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Recognition ability of untrained
neural networks to symbolic
numbers
Yiwei Zhou, Huanwen Chen* and Yijun Wang*

The School of Automation, Central South University, Changsha, China

Although animals can learn to use abstract numbers to represent the number

of items, whether untrained animals could distinguish between different

abstract numbers is not clear. A two-layer spiking neural network with lateral

inhibition was built from the perspective of biological interpretability. The

network connection weight was set randomly without adjustment. On the

basis of this model, experiments were carried out on the symbolic number

dataset MNIST and non-symbolic numerosity dataset. Results showed that the

model has abilities to distinguish symbolic numbers. However, compared with

number sense, tuning curves of symbolic numbers could not reproduce size

and distance effects. The preference distribution also could not show high

distribution characteristics at both ends and low distribution characteristics in

the middle. More than half of the network units prefer the symbolic numbers

0 and 5. The average goodness-of-fit of the Gaussian fitting of tuning curves

increases with the increase in abscissa non-linearity. These results revealed

that the concept of human symbolic number is trained on the basis of

number sense.

KEYWORDS

symbolic number, number sense, spiking neural network, lateral inhibition, visual
recognition

Introduction

Neurons in the inferotemporal cortex prefer basic shapes. They could selectively
respond to certain objects and maintain this preference when the size and position
of objects change (Tanaka, 2003; Cao et al., 2020). Some of the basic shapes are very
similar to symbolic numbers, such as star, a figure-of-eight, and T junctions. Their
combination could distinguish most shapes, such as Arabic numerals, letters, and words
(Tsunoda et al., 2001; Tanaka, 2003). This ability is selected in the process of biological
evolution and reflects the evolutionary history of the visual system (Mccandliss et al.,
2003). Therefore, the brain may have the ability to distinguish symbolic numbers and
non-symbolic numerosities without training.

Humans are not born to understand the meaning of symbolic numbers (Sella
and Lucangeli, 2020). From a cognitive neuroscience perspective, the brain’s response
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to symbolic numbers should be expected to change over the
course of learning and development as children go from
initially perceiving symbolic numbers as meaningless shapes
or sounds to having a rich representation of their meanings.
This phenomenon is often referred to as “cultural brain
plasticity” (Rathé et al., 2019, 2020). However, before the brain
could understand the meaning of symbolic numbers, symbolic
numbers must first be perceived and distinguished (Ansari,
2016). Studies on preschool children pointed out that children
around the age of 2 years have not yet fully understood the
meaning of symbolic numbers but only regard these numbers as
a group of unexplained symbols (Suggate et al., 2018; Verschaffel
et al., 2020). After 1–2 years of learning, children can deal
with the meaning of symbolic numbers (Nisan and Kiziltepe,
2019; Bugden et al., 2021; Vogel and Smedt, 2021). At present,
extensive studies have been conducted on how the trained
brain represents symbolic numbers (Ferres-Forga and Halberda,
2020; Sokolowski et al., 2021a,b). However, how it distinguishes
between different symbolic numbers before training remains to
be studied.

Many models are dedicated to explaining the brain’s
recognition of symbolic numbers (Shamim et al., 2018; Ali
et al., 2019; Ahlawat et al., 2020; Chychkarov et al., 2021;
Khanday and Dadvandipour, 2021; Mitani et al., 2021). Verguts
and Fias (2004) believe that symbolic numbers and non-
symbolic numerosities were converted into internal location
codes through different paths, thus explaining the cause of the
distance effect when comparing different symbolic numbers.
The triple-coding model proposed by Dehaene and Cohen
(1995) assumed that quantity processing may adopt three
different representation systems and predicted a brain region
specialized in processing symbolic numbers in the ventral
visual stream. These two models explain the discriminant
process of symbolic numbers from a biological point of view.
However, researchers did not consider whether the model could
have the asemantic processing abilities of symbolic numbers
without training. In addition, many models were built by
traditional artificial neural networks, such as convolutional
neural networks, support vector machines, and k-nearest
neighbor models (Grover and Toghi, 2018; Shamim et al., 2018;
Hossain and Ali, 2019; Tahir and Pervaiz, 2020; Chychkarov
et al., 2021; Khanday and Dadvandipour, 2021; Mitani et al.,
2021). The experimental results of these models are difficult
to explain from the perspective of biophysics. The structure
of some models is complex, including multiple convolution
layers and pooling layers; thus, explaining the symbolic
number recognition process is difficult (Hossain and Ali, 2019;
Ahlawat et al., 2020; Mitani et al., 2021). Therefore, using the
spiking neural network model with biophysical significance is
necessary to investigate whether and how the untrained model
distinguishes symbolic numbers.

A spiking neural network based on biological
interpretability was constructed in this work to explore

whether untrained animals could distinguish different symbolic
numbers and compare the difference between non-symbolic
numerosity recognition and symbolic number recognition. This
model and the previously constructed number sense model
(Zhou et al., 2022) consist of a two-layer neural network and
have lateral inhibition. The difference is that the model proposed
in the present work belongs to the spiking neural network. The
LIF neuron based on current was used as the neural network
unit. In addition, lateral inhibition was achieved by negative
connection weights. Therefore, the information processing
process of the model has a strong biological basis. Under the
condition of randomly setting the network connection weight
without adjustment, the symbolic number dataset was inputted
into the model to investigate the recognition abilities of the
untrained model.

Materials and methods

Stimulus datasets

A non-symbolic numerosity dataset mimicking the dataset
of Nasr et al. (2019) was constructed to test whether the model
could reproduce the non-symbolic numerosity recognition
abilities that animals had prior to training. The dataset consisted
of 150 images. The number of items in the image was
between 1 and 5. Therefore, each non-symbolic numerosity was
represented by 30 different images. Each image in the stimulus
set contained 28 × 28 pixels, and the stimulus intensity of each
pixel ranged from 0 to 1. Each item was a circle with an area of
25 pixels.

The symbolic number dataset MNIST was used to
investigate whether and how untrained animals recognize
symbolic numbers. Symbolic numbers 0–9 were inputted into
the model, and the output response of the model was observed.
MNIST and the non-symbolic numerosity dataset are shown in
Figure 1A.

Spike neural network model

The programming language Python was used on the
open-source machine learning platform Bindsnet to build a
two-layer spike neural network model with lateral inhibition
(Figure 1B). The input layer represented the visual pathway
from the retina to the occipital lobe, and the output layer
represented the visual pathway from the occipital lobe to
the temporal lobe. The network size of the input layer
and the output layer was 28 × 28. Each unit consisted
of a current-based LIF neuron. The default parameters of
current-based LIF neuron are shown in Table 1. Each
neuron of the input layer corresponded to one pixel of
the input image. The units located in different layers were
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FIGURE 1

Schematic of the dataset and neural network structure. (A) Symbolic number dataset MNIST and non-symbolic numerosity dataset.
(B) Two-layer spike neural network model with lateral inhibition.

fully connected, and initial weights followed the Gaussian
distribution of µ = 0.5 and σ2

= 0.1. Each time a
new image was inputted, the connection weights between
different layers were randomly generated without adjustment.
Lateral inhibition was added to the model because it
presented in primary visual cortex (Lu and Zuo, 2017)
and neocortex (Zhou and Yu, 2018) associated with visual
processing. The neurons in the same layer are connected
with each other, and the weight is negative. The weight
is also related to the distance between neurons. When the
Euclidean distance between neurons increases, the weight
decreases, and the mutual inhibition ability between neurons
decreases.

The weight between neurons in the same layer is expressed
as follows:

wxy = − e
−Rxy

2 × α2 (1)

where wxy is the weight between neuron x and neuron y in
the same layer of neural network, Rxy is the Euclidean distance
between two neurons, and α is the standard deviation of the
Gaussian function. An increase in α indicates that the range
of lateral inhibition of neurons increases. Although each layer
of the model only performs lateral inhibition once, it reflects
the result of multiple lateral inhibitions at different levels of

TABLE 1 Default parameters of current-based LIF neuron.

Node parameters Default Description

traces False Whether to record spike traces

traces_additive False Whether to record spike traces
additively

tc_trace 20.0 Time constant of spike trace
decay

trace_scale 1.0 Scaling factor for spike trace

thresh −52.0 Spike threshold voltage

rest −65.0 Resting membrane voltage

reset −65.0 Post-spike reset voltage

refrac 5 Refractory (non-firing) period of
the neuron

tc_decay 100.0 Time constant of neuron voltage
decay

tc_i_decay 2.0 Time constant of synaptic input
current decay

lbound None Lower bound of the voltage

the visual pathway. Comparison of the simulation results and
experimental data (Kutter et al., 2018) revealed that the fitting
degree between the simulation results and experimental data
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was high when the standard deviation of the input layer was
αinput = 10 and that of the output layer was αoutput = 20.

The stimulation duration of each image in the dataset was
2 s. Each pixel of image generates a certain frequency impulse
sequence in accordance with pixel value to stimulate input layer
neuron. The probability of impulse generation per millisecond
follows the Bernoulli distribution.

f
(
x
∣∣ p
)
=

{
pxq1−x, x = 0, 1
0, x 6= 0, 1

, (2)

where the parameter p is 0.2 times the pixel value, and x = 1
indicates that pixel generates an impulse to stimulate the
corresponding input layer neuron at the current time.

Model response detection

Non-symbolic numerosity dataset was inputted into
the model to test whether the model could reproduce the
number sense that humans have without training. The
average response frequency of each output layer neuron was
recorded when the same non-symbolic numerosities were
inputted, and the tuning curve of each neuron was obtained.
If the tuning curve of a neuron contained the maximum
response to a certain numerosity, then the neuron preferred
the numerosity. Tuning curves with the same preference
were averaged to obtain the average tuning curve of each
non-symbolic numerosity. A brain study showed that the
tuning curves of numerosity-selective neurons are more
symmetrical on the logarithmic scale than on the linear scale
(Kutter et al., 2018). Therefore, we drawn the average tuning
curves of the model on the linear and logarithmic scales,
and compared the symmetry of the curves to prove that
the model can reproduce this characteristic. Moreover, the
Gaussian function was fitted to the average tuning curves
plotted on the linear scale and three non-linearly scales
(f (x) = x, f (x) = x

1
2 , f (x) = x

1
3 , f (x) = log2(x)) to

quantitatively investigate the symmetry of the average tuning
curves under non-linearly scales. A bar graph was used to plot
the average goodness-of-fit (r-square) of the Gaussian function
to the average tuning curves on different scales to verify whether
the average goodness-of-fit increase with the increase in abscissa
non-linearity. A scattergram was used to plot the bandwidth
of the Gaussian function to the average tuning curves on
different scales to verify whether the bandwidth remain
unchanged in abscissa non-linearity. Biological experiment
also showed that the frequency distribution of the preferred
numerosities of numerosity-selective neurons conforms to the
distribution characteristics of high at both ends and low in
the middle (Kutter et al., 2018). A bar graph was used to plot
the frequency distribution of the preferred numerosities of
numerosity-selective neurons of the model to verify whether

the frequency distribution of the model conforms to this
characteristic.

The MNIST dataset was inputted into the model after
confirming that the model could simply simulate the
non-symbolic numerosity information processing process
of the ventral visual stream. The purpose is to explore
whether untrained animals could distinguish different
symbolic numbers and compare the difference between
non-symbolic numerosity recognition and symbolic number
recognition. The responses of neurons with the same
preference at the input of the MNIST dataset was averaged
to obtain the average tuning curves. The characteristics
of curves on linear and logarithmic scales were then
compared. The frequency distribution of the preferred
number of number-selective neurons was computed. The
goodness-of-fit and standard deviation of the Gaussian
function to the average tuning curves on four scales were
also calculated.

Results

Non-symbolic numerosity recognition
of model

We inputted the non-symbolic numerosity dataset into the
model to test whether the model could reproduce the number
sense that humans have without training. Figure 2A shows the
average tuning curve of neurons that preferred different non-
symbolic numerosities. The neuron produced the maximum
impulse response frequency when the input numerosity was
equal to the preferred numerosity. A large distance between
input and preferred numerosities indicated a small response
of the neuron. The impulse response frequency of neurons
decreased as the distance between the input numerosity and
the preferred numerosity increased. The impulse response
frequency of neurons with a larger preferred numerosity
decreased more slowly when the number of items deviated from
the preferred numerosity. Therefore, the average tuning curves
of the model could reproduce size and distance effects observed
in biological experiments related to number sense (Merten and
Nieder, 2009; Kutter et al., 2018). The average tuning curves
were more symmetrical on the logarithmic scale (Figure 2B)
than on the linear scale (Figure 2A). Figure 2C shows that
most neurons preferred the non-symbolic numerosities 1 and
5 (15.97 and 28.93%), indicating the distribution characteristics
of high at both ends and low in the middle. Figure 2D shows
that the average goodness-of-fit of the Gaussian fitting of the
average tuning curves increased with the increase in abscissa
non-linearity

(
r2

linear = 89.72%, r2
log = 92.65%

)
. Figure 2E

illustrates that the standard deviation of Gaussian function
increased with the increase in the preferred numerosity on the
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linear scale. On the contrary, the standard deviation of Gaussian
function of other non-linear scales was nearly unchanged. The
consistency between these results and the experimental data of
human medial temporal lobe (Kutter et al., 2018) and monkey
prefrontal cortex (Nieder and Merten, 2007) indicated that
the model could simply simulate the non-symbolic numerosity
information processing process of the ventral visual stream.

Literature review

Animals can distinguish symbolic numbers. A female
chimpanzee named “Ai” could associate symbolic numbers 1–
6 with non-symbolic numerosities (Matsuzawa, 1985). Monkeys
could associate 26 different symbolic numbers with the number
of items from 0 to 25 (Livingstone et al., 2014) and reproduce
size and distance effects when comparing symbolic numbers 1–
4 (Diester and Nieder, 2010). In fact, birds could also produce
abilities to distinguish symbolic numbers. A gray parrot named
“Alex” could understand the Arabic numerals 0–8 (Pepperberg,
2013). Pigeons could respond selectively to symbolic numbers
1–6 (Xia et al., 2000). These experiments proved that the
trained animals could distinguish symbolic numbers. Some
researchers have also studied the brain’s response to symbolic
numbers before training. Holloway et al. (2013) used an fMRI
adaptation paradigm to examine the neural response to Hindu-
Arabic numerals and Chinese numerical ideographs in a group
of Chinese readers who could read both symbol types and a
control group who could read only the numerals. They found
that the control group who could read only the numerals
also had a slight response to Chinese numerical ideographs
(Holloway et al., 2013). Shum et al. (2013) also found that
foreign symbolic numbers could activate the inferior temporal
gyrus. These biological experiments showed that untrained
animals could respond to symbolic numbers. In the present
work, a model was constructed to explore whether untrained
animals could distinguish different symbolic numbers, and the
difference between non-symbolic numerosity recognition and
symbolic number recognition was compared.

Symbolic number recognition of model

We inputted the MNIST dataset into the model to explore
whether untrained animals could distinguish different symbolic
numbers. Figures 3A,B show the average tuning curves
of neurons to symbolic numbers at linear and logarithmic
scales, respectively. The untrained model could distinguish the
symbolic numbers 0–9. Neurons that prefer specific symbolic
numbers could also respond to other symbolic numbers, because
in the symbolic number sequence, the symbolic numbers with
close distance are more similar in form, and the physical
similarity could affect the response of the model to the

symbolic numbers (Cohen et al., 2013). However, compared
with Figures 2A,B, the response of neuron did not show a
downward trend when the input symbolic number was far away
from the preferred symbolic number. Therefore, the average
tuning curves of symbolic numbers could not reproduce size
and distance effects. Figure 3C shows that the preferences
of neurons covered all symbolic numbers contained in the
MNIST dataset. The neurons preferring 0 and 5 were the most,
accounting for 22.32 and 30.10%, respectively. When the range
of symbolic numbers is 0–5, the preference distribution could
show high distribution characteristics at both ends and low
distribution characteristics in the middle. This is the same
as the preference distribution of neurons when non-symbolic
numerosity dataset is input. But when the range of symbolic
numbers is 0–9, the symbolic number preference distribution
of neurons (Figure 3C) differed from the non-symbolic
numerosity preference distribution (Figure 2C). Because the
feature extracted by lateral inhibition was different when the
symbolic number and non-symbolic numerosity were inputted.
The former extracted the quantitative features of items, while
the latter extracted the edge features of symbolic numbers. The
average goodness-of-fit of the Gaussian fitting of the average
tuning curves increased with the increase in abscissa non-
linearity

(
r2

linear = 42.33%, r2
log = 45.22%

)
. This is the same

as the Gaussian fitting result of the average tuning curves when
non-symbolic numerosity dataset is input (Figure 2D). All
these results showed that untrained animals could distinguish
symbolic numbers.

Discussion

In the past few years, the investigation in the field
of symbolic number recognition has mainly focused on
deep learning technology. Convolutional neural network can
automatically extract different features. Thus, it is often
used to solve the problem of symbolic number recognition.
The recognition accuracy of some CNN models is as high
as 98 or 99% (Jarrett et al., 2009; Ciresan et al., 2011;
Ciregan et al., 2012). Combining support vector machine
with CNN model could achieve 99% recognition accuracy
(Niu and Suen, 2012). However, the traditional symbolic
number recognition system needs pre-training to achieve
feature extraction and classification. Moreover, the focus of
these studies is mainly on the improvement of the model
parameters, super parameters, and SGD optimization algorithm
to the recognition performance. No biophysical explanation
of the brain’s information processing process of symbolic
numbers is available. Verguts and Fias (2004) proposed
a model to explain the brain’s recognition of symbolic
numbers. In this model, symbolic numbers and non-symbolic
numerosities were converted into internal location codes
through different paths. Semantics of symbolic numbers are
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FIGURE 2

Output response of spike neural network model under non-symbolic numerosity dataset. (A) Average tuning curves for network units that
prefer each non-symbolic numerosity plotted on a linear scale. The horizontal axis is the numerosity in the image, and the vertical axis is the
average response after normalization. (B) Average tuning curves for network units that prefer each non-symbolic numerosity plotted on a
logarithmic scale. The horizontal axis is the numerosity in the image and plotted on a logarithmic scale of f (x) = log2 (x). (C) Distribution of
preferred numerosities of numerosity-selective network units. The horizontal axis is the numerosity, and the vertical axis is the proportion of the
number of units that prefer a specific numerosity in the total number of units. (D) Average goodness-of-fit measure for fitting Gaussian
functions to tuning curves on different scales. The average response curves with the preferred numerosity ranging from 1 to 5 were combined

via Gaussian fitting, and the goodness of fit was calculated using the four scales (f(x) = x, f(x) = x
1
2 , f(x) = x

1
3 , f(x) = log2(x)). (E) Standard

deviation of the Gaussian function with an optimal fit for each tuning curve of numerosity-selective network units on different scales. The
horizontal axis is the preferred numerosity, and the vertical axis is the standard deviation.

FIGURE 3

Output response of spike neural network model under symbolic number dataset MNIST. (A) Average tuning curves for network units that prefer
each symbolic number plotted on a linear scale. (B) Average tuning curves for network units that prefer each symbolic number plotted on a
logarithmic scale. (C) Distribution of preferred numbers of number-selective network units. (D) Average goodness-of-fit measure for fitting
Gaussian functions to tuning curves on different scales.

learned by presenting symbolic numbers and non-symbolic
numerosities, thus explaining the cause of the distance effect
when comparing different symbolic numbers. The triple-coding
model proposed by Dehaene and Cohen (1995) is a very
influential neuropsychological model. It assumed that quantity
processing may adopt three different representation systems
and predicted a brain region specialized in processing symbolic
numbers in the ventral visual stream. These two models explain

the discriminant process of symbolic numbers from a biological
point of view. However, they did not consider the abilities to
distinguish symbolic numbers before training.

Compared with other symbolic number recognition models,
the model proposed in this manuscript has three main
advantages. First, the model was constructed to simulate the
non-symbolic numerosity information processing process of
the ventral visual stream from the perspective of biological
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interpretability. The model used lateral inhibition to process
visual information and considered LIF neurons as neural
network units. Second, the number of network layers was
simplified. The model used a two-layer neural network to
analyze the process of symbolic number and non-symbolic
numerosity processing. Third, many models are trained to
recognize symbolic numbers (Jarrett et al., 2009; Ciresan
et al., 2011; Ciregan et al., 2012), making it difficult to judge
whether semantic and asemantic processing abilities of symbolic
numbers is the result of training. In the present work, the
asemantic processing ability of the model were investigated
without training. The results showed that the untrained spike
neural network model could perform asemantic recognition
of symbolic numbers 0–9. Compared with non-symbolic
numerosity recognition, the tuning curves of symbolic numbers
could not reproduce size and distance effects. When the
range of symbolic numbers is 0–5, the preference distribution
of neurons could show high distribution characteristics at
both ends and low distribution characteristics in the middle.
This is the same as the preference distribution of neurons
when non-symbolic numerosity dataset is input. But when the
range of symbolic numbers is 0–9, the preference distribution
of neurons (Figure 3C) could not show high distribution
characteristics at both ends and low distribution characteristics
in the middle. More than half of the network units preferred
the symbolic numbers 0 and 5. The average goodness-of-fit
of the Gaussian fitting of the tuning curves also increased
with the increase in abscissa non-linearity (Figure 3D). Studies
have shown that humans (Kutter et al., 2018), monkeys
(Diester and Nieder, 2010) and pigeons (Xia et al., 2000)
trained with symbolic numbers reproduce a distance effect in
distinguishing symbolic numbers. The present work showed
that the average tuning curves of the untrained model could
not reproduce the distance effect, indicating that thus effect
is not caused by the physical similarity of symbolic numbers
(Cohen et al., 2013). This finding supported the hypothesis
that human beings connect symbolic numbers with innate
non-symbolic numerosity processing system through training
to obtain the meaning of symbolic numbers. At present,
some researchers are committed to studying the construction
process of children’s symbolic number concept system (Suggate
et al., 2018; Nisan and Kiziltepe, 2019; Verschaffel et al.,
2020; Bugden et al., 2021; Vogel and Smedt, 2021). Their
research results also support the idea that symbols acquire
meaning by linking neural populations coding symbol shapes
to those holding non-symbolic representations of quantities.
Therefore, number sense may be the basis for the formation of
human symbolic number concept and even arithmetic operation
abilities.

Handwritten Arabic numeral dataset was used to investigate
the symbolic number recognition abilities of untrained models.
In fact, many kinds of symbolic number systems exist, such
as Chinese numbers, Roman numbers, Sanskrit numbers, and

Tamil numbers. Studying the similarity of the response of the
model to different symbolic number systems is helpful to find
out the reason why specific symbols are included in the symbolic
number system. Studying the difference of the response of the
model to different symbolic number systems is helpful to find
out the reason why Arabic numerals are widely used. Therefore,
investigating the recognition abilities of the model to other
symbolic numbers is necessary. In addition, the effect of training
on the abilities of animals to recognize symbolic numbers is
not clear. STDP weight modification rule could be added in
the future to spike the neural network model to compare the
difference in the symbolic number processing abilities between
the model before and after training.

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding author.

Author contributions

YZ contributed to the conceptualization, data curation,
formal analysis, investigation, methodology, and writing of
the original draft of the manuscript. HC contributed to the
conceptualization and writing—review and editing of the
manuscript. YW contributed to the writing—review and editing
of the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

Publication costs were funded by the Natural Science
Foundation of Hunan Province (2021JJ30863).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Frontiers in Neuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2022.973010
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-973010 September 15, 2022 Time: 16:18 # 8

Zhou et al. 10.3389/fninf.2022.973010

References

Ahlawat, S., Choudhary, A., Nayyar, A., Nayyar, A., Singh, S., Yoon, B. (2020).
Improved handwritten digit recognition using convolutional neural networks
(CNN). Sensors 20:3344. doi: 10.3390/s20123344

Ali, S., Shaukat, Z., Azeem, M., Sakhawat, Z., Mahmood, T., ur Rehman, K.
(2019). An efficient and improved scheme for handwritten digit recognition based
on convolutional neural network. SN Appl. Sci. 1, 1–9. doi: 10.1007/s42452-019-
1161-5

Ansari, D. (2016). Number symbols in the brain. Dev. Math. Cogn. 2, 27–50.
doi: 10.1016/B978-0-12-801871-2.00002-2

Bugden, S., Park, A. T., Mackey, A. P., Brannon, E. M. (2021). The neural basis
of number word processing in children and adults. Dev. Cogn. Neurosci. 51, 1–11.
doi: 10.1016/j.dcn.2021.101011

Cao, R., Wang, J., Lin, C., Rutishauser, U., Todorov, A., Li, X., et al.
(2020). Feature-based encoding of face identity by single neurons in the
human medial temporal lobe. BioRxiv [Preprint] doi: 10.1101/2020.09.01.27
8283

Chychkarov, Y., Serhiienko, A., Syrmamiikh, I., Syrmamiikh, I., Kargin, A.
(2021). Handwritten Digits Recognition Using SVM, KNN, RF and Deep Learning
Neural Networks. CMIS 2864, 496–509.

Ciregan, D., Meier, U., and Schmidhuber, J. (2012). “Multi-column deep neural
networks for image classification,” in Proceedings of the 2012 IEEE Conference on
Computer Vision and Pattern Recognition, Rovidence, 3642–3649. doi: 10.1109/
CVPR.2012.6248110

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., Schmidhuber, J. (2011).
High-performance neural networks for visual object classification. arXiv [Preprint]
doi: 10.48550/arXiv.1102.0183

Cohen, D. J., Warren, E., and Blanc-Goldhammer, D. (2013). Cross-
format physical similarity effects and their implications for the numerical
cognition architecture. Cogn. Psychol. 66, 355–379. doi: 10.1016/j.cogpsych.2013.0
3.001

Dehaene, S., and Cohen, L. (1995). Towards an anatomical and functional model
of number processing. Math. Cogn. 1, 83–120.

Diester, I., and Nieder, A. (2010). Numerical values leave a semantic imprint
on associated signs in monkeys. J. Cogn. Neurosci. 22, 174–183. doi: 10.1162/jocn.
2009.21193

Ferres-Forga, N., and Halberda, J. (2020). Approximate number system
discrimination training for 7-8 year olds improves approximate, but not exact,
arithmetics, and only in children with low pre-training arithmetic scores. J. Num.
Cogn. 6, 275–303. doi: 10.5964/jnc.v6i3.277

Grover, D., and Toghi, B. (2018). “MNIST dataset classification utilizing k-nn
classifier with modified sliding window metric,” in Proceedings of the Science and
Information Conference, Las Vegas, NV, 1–9.

Holloway, I. D., Battista, C., Vogel, S. E., Vogel, S. E., Ansari, D. (2013). Semantic
and perceptual processing of number symbols: evidence from a cross-linguistic
fMRI adaptation study. J. Cogn. Neurosci. 25, 388–400. doi: 10.1162/jocn_a_00323

Hossain, M. A., and Ali, M. M. (2019). Recognition of handwritten digit using
convolutional neural network (CNN). Glob. J. Comput. Sci. Technol. 19, 27–33.
doi: 10.34257/GJCSTDVOL19IS2PG27

Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y. (2009). “What is the best
multi-stage architecture for object recognition?,” in Proceedings of the IEEE 12th
International Conference on Computer Vision (ICCV), Kyoto, 2146–2153. doi:
10.1109/ICCV.2009.5459469

Khanday, O. M., and Dadvandipour, S. (2021). Analysis of machine learning
algorithms for character recognition: a case study on handwritten digit
recognition. Ind. J. Elec. Eng. Comp. Sci. 21, 574–581. doi: 10.11591/ijeecs.v20.i1.
pp%25p

Kutter, E. F., Bostroem, J., Elger, C. E., Mormann, F., Nieder, A. (2018). Single
neurons in the human brain encode numbers. Neuron 100, 753–761. doi: 10.1016/
j.neuron.2018.08.036

Livingstone, M. S., Pettine, W. W., Srihasam, K., Moore, B., Morocz. I. A.,
Lee, D. (2014). Symbol addition by monkeys provides evidence for normalized
quantity coding. Proc. Natl. Acad. Sci. U.S.A. 111, 6822–6827. doi: 10.1073/pnas.
1404208111

Lu, J., and Zuo, Y. (2017). Clustered structural and functional plasticity of
dendritic spines. Brain Res. Bull. 129, 18–22. doi: 10.1016/j.brainresbull.2016.09.
008

Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature 315, 57–59.
doi: 10.1038/315057a0

Mccandliss, B. D., Cohen, L., and Dehaene, S. (2003). The visual word form
area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299.
doi: 10.1016/s1364-6613(03)00134-7

Merten, K., and Nieder, A. (2009). Compressed Scaling of Abstract Numerosity
Representations in Adult Humans and Monkeys. J. Cogn. Neurosci. 21, 333–346.
doi: 10.1162/jocn.2008.21032

Mitani, Y., Fujita, Y., and Hamamoto, Y. (2021). Augmentation on CNNs for
handwritten digit classification in a small training sample size situation. J. Phys.
Conf. Ser. 1922:012007. doi: 10.1088/1742-6596/1922/1/012007

Nasr, K., Viswanathan, P., and Nieder, A. (2019). Number detectors
spontaneously emerge in a deep neural network designed for visual object
recognition. Sci. Adv. 5:eaav7903. doi: 10.1126/sciadv.aav7903

Nieder, A., and Merten, K. (2007). A labeled-line code for small and large
numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993. doi:
10.1523/JNEUROSCI.1056-07.2007

Nisan, M., and Kiziltepe, G. I. (2019). The effect of early numeracy program on
the development of number concept in children at 48-60 months of age. Univ. J.
Educ. Res. 7, 1074–1083. doi: 10.13189/ujer.2019.070419

Niu, X. X., and Suen, C. Y. (2012). A novel hybrid CNN–SVM classifier for
recognizing handwritten digits. Patt. Recogn. 45, 1318–1325. doi: 10.1016/j.patcog.
2011.09.021

Pepperberg, I. M. (2013). Abstract concepts: Data from a grey parrot. Behav.
Process. 93, 82–90. doi: 10.1016/j.beproc.2012.09.016

Rathé, S., Torbeyns, J., Smedt, B. D., Verschaffel, L. (2020). Spontaneous
focusing on Arabic number symbols: A unique component of children’s early
mathematical development? Math. Think. Learn. 22, 281–295. doi: 10.1080/
10986065.2020.1818468

Rathé, S., Torbeyns, J., Smedt, B. D., and Verschaffel, L. (2019). Spontaneous
focusing on Arabic number symbols and its association with early mathematical
competencies. Early Childh. Res. Q. 48, 111–121. doi: 10.1016/j.ecresq.2019.0
1.011

Sella, F., and Lucangeli, D. (2020). The knowledge of the preceding number
reveals a mature understanding of the number sequence. Cognition 194, 1–14.
doi: 10.1016/j.cognition.2019.104104

Shamim, S. M., Miah, M. B. A., Angona Sarker, M. R., Rana, M., Al Jobair, A.
(2018). Handwritten digit recognition using machine learning algorithms. Glob. J.
Comp. Sci. Technol. 18, 1–23. doi: 10.17509/ijost.v3i1.10795

Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J.
(2013). A brain area for visual numerals. J. Neurosci. 33, 6709–6715. doi: 10.1523/
JNEUROSCI.4558-12.2013

Sokolowski, H. M., Hawes, Z., Leibovich-Raveh, T., Ansari, D. (2021a).
Number symbols are processed more automatically than nonsymbolic numerical
magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. PsyArXi 228,
1–14. doi: 10.31234/osf.io/qmj6g

Sokolowski, H. M., Hawes, Z., Peters, L., Ansari, D. (2021b). Symbols Are
Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-
Numerical Magnitude Processing in the Human Brain. Cereb. Cortex Commun.
2:tgab048. doi: 10.1093/texcom/tgab048

Suggate, S., Schaughency, E., McAnally, H., Reese, E. (2018). From infancy
to adolescence: The longitudinal links between vocabulary, early literacy skills,
oral narrative, and reading comprehension. Cogn. Dev. 47, 82–95. doi: 10.1016/
j.cogdev.2018.04.005

Tahir, A., and Pervaiz, A. (2020). Hand written character recognition using
SVM. Pacific Int. J. 3, 59–62. doi: 10.55014/pij.v3i2.98

Tanaka, K. (2003). Columns for complex visual object features in inferotemporal
cortex: clustering of cells with similar but slightly different stimulus selectivities.
Cereb. Cortex 13, 90–99. doi: 10.1093/cercor/13.1.90

Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M. (2001). Complex objects
are represented in macaque inferotemporal cortex by the combination of feature
columns. Nat. Neurosci. 4, 832–838. doi: 10.1038/90547

Verguts, T., and Fias, W. (2004). Representation of number in animals
and humans: A neural model. J. Cogn. Neurosci. 16, 1493–1504. doi: 10.1162/
0898929042568497

Verschaffel, L., Rathé, S., Wijns, N., Degrande, T., van Dooren, W., De Smedt,
B., et al. (2020). “Young children’s early mathematical competencies: The role of
mathematical focusing tendencies,” in Proceedings of the Mathematics Education
in the Early Years, Results from the POEM4 Conference, (Cham: Springer Nature),
23–42. doi: 10.1007/978-3-030-34776-5_2

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2022.973010
https://doi.org/10.3390/s20123344
https://doi.org/10.1007/s42452-019-1161-5
https://doi.org/10.1007/s42452-019-1161-5
https://doi.org/10.1016/B978-0-12-801871-2.00002-2
https://doi.org/10.1016/j.dcn.2021.101011
https://doi.org/10.1101/2020.09.01.278283
https://doi.org/10.1101/2020.09.01.278283
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.48550/arXiv.1102.0183
https://doi.org/10.1016/j.cogpsych.2013.03.001
https://doi.org/10.1016/j.cogpsych.2013.03.001
https://doi.org/10.1162/jocn.2009.21193
https://doi.org/10.1162/jocn.2009.21193
https://doi.org/10.5964/jnc.v6i3.277
https://doi.org/10.1162/jocn_a_00323
https://doi.org/10.34257/GJCSTDVOL19IS2PG27
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.11591/ijeecs.v20.i1.pp%25p
https://doi.org/10.11591/ijeecs.v20.i1.pp%25p
https://doi.org/10.1016/j.neuron.2018.08.036
https://doi.org/10.1016/j.neuron.2018.08.036
https://doi.org/10.1073/pnas.1404208111
https://doi.org/10.1073/pnas.1404208111
https://doi.org/10.1016/j.brainresbull.2016.09.008
https://doi.org/10.1016/j.brainresbull.2016.09.008
https://doi.org/10.1038/315057a0
https://doi.org/10.1016/s1364-6613(03)00134-7
https://doi.org/10.1162/jocn.2008.21032
https://doi.org/10.1088/1742-6596/1922/1/012007
https://doi.org/10.1126/sciadv.aav7903
https://doi.org/10.1523/JNEUROSCI.1056-07.2007
https://doi.org/10.1523/JNEUROSCI.1056-07.2007
https://doi.org/10.13189/ujer.2019.070419
https://doi.org/10.1016/j.patcog.2011.09.021
https://doi.org/10.1016/j.patcog.2011.09.021
https://doi.org/10.1016/j.beproc.2012.09.016
https://doi.org/10.1080/10986065.2020.1818468
https://doi.org/10.1080/10986065.2020.1818468
https://doi.org/10.1016/j.ecresq.2019.01.011
https://doi.org/10.1016/j.ecresq.2019.01.011
https://doi.org/10.1016/j.cognition.2019.104104
https://doi.org/10.17509/ijost.v3i1.10795
https://doi.org/10.1523/JNEUROSCI.4558-12.2013
https://doi.org/10.1523/JNEUROSCI.4558-12.2013
https://doi.org/10.31234/osf.io/qmj6g
https://doi.org/10.1093/texcom/tgab048
https://doi.org/10.1016/j.cogdev.2018.04.005
https://doi.org/10.1016/j.cogdev.2018.04.005
https://doi.org/10.55014/pij.v3i2.98
https://doi.org/10.1093/cercor/13.1.90
https://doi.org/10.1038/90547
https://doi.org/10.1162/0898929042568497
https://doi.org/10.1162/0898929042568497
https://doi.org/10.1007/978-3-030-34776-5_2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-973010 September 15, 2022 Time: 16:18 # 9

Zhou et al. 10.3389/fninf.2022.973010

Vogel, S. E., and Smedt, B. D. (2021). Developmental brain dynamics of
numerical and arithmetic abilities. npj Sci. Learn. 6, 1–22. doi: 10.1038/s41539-
021-00099-3

Xia, L., Siemann, M., and Delius, J. D. (2000). Matching of numerical symbols
with number of responses by pigeons. Anim. Cogn. 3, 35–43. doi: 10.1007/
s100710050048

Zhou, S., and Yu, Y. (2018). Synaptic E-I balance underlies efficient
neural coding. Front. Neurosci. 12:46. doi: 10.3389/fnins.2018.0
0046

Zhou, Y., Chen, H., and Wang, Y. (2022). Role of lateral inhibition on visual
number sense. Front. Comput. Neurosci. 16:810448. doi: 10.3389/fncom.2022.
810448

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.973010
https://doi.org/10.1038/s41539-021-00099-3
https://doi.org/10.1038/s41539-021-00099-3
https://doi.org/10.1007/s100710050048
https://doi.org/10.1007/s100710050048
https://doi.org/10.3389/fnins.2018.00046
https://doi.org/10.3389/fnins.2018.00046
https://doi.org/10.3389/fncom.2022.810448
https://doi.org/10.3389/fncom.2022.810448
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

	Recognition ability of untrained neural networks to symbolic numbers
	Introduction
	Materials and methods
	Stimulus datasets
	Spike neural network model
	Model response detection

	Results
	Non-symbolic numerosity recognition of model
	Literature review
	Symbolic number recognition of model

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


