. The 
extent to which these MRI findings should influence treatment decisions remains a subject of 
ongoing discussion. The aim of this review is to present and discuss the current knowledge 
and scientific evidence regarding the utility of MRI at early MS disease stages for prognostic 
classification of individual patients. In addition, we discuss the current evidence regarding the 
use of MRI in order to predict treatment response. Finally, we propose a potential approach as 
to how MRI data may be categorized and integrated into early clinical decision making.
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Introduction
Multiple sclerosis (MS) is the most frequent 
chronic inflammatory demyelinating disease of 
the central nervous systems in young adults and 
can lead to long-term disability.1 In addition to 
the clinical presentation and liquid biomarkers, 
magnetic resonance imaging (MRI) of the brain 
and spinal cord plays an important role in evalu-
ating MS patients. This includes the establish-
ment of an early and accurate diagnosis according 
to the 2017 revisions of the McDonald criteria as 
well as monitoring of treatment effectiveness and 
safety.2–4 Expert panel guidelines such as the 
MAGNIMS-CMSC-NAIMS recommendations 
clearly established the role of MRI for these pur-
poses and stressed the importance of standard-
ized image acquisition as well as the role of 
gadolinium use.5–9 In addition to diagnostic and 
treatment monitoring purposes, there is conclu-
sive evidence that brain and spinal cord imaging 
findings contain important information regarding 
the prognosis of individual patients, including 
disease progression and the prediction of treat-
ment response.10,11 It has been demonstrated that 
certain imaging findings in the brain and spinal 
cord obtained early in the course of the disease, 
particularly after the first clinical demyelinating 
attack, provide important prognostic information 
regarding the conversion to clinically definite MS 
(CDMS), long-term disability, disease progres-
sion, disability progression and the conversion 
from relapsing-remitting MS (RRMS) to second-
ary progressive MS (SPMS).10,12 This suggests 
that imaging findings may be of important clinical 
relevance in terms of treatment decision making 
at the time of diagnosis. However, whether and to 
what extent MRI findings during the first clinical 
presentation might aid in terms of treatment 
choice in clinical practice is still under debate.

The aim of this review is to present and discuss 
the current knowledge and scientific evidence 
regarding the role of MRI during the early stages 
of MS for prognostic classification of patients, its 
potential in predicting treatment response and its 
application in initial treatment decisions.

Current concept of MS pathology and MRI 
correlates
One of the main histopathological hallmarks of 
MS is focal inflammatory demyelination. 
Characterized by perivenular inflammation, it 
leads to the characteristic perivascular distribu-
tion of MS lesions in the periventricular and deep 
white matter. Blood-brain barrier disruption is 
evident by contrast enhancement on MRI.13 In 
addition to white matter involvement, MS is 
characterized by leucocortical inflammatory 
demyelination. MRI correlates include juxtacorti-
cal and various types of cortical grey matter 
lesions.14,15 Another clinically relevant feature of 
MS with strong impact on disease course and dis-
ability progression is focal inflammatory demyeli-
nation in the spinal cord. This is frequently 
already present at early disease stages and acceler-
ates over time, particularly in later progressive 
disease stages.16,17 (Sub)acute focal inflammatory 
demyelinating lesions may show signs of partial or 
complete tissue repair, such as remyelination, 
during the first 6 months.13,18,19 New or enlarging 
T2 lesions and contrast-enhancing lesions, which 
indicate ongoing focal inflammation, are the most 
relevant MRI marker of disease activity. These 
are central to treatment monitoring in clinical 
practice, particularly during non-progressive MS 
stages.8

Certain MS lesions demonstrate a slow expansion 
that may be visible on sequential MRI studies. 
Histopathologically, slowly expanding lesions 
(SEL) are characterized by the combination of a 
fully demyelinated, inactive centre without any 
signs of remyelination or prominent inflamma-
tion, and an active border including iron-laden 
phagocytes. On MRI, some of these 
T2-hyperintense lesions show a low signal inten-
sity rim on susceptibility-based imaging, and are 
thus called paramagnetic rim lesions (PRL); these 
show an association with chronic T1-hypointense 
lesions (‘black holes’).20,21 Also called ‘smoulder-
ing lesions’, SEL are clinically associated with 
progressive MS disease stages and course as well 
as with disability progression.22
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Another presentation of chronic inflammation in 
MS is characterized by clusters of B- and T-cells 
in the leptomeninges, which are frequently asso-
ciated with demyelination of the adjacent subpial 
cortical grey matter.23 It has been suggested that 
focal leptomeningeal inflammation corresponds 
to small hyperintense areas on late contrast-
enhanced 3D fluid-attenuated inversion recovery 
(FLAIR) images.24 Whether the accumulation of 
leptomeningeal immune cells directly causes cor-
tical demyelination remains unclear. In other dis-
eases, leptomeningeal inflammation is not 
typically associated with cortical demyelination.25 
A number of studies have reported an association 
of leptomeningeal contrast enhancement 
(LMCE) with focal atrophy of the adjacent cor-
tex, but not focal demyelination,26–28 suggesting a 
link to diffuse rather than focal neuroinflamma-
tion. Interestingly, LMCE also correlates with 
focal demyelinating lesions in the thalamus and 
hippocampus28,29 as well as cortical and total grey 
matter volume (GMV).30,31 Areas of LMCE usu-
ally remain stable during follow-up, and the in 
vivo response to disease-modifying treatment 
(DMT) remains unclear.24 Resolution of LCME 
has been reported in two patients treated with 
high-dose corticosteroids32 and in 9 out of 20 
patients treated with anti-CD20 therapies.33 In a 
rat model of proteolipid protein-induced experi-
mental autoimmune encephalitis, treatment with 
evobrutinib, an inhibitor of Bruton’s tyrosine 
kinase (BTK), promoted the resolution of focal 
meningeal inflammation on serial MRI.34

Apart from focal inflammation, MS, in particular 
in progressive stages, is also characterized by dif-
fuse inflammation that can appear on conven-
tional MRI as areas of slightly increased 
T2-hyperintensity.35–37 Various quantitative MRI 
methods to detect diffuse neuroinflammation 
have been described. On positron emission 
tomography, several radioligands binding to the 
18-kDa translocator protein and 11C-acetate label 
activated microglia and astrocytes, respec-
tively.38,39 Besides detecting diffuse neuroinflam-
mation, these ligands may also bind in a focal 
pattern, associated both with the acute formation 
and chronic activity of lesions.39

In addition to neuroinflammation, MS is also a 
neurodegenerative disease. Signs of axonal dam-
age are present already in the early stages, and 

pronounced axonal loss occurs as the disease pro-
gresses. Associated focal and global atrophy of 
white and grey matter structures in the brain and 
spinal cord are established outcome measures of 
neurodegeneration in clinical trials. Various 
DMTs can slow down grey and white matter 
atrophy. For the routine clinical assessment of 
individual disease progression, imaging of neuro-
degeneration and atrophy is however not recom-
mended at this time.8,40

Prognostic value of MRI from the historical 
perspective
The first evidence suggesting the prognostic value 
of MRI measures was derived in patients present-
ing with a first clinical demyelinating event [later 
described as a clinically isolated syndrome (CIS)]. 
A four-parameter dichotomized MRI model 
including the number of lesions (using a cutoff of 
nine lesions), contrast enhancement and localiza-
tion of lesions (juxtacortical, periventricular, 
infratentorial) showed a predictive value regarding 
the conversion to CDMS (Figure 1).41 These so-
called Barkhof criteria were later validated in a sec-
ond cohort, providing a sensitivity of 73%, a 
specificity of 73%, an accuracy of 73%, a positive 
predictive value of 55% and a negative predictive 
value of 85%.42 Further prediction models using a 
combination of these MRI criteria, cerebrospinal 
fluid analyses and neurophysiological findings 
were developed and validated.43,44 Barkhof MRI 
criteria – modified by including spinal cord lesions 
– were later incorporated into the 2001 and 2005 
revised McDonald criteria for the demonstration 
of dissemination in space.45,46 These criteria were 
further simplified and continued to be included in 
the subsequent revisions of the McDonald crite-
ria.2,47 In addition, the Barkhof criteria, were incor-
porated into the Okuda criteria and more recent 
diagnostic criteria for patients with radiologically 
isolated syndromes (RIS).48,49 The modifications 
of the McDonald criteria in 2001, 2005, 2010 and 
2017, including adjustments to MRI and cerebro-
spinal fluid criteria, have progressively increased 
the sensitivity of diagnosing MS at the first clinical 
event. As a result, nearly 70% of patients experi-
encing their first clinical event now receive a diag-
nosis of MS.50 Instead of a detailed discussion of 
the evolving definitions of CIS, we refer to patients 
with a first demyelinating attack, and interpret the 
risk of conversion to CDMS as risk of relapse.
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Prognostic value of brain and spinal cord 
MRI at disease onset
Diagnostic work-up at the time of the first clinical 
event suggestive of MS should include a contrast-
enhanced MRI of the brain and spinal cord.8 In 
the following paragraphs and in Table 1, we 
describe and discuss various MRI measures at dis-
ease onset and/or in early RRMS that contain rel-
evant prognostic information regarding further 
inflammatory disease activity, disability progres-
sion and the conversion to SPMS (Figure 1). 
These outcomes are better predicted by MRI find-
ings than by clinical findings in early MS.51–53

T2-hyperintense white matter lesions
After the first clinical event, the presence and 
number of T2 white matter lesion (WML) has 

consistently been identified as the strongest inde-
pendent predictor of further relapses.52,53–56,83,84 
Even a single T2 WML confers a substantial risk 
of a second attack.52,85,86 This risk is highest in 
patients with numerous lesions, for example, ⩾10 
or more.56,57 Risk, and time to relapse are modi-
fied by lesion topology in the brain71,87–90 and 
presence of infratentorial or spinal cord 
lesions.65–67,71

While the extent or development of T2 lesions are 
not closely associated with present clinical find-
ings,91 the number and volume of T2 WML are 
moderate predictors of disability as measured by 
the Expanded Disability Status Scale (EDSS) 
after 5, 10, 14 or 20 years as well as the time to 
reach disability milestones.55,57,59,60 Presence of 
10 or more T2 WML at baseline was associated 

Figure 1. MRI images of the brain (a–e) and spinal cord (e, f) obtained in MS patients presenting with the first 
clinical event demonstrate MRI features that provide prognostic information regarding the clinical outcome. 
(a) Axial FLAIR image showing a high T2 lesion load in the periventricular, deep and juxtacortical white matter; 
(b) axial contrast-enhanced T1-weighted image showing two contrast-enhancing lesions in the deep white 
matter of the left hemisphere; (c) axial contrast-enhanced T1-weighted image showing several T1-hypointense 
lesions (‘black holes’); (d) axial DIR image showing several leucocortical lesions; (e) axial DIR image showing 
multiple infratentorial lesions including a brain stem lesion; (f, g) sagittal STIR and contrast-enhanced T1-
weighted image showing asymptomatic lesions in the cervical spinal cord.
DIR, double inversion recovery; FLAIR, fluid-attenuated inversion recovery; MRI, magnetic resonance imaging; MS, multiple 
sclerosis; STIR, short tau inversion recovery.
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with accelerated development of disability after a 
first demyelinating attack and an 11-fold increased 
risk (95% CI: 6.7–19.3) of reaching EDSS 3.0 
after a median follow-up of 81 months,53 whereas 
20 T2 WML or at least 2 Gd+ (gadolinium-
enhancing) lesions at baseline predicted aggres-
sive MS, defined by an EDSS of 6 after 10 years.57 
Patients who had progressed to SPMS at 20 years 
had higher T2 lesion volumes at baseline (median, 
2.5 ml; range, 0–55 ml) compared to those who 

had not (0.7 ml; range, 0–13.7 ml).55 In a study 
evaluating several brain MRI metrics, presence of 
two or more infratentorial lesions best predicted 
EDSS 3.0 after a median follow-up of 8.7 years.72 
In patients with at least 9 T2 lesions at onset, 
infratentorial lesions increased the risk of relapse 
and of reaching EDSS 3.0 after a median follow-
up of 7.7 years.71 Identification of at least one 
infratentorial lesion at baseline indicates an 
increased risk of EDSS >3.5 at 30 years [odds 

Table 1. Stratification of risk level for MRI predictors and associated outcomes.

MRI metric Risk levels Domain Associated outcomes References

T2 lesion count Moderate – ⩾3
High – ⩾10
Very high – ⩾20

Staging
Change on follow-up: 
Grading

Risk of relapse
EDSS after 5–20 years
Time to SPMS

52–58

T2 lesion volume Moderate – ⩾1 ml
High – ⩾2.5 ml

Staging EDSS after 10, 14 and 20 years
SPMS after 20 years

55, 59, 60

T1-hypointense lesion 
volume

Moderate – ⩾2.5 ml Staging EDSS progression after 10 years
MSFC after 6 years

61, 62

Gd+ lesion count Moderate – 1
High – ⩾2

Grading Risk of relapse
EDSS after 6 years
EDSS 6.0 after 10 years
EDSS and SPMS after 15 years

51, 57, 62–64

Spinal lesions High – ⩾1 Reserve Risk of relapse
EDSS and EDSS progression after 5 years
EDSS 3.0 after 2 years

51, 63, 65–70

Brainstem lesions Moderate – 1
High – ⩾2

Reserve Risk of relapse
EDSS 3.0 after 7–9 years
SPMS after 30 years

51, 71–73

Cortical lesions Moderate – ⩾4
High – ⩾7

Staging EDSS progression after 1.5 and 5 years
Cognitive performance after 5 years
Time to SPMS
SPMS after 6.5 years

74–76

Atrophy of whole 
brain, grey matter, 
deep grey matter

Moderate – if present Reserve Risk of relapse
EDSS progression after 2 years
EDSS and MSSS after 10 years
EDSS 4.0 after 10.6 years
EDSS progression after 13 years
SPMS after 10 and 13 years

60, 77–80

Atrophy of cervical 
spinal cord

Moderate Reserve EDSS after 5 years 68

Paramagnetic rim 
lesions

High – ⩾4 Staging Progressive disease course
Disability (EDSS, MSSS, PASAT, SDMT)
EDSS progression after 3.2 years

22, 81, 82

Slowly expanding 
lesions

High – ⩾4 Staging EDSS progression after 3.2 years 81

EDSS, Expanded Disability Status Scale; MRI, magnetic resonance imaging; MSFC, Multiple Sclerosis Functional Composite; MSSS, Multiple Sclerosis 
Severity Scale; PASAT, Paced Auditory Serial Addition Test; SDMT, Symbol Digit Modalities Test; SPMS, secondary progressive multiple sclerosis.
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ratio (OR) 16.8; 95% CI: 2.0–139.7] and of hav-
ing SPMS at 30 years disease duration (OR 26.0; 
95% CI: 3.1–215.0).73

The presence of at least one spinal cord lesion at 
onset predicted a second attack and increased the 
odds of EDSS progression after 5 years.51,66 
Especially when asymptomatic, spinal cord 
lesions increased the risk of reaching EDSS 3.0 
[hazard ratio (HR) 29.8; 95% CI: 1.1–786.5].67 
Moreover, the number of baseline spinal lesions is 
independently associated with EDSS level and 
EDSS worsening after a median of 5.2 or 
5.1 years.68,69 Within 2 years of disease onset, spi-
nal cord lesions independently predicted EDSS 
⩾4.0 after 7 years.70 At least one spinal cord lesion 
at baseline predicted EDSS at 15 years and indi-
cated strongly higher odds of having SPMS after 
15 years (OR 4.71; 95% CI: 1.72–12.92).63 
Asymptomatic spinal cord lesions were found in 
43 of 143 patients (30.1%) with a non-spinal first 
demyelinating attack; unlike brain lesions, they 
were identified as an independent risk factor for 
short-term disability.67

In RIS patients, infratentorial and spinal cord 
lesions are independent predictors of a first clini-
cal attack or conversion to primary progressive 
MS.92,93

T1-hypointense lesions
Lesions with persistent, marked T1-hypointensity 
in the absence of Gd enhancement on T1-weighted 
(turbo/fast) spin echo sequences are historically 
addressed as chronic/persistent black holes 
(CBH) (Figure 1). They are not frequently 
observed in early MS stages. CBH signify perma-
nent tissue destruction, including neuroaxonal 
loss, and are correlated with disability in cross-
sectional studies.94,95 The relation between base-
line T1 lesion volume and long-term disability 
outcomes is not well understood. One study 
reported a significant association between a com-
posite of baseline CBH volume and increase over 
time with disability after 10 years.61 At the first 
demyelinating attack, T1 lesion load predicted 
MSFC after 6 years, whereas baseline volume did 
not predict disability in another study.62,96 T1 
spin echo sequences are not commonly performed 
in the routine examination of MS patients, limit-
ing the availability of this measure.

Gd+ lesions
Gd+ lesions indicate acute inflammation leading 
to blood-brain barrier disruption, that is, active 
disease. At onset, they predict the occurrence of a 
second attack.51,64 If detected at the first demyeli-
nating attack or within 1–3 years after diagnosis of 
MS, indicating persistent inflammatory disease 
activity, Gd+ lesions are linked to mid-to-long 
term disability and higher odds of having SPMS 
after 15 years; this association is even more pro-
nounced in patients with spinal lesions (Figure 
1).51,62,63 Demonstration of two or more Gd+ 
lesions 3–5 months after a first demyelinating 
attack identified patients with aggressive MS 
(EDSS ⩾6.0 after 10 years) in a large cohort.57

Cortical grey matter lesions
Imaging of cortical grey matter lesions (CL) 
requires appropriate acquisition parameters 
including sufficient spatial resolution, magnetic 
field strength (preferably 3T) and pulse 
sequences such as 3D double inversion recovery 
(DIR) and/or phase-sensitive inversion recovery 
(PSIR) (Figure 1). The clinical relevance of CL 
particularly regarding cognition has been con-
clusively demonstrated.74 The number of CL at 
disease onset is an independent predictor of dis-
ability and of the risk and time until conversion 
to SPMS.75,76 In patients with seven or more CL 
present at baseline, half developed SPMS within 
6.5 years.76 This demonstrates the importance 
of cortical lesions when detected in the diagnos-
tic work-up of patients with suspected MS. 
Accordingly, CL were included in the 2017 
revised McDonald criteria for the demonstra-
tion of dissemination in time.2 Presently, inclu-
sion of DIR or PSIR sequences is not 
recommended for routine monitoring purposes 
due to limited availability and concerns of 
reproducibility.8,97

Volumetric data
Brain atrophy is a marker of irreversible neuroax-
onal loss. After the first demyelinating attack, 
reduced normalized brain volume (NBV) and 
GMV are predictors of disability progression.60,77 
Prognostic information appears to derive mainly 
from subcortical grey matter atrophy, whereas 
changes in white matter volume are not demon-
strably predictive.77–79
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Particularly in progressive MS, atrophy of the cer-
vical spinal cord is moderately correlated with 
EDSS.98 In patients with a non-spinal first demy-
elinating attack, the change in upper cervical cord 
cross-sectional area (UCCA) over 5 years was 
independently associated with EDSS at follow-
up, whereas baseline UCCA did not predict 
EDDS 3.0 after 5 years.63 Accelerated atrophy of 
the upper cervical spinal cord precedes conver-
sion to SPMS by at least 4 years.99

While considered a helpful predictor of the future 
disease course, quantitative MRI so far plays a 
limited role in the routine clinical care of indi-
vidual patients, due to difficulties in implementa-
tion and numerous potential confounders.44

Paramagnetic rim lesions
PRL are identified using susceptibility-based 
MRI techniques, most commonly susceptibility 
weighted imaging (SWI) at 3T or 7T. PRL form 
a relatively small subset of SEL detected in longi-
tudinal studies.81 On histopathological examina-
tion, PRL reflect chronic inflammation at the 
border of the lesion with iron-laden microglia and 
macrophages.82 Overlapping histopathology 
terms include chronic inactive-active lesions or 
‘smoldering’ lesions. This lesion type is associ-
ated with compartmentalized neuroinflamma-
tion, failure of remyelination and ongoing tissue 
damage.22,82,100 PRL were found in 27% of 
recently diagnosed RRMS patients.101 The pres-
ence of four or more PRL was an independent 
predictor of disability worsening in a heterogene-
ous group of MS patients.22 In a cohort of 61 
recently diagnosed patients (median disease dura-
tion, 0.4 years), more than half had at least one 
PRL at baseline, and 92% had at least one SEL.82 
PRL showing slow expansion on follow-up scans 
were associated with greater EDSS progression 
after a median of 3.2 years.82

Prognostic value of MRI during early  
follow-up
Within at least 5 years from diagnosis, T2 lesion 
load remains a predictor of long-term disability in 
established RRMS.59 Further information can be 
derived by comparing baseline and follow-up 
MRI: New T2 lesions after 3 months identify 
patients with subclinical disease activity and a 
high risk of relapse.52 Development of new or 
enlarging T2 WML over 2–3 years was weakly 

correlated to changes in disability.58 An increase 
in T2 WML volume after 2–5 years correlated 
moderately with physical and cognitive impair-
ment after 13–14 years, and a yearly increase by 
2.89 ml (95% CI: 1.78–4.01) predicted SPMS 
after 20 years.55,59,102 Moreover, new infratento-
rial or spinal cord lesions within the first 1–3 years 
predicted SPMS after 15 years.63 Accumulation 
of T2 lesions over time does not reflect the total 
amount of focal inflammation since lesions may 
remyelinate or shrink over time. In fact, atrophied 
T2 lesion volume has been suggested as a marker 
of disease progression.103

Current focal inflammation on MRI can be 
assessed by Gd-enhanced imaging, if required.8 
Emergence of new Gd+ lesions predicts short-
term relapses but not confirmed disability pro-
gression during the following 2 years.104

Longitudinal MRI may identify an increased rate 
of brain volume loss, which is associated with 
subsequent disability.60,77,105 Brain atrophy can 
be difficult to interpret early after the initiation of 
anti-inflammatory DMT due to pseudoatro-
phy.106 Baseline GMV predicts disability progres-
sion and conversion to SPMS after 9 years.107 
Central or subcortical grey matter atrophy may be 
of particular prognostic relevance in predicting 
clinical impairment.78,80,108,109 Accelerated atro-
phy may be conceptualized as premature aging of 
the brain, implying reduced functional reserve.110

Prediction of treatment response
In addition to the predictive value of imaging 
characteristics in terms of disease and disability 
progression in general, MRI may also aid in pre-
dicting treatment response. An increase of T2 
lesion volume, or emergence of new T2 lesions or 
of combined active lesions (new or enlarging T2 
lesions and Gd+ lesions) on MRI in the first 
1–2 years of DMT was first identified as a predic-
tor of disability progression in interferon-treated 
patients.111–114 Later, no evidence of disease activ-
ity (NEDA) was introduced not only as an out-
come in clinical trials, but also as a therapeutic 
goal and measure of individual treatment 
response.115–119 NEDA-3 status requires the 
absence of relapses, EDSS progression and 
inflammatory MRI activity (new or enlarging T2 
lesions and Gd+ lesions).115,116 NEDA-4 expands 
this definition by adding the absence of increased 
whole brain atrophy.120 Further modifying the 

https://journals.sagepub.com/home/tan


TherapeuTic advances in 
neurological disorders Volume 17

8 journals.sagepub.com/home/tan

NEDA concept by including liquid biomarkers, 
such as neurofilament light chain concentrations 
in the serum, has been suggested.121 A recent 
meta-analysis of DMT trials found that a 
NEDA-3 or NEDA-4 status after 1 or 2 years 
indicated a lower risk of long-term disability pro-
gression after 6 years.122

To weigh the risk of treatment failure, several 
operationalized derivations of the NEDA concept 
have been proposed to measure efficacy after 
1 year of treatment. These systems aim to define a 
level of disease activity while on DMT (minimal 
evidence of disease activity, MEDA) that can be 
tolerated without risking disability worsening.123 
For patients treated with interferon-beta, the Rio 
score is calculated by adding one point each for 
(a) at least one relapse, (b) at least three new MRI 
lesions, and (c) a sustained EDSS deterioration 
by at least one point; this results in a prediction of 
low (score 0–1) or high (2–3) risk.124 For the 
modified Rio score, one point is given for (a) at 
least five new T2 lesions, and (b) one relapse, 
while two points are given for two or more relapses 
after 1 year. Again, 0–1 points indicate low risk, 
while 2–3 indicate high risk.125 Long-term follow-
up of patients showed that a Rio score of at least 
2 obtained after 1 year was associated with EDSS 
worsening after 6.7 years.126 Obtained after 1 year, 
the MAGNIMS score rates 3 or more new T2 
lesions with one point, one relapse with one point 
and two relapses with two points. A total score of 
0–2 is calculated, indicating a low, moderate or 
high risk of treatment failure (EDSS worsening or 
treatment switch for inefficacy; 27% and 48% for 
scores 1 and 2 respectively) and of disability pro-
gression (22% and 29% for scores 1 and 2 respec-
tively) at 3 years.127 MAGNIMS score predicted a 
7-year risk of disability worsening in terifluno-
mide treated patients, and long-term disability 
progression for up to 15 years in interferon beta-
1a treated patients.128,129 Application of the 
MAGNIMS score to ponesimod treatment has so 
far only been published as an abstract.130 In all of 
these scoring systems, isolated development of 
new lesions in the absence of clinical relapse or 
early EDSS progression was not significantly 
linked to EDSS worsening. However, longer-
term follow-ups indicate an increased risk of dis-
ability also in the intermediate risk categories of 
the modified Rio and MAGNIMS scores, calling 
into question the use of MEDA thresholds in 
guiding therapy.11 Unless clearly attributable to 

treatment inadherence, for many MS neurolo-
gists any new asymptomatic MRI activity while 
on platform DMTs prompts treatment 
escalation.131

Inclusion of MRI in the treatment  
decision-making process

Need for early risk stratification in MS
Significant progress has been made in under-
standing the clinico-pathological evolution of 
MS. Very early in the disease, focal autoimmune 
demyelination probably lays the groundwork for 
smouldering inflammation and progressive neu-
roaxonal loss which may contribute to disability 
progression independent of relapse activity 
(PIRA).13–133 A significant role of chronically acti-
vated, pro-inflammatory microglia is increasingly 
recognized.13 With current DMTs focussing on 
peripheral adaptive immunity, new treatment 
options targeting microglia are under develop-
ment, including BTK inhibitors.134

Concerning presently available DMTs, data from 
active-controlled trials, open-label extensions and 
large patient registries supports the efficacy of 
early highly effective treatments (HET) not only 
to reduce relapses and focal demyelination but 
also long-term disability and conversion to 
SPMS.135,136 However, accelerated brain atrophy 
and disability progression may persist even if 
relapses and new lesions are successfully con-
trolled by DMT.137 It is because of this ‘silent 
progression’ that the ability of current DMTs to 
reduce PIRA has been questioned. On the other 
hand, the potential of early HET to prevent 
smouldering inflammation and PIRA remains in 
part unexplored due to the imperfect suppression 
of focal inflammation even with HET and delayed 
treatment initiation in already symptomatic 
disease.138

Reserving HET for clinically manifest ‘highly 
active’ or ‘aggressive’ MS implies foregoing a pre-
ventive approach until irreversible damage has 
accumulated, functional reserve has been com-
promised, and secondary neurodegeneration has 
already been induced. Considering the improved 
long-term safety of modern DMT, many MS 
neurologists therefore advocate first-line use of 
HET in active MS rather than following an esca-
lation approach.121,139 Still, the risk of long-term 
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disability from MS must be weighed against 
potential side effects from DMT. Tailored ther-
apy therefore should be based on an early progno-
sis of the individual risk of long-term disability.140 
Most of the available evidence on unfavourable 
predictors was derived in cohorts that did not yet 
have access to HET, highlighting the potential to 
improve the outcome of those at risk.

Early MRI findings remain the strongest biomark-
ers for mid- and long-term disability outcomes in 
MS so far.141 Notably, WML dynamics decrease 
over time and lose predictive quality with longer 
disease duration and in progressive dis-
ease.57,100,102,142–144 Loss of correlation of lesion 
load to present disability and future deterioration 
reflects an increasing and uncontrollable variance, 
introduced, for example, by strategic lesions,145,146 
damage to specific networks,144,147 spinal cord 
involvement,36 and diffuse pathology.35–37 For 
these reasons, the predictive capabilities of MRI 

should be applied in early RRMS and strongly 
guide initial treatment decisions.

Integrated interpretation of early MRI findings
Three interconnected levels of information are 
available from MRI at the time of diagnosis or 
soon thereafter (Figure 2):

-  The number and/or volume of 
T2-hyperintense lesions indicate the extent 
of accumulated focal demyelination, com-
plemented by T1-hypointense and cortical 
lesions. Lesion burden reflects the inten-
sity and duration of MS in the preclinical 
phase and may be visualized as suggesting 
the actual position of the individual on a 
generalized MS trajectory. Hence, these 
metrics contain staging information.

-  The number of Gd+ T1 lesions on a single 
study or the increase in T2 lesion load on 

Figure 2. Integrated view of prognostic MRI findings. The expected course of the disease, in particular the 
evolution of disability over time, is modulated by the level of disease activity and brain reserve. Initial disease 
activity can be graded according to the presence of gadolinium-enhancing (Gd+) lesions or the number or 
volume of new or enlarging T2-hyperintense (NET2) lesions on short-term follow-up scans. White matter and 
cortical lesion load is a product metric of preclinical disease duration and severity, providing staging-related 
information. In addition to lesion volume, atrophy and presence of lesions in critical systems such as spinal 
cord and brain stem indicate lower functional reserve and a risk of more rapid development of disability. 
Together, staging, grading and reserve-related information may be useful in predicting the individual disease 
course and recommended treatment intensity.
MRI, magnetic resonance imaging.
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short-term follow-up reflect disease activ-
ity. The level of disease activity relates to 
the dynamics of disability increase and 
time to onset of SPMS and can be inter-
preted as grading information.

-  Functional reserve, that is, the ability to 
compensate for further neuroaxonal loss, is 
influenced by lesion accrual, but it also 
correlates to whole brain and GM atrophy 
and to damage of non-redundant path-
ways, for example, motor tracts, brain stem 
or spinal cord. Lower reserve implies a 
shorter time to disability milestones and 
onset of SPMS.

In clinical experience, patients show abnormality 
typically in not one but several MRI parameters, 
and this is reflected in the multivariable analyses 
and correlation studies reviewed above.

Proposed approach to early prognosis
When discussing the role of MRI in initial treat-
ment decisions, similar challenges emerge as with 
the MEDA concept for treatment escalation. Key 
questions include: What level of disability risk is 
considered acceptable? What is the requisite level 
of accuracy for a predictor to be deemed action-
able? Most RRMS patients face a substantial risk 
of disability,148,149 and any avoidable impairment 
would be unacceptable from their perspective. If 
a ‘non-benign’ course of MS is assumed as the 
default scenario rather than a ‘benign’ one, estab-
lishing safe cutoffs for individual predictors or 
their combination becomes even more complex.

We propose a simplified, pragmatic approach to 
MRI in the initial treatment decision and follow-
up: newly diagnosed patients should undergo a 
full MRI assessment at baseline.8 This includes 
high quality 3D FLAIR and Gd-enhanced T1 
scans of the brain to determine white matter T2 
lesion load as well as presence of hypomyelinated 
and cortical lesions. If routinely available, DIR 
(or PSIR) and SWI sequences for improved 
detection of cortical lesions and PRL, as well as 
measurements of lesion and brain volumes can be 
included. All patients should undergo MRI of the 
entire spinal cord.

Estimated risk stratification for each metric is 
listed in Table 1. T2 lesion count or volume 
should be regarded as the strongest predictor. 

The specificity of any T2 lesions should be ascer-
tained, if necessary, by demonstration of a central 
vein.8 Except for atrophy measures, all remaining 
predictors imply the presence of T2 lesions.

In patients presenting with low-risk findings on 
each available staging, grading and reserve-related 
metric, a favourable prognosis is suggested, and 
these patients may be offered a moderately effec-
tive DMT as their initial treatment. If one or 
more predictors indicate an unfavourable progno-
sis, HET should be recommended first-line.

Following the initiation of a DMT, it is advisable 
to consistently observe patients for any signs of 
disease activity. A re-baselining MRI is obtained 
after the expected onset of effect at 3–6 months. 
In the absence of clinical relapse, treatment effec-
tiveness is determined by a further MRI after 
1 year of therapy. A relevant (⩾3) increase in T2 
lesions predicts treatment failure and should 
prompt escalation to a DMT with higher efficacy. 
Gd-enhanced acquisitions are not recommended 
for routine follow-up MRI but may add predic-
tive value when included in the re-baselining 
study.8,150

Treatment decisions should take into account 
additional risk factors for a more rapid progression 
of disability or earlier conversion to SPMS, includ-
ing older age,89,148,151,152 male sex,148 clinical  
disability,153 early relapse frequency,89,148,154,155 
presence of oligoclonal bands in the CSF,156 ele-
vated serum concentration of neurofilament or 
glial fibrillary acidic protein (GFAP),157,158 vitamin 
D deficiency159 and comorbidities.160 Moreover, 
individual treatment risks, patient preferences (e.g. 
planned pregnancy), local availability and licensing 
of DMTs must be considered.161,162

In view of recent advances in risk stratification of 
patients with RIS,48,49,80,163 it is likely that most 
MRI predictors also apply to preclinical MS. As 
we still await further evidence on DMT use in 
RIS,164,165 we have limited our discussion here to 
patients with early established MS according to 
the current McDonald diagnostic criteria.
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