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Abstract: Indoor environmental quality (IEQ) has a high-level of impact on one’s health and pro-
ductivity. It is widely accepted that IEQ is composed of four categories: thermal comfort, indoor air
quality (IAQ), visual comfort, and acoustic comfort. The main physical parameters that primarily
represent these comfort categories can be monitored using sensors. To this purpose, the article
proposes a wireless indoor environmental quality logger. In the literature, global comfort indices are
often assessed objectively (using sensors) or subjectively (through surveys). This study adopts an
integrated approach that calculates a predicted indoor global comfort index (P-IGCI) using sensor
data and estimates a real perceived indoor global comfort index (RP-IGCI) based on questionnaires.
Among the 19 different tested algorithms, the stepwise multiple linear regression model minimized
the distance between the two comfort indices. In the case study involving a university classroom
setting—thermal comfort and indoor air quality were identified as the most relevant IEQ elements
from a subjective point of view. The model also confirms this findings from an objective perspective
since temperature and CO2 merge as the measured physical parameters with the most impacts on
overall comfort.

Keywords: indoor environmental quality (IEQ) logger; Raspberry Pi; sensors; Internet of Things (IoT)
thermal comfort; indoor air quality (IAQ); visual comfort; acoustic comfort; indoor global comfort
index (IGCI); MATLAB; SPSS

1. Introduction

Building sector stakeholders have become increasingly involved in systems that are
capable of acquiring, storing, and analysing building data through the Internet of Things
(IoT) [1]. The high flexibility of new embedded systems allows their application in fields,
such as indoor environmental quality (IEQ) management and energy savings. It is well-
known that people spend many hours indoors. According to a study conducted by the
World Health Organization [2], populations in developed countries spends approximately
90% of their time in indoor environments, such as homes, offices, schools, etc. Comfort in
these types of environments is becoming increasingly important as there is now widespread
evidence that it impacts health, well-being and productivity [3–5]. It is widely accepted that a
user’s comfort, or indoor environmental quality (IEQ) [6–8], consists of four core parameters,
also known as IEQ elements, IEQ factors, or IEQ categories. These are thermal comfort [9–13],
indoor air quality (IAQ) [14–17], acoustic comfort [18–20], and visual comfort [21–26]. Achieving
high IEQ levels could prevent the occurrence of sick building syndrome (SBS) [27–29],
building-related diseases, multiple chemical sensitivities (MCS), and other unrecognized
controversial disorders [30]. Several studies [31–46] have identified weightings of these IEQ
factors and/or have proposed overall comfort indices. These global comfort indices (GCIs)
and their categories are often assessed either objectively (using sensors) or subjectively
(through surveys) [20,47–50]. Assessing the impact of each IEQ category on overall comfort
is challenging for multiple reasons [51]. First, the physical environmental factors (such as
CO2 concentration, noise level, temperature, and illuminance) influence the corresponding
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comfort category, as well as the other categories, although to a lesser degree [52]. The IEQ
factor weightings largely depend on the occupant’s expectations and satisfaction toward
the corresponding factors [53]. For example, if occupants are not satisfied with acoustic
comfort, this category becomes more relevant. The IEQ category weightings also depend
on building type (e.g., commercial, residential, and educational buildings), other building-
related factors (e.g., geographic location, ventilation system, public or private property, new
or existing) [51], as well as seasonal changes and external climate [54]. Finally, IEQ (such as
the IEQ productivity belief) is also affected by attitudinal and behavioural factors, social
influence factors, and demographic aspects of the building occupants (such as gender, age,
and cultural difference) [55]. Different methods have attempted to set these weightings but
have led to different results [51].

This research aimed to identify a methodology to predict perceived comfort by directly
measuring physical parameters in a given indoor environment. A wireless IEQ logger
system was designed to this aim, comprising hardware, software components, and a data
analysis. The idea was to assemble a hardware system that is expandable and has the nec-
essary resources for autonomous data processing. For this reason, a microprocessor-based
embedded system (Raspberry Pi [56]) was chosen, rather than a microcontroller-based
one (such as Arduino [57]). For the sake of simplicity, practicality, and compactness, some
environmental kits were considered, rather than individual sensors to be connected directly
to the board. These kits were Metriful [58], OKdo air quality kit [59], and Enviro+ [60].
Metriful uses the MS430 all-in-one sensor. This is a very cheap sensor (it costs about
EUR 40) but it is currently out of stock on the market. The OKdo air quality kit adopts
a “Base HAT” to connect the Aosong AM2302 temperature and humidity sensor and the
Sensirion SGP30 sensor to measure volatile organic compounds (VOCs) and eCO2 (carbon
dioxide equivalent). This complete kit costs about EUR 50. Enviro+ (by Pimoroni) was
the final choice; it is currently available on the market (for about EUR 50) and it is one of
the most complete models (continue reading for details). IEQ data collection/processing
is divided into multiple steps. Implementation: the IEQ logger was built, adopting the
DIY philosophy (in Section 2). The main hardware components are an IEQ control unit
and sensors measuring physical quantities associated with indoor environmental quality
(i.e., thermal comfort, indoor air quality (IAQ), visual comfort, and acoustic comfort). The
software system includes the sensor libraries and control unit, a database for data collec-
tion, online questionnaires, and a graphical web interface. Deployment: the IEQ logger
was positioned in a university classroom and registered 29 university lectures over the
course of 3 months (in Section 3.1). Data collection: physical parameters measured by
the sensors (objective data) and questionnaires filled by students (subjective data) were
collected and stored in a MySQL database (in Section 3.2). Data analysis: after reviewing
methods frequently adopted in the field (in Section 3.3), regression analysis was performed
to correlate the overall comfort reported in the questionnaires with the individual comfort
categories and the physical parameters measured by sensors (in Section 4.1). Model building
and characterization: 19 different algorithms were tested in order to identify the method that
minimized the distance between a predicted and a perceived comfort index (in Section 4.2).
The first index was calculated from sensor data, while the second was based on question-
naires. The obtained model estimates the perceived comfort index based on measured
physical quantities.

2. IEQ Logger Hardware and Software

This section describes the hardware needed to build the complete IEQ logger system
and the software architecture for proper data acquisition and storage provided by the
sensors. Thermal comfort was measured with air temperature (in degrees Celsius) and
relative humidity (as a percentage). IAQ was measured with CO2 concentration (in parts
per million). Visual comfort was measured with illuminance (in Lux). Acoustic comfort
was measured with noise level (in A-weighted decibels). Table 1 summarizes the comfort
categories with all corresponding measured physical parameters and units.
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Table 1. Comfort categories and corresponding physical parameters and units.

Comfort Category Physical Parameter Unit

Thermal comfort Air temperature °C
Relative humidity %

Indoor air quality (IAQ) CO2 concentration ppm

Visual comfort Illuminance lx

Acoustic comfort Noise level dBA

The type of thermal comfort assessment depends on the adopted approach. The first
approach consists of determining the predicted mean vote (PMV) and predicted percentage
dissatisfied (PPD) indices according to the ISO 7730 standards [9] that define them. The
determination of the PMV and PPD indices is carried out through specific professional
instrumentation, such as microclimatic control units based on “spot measurements”. The
instrumentation must conform to the requirements specified in the ISO 7726 standard [61].
The advantage of this methodology is the high measurement accuracy. The PMV method
requires input clothing insulation (CI), metabolic rate (MR), air speed (AS), mean radiant
temperature (MRT), air temperature (AT), and relative humidity (RH). Of these parameters,
the last four are directly measurable. The second approach is to determine the behaviour of
parameters, such as AS, MRT, AT, and RH through a data logger and “frequent measure-
ments”. In our case study, the room analysis and the building typology allows neglecting
the AS, which is definitely lower than 0.2 m/s. The MRT measures the average temperature
of the surfaces surrounding a particular point with which thermal radiation is exchanged.
The knowledge of surface geometries needed to predict MRT is complex, particularly in
elaborate spaces. The evaluation of the MRT, whose methodology is also defined in the
ISO 7726 standard [61], is neither immediate nor straightforward. The standard considers
three measurement methods (globe thermometer, two-sphere radiometer, and constant air
temperature sensor) and two calculation methods (view factors and radiant plane tempera-
tures) [62]. Currently, some instruments for measuring MRT are available on the market.
The most widely used, and the least expensive, is undoubtedly the globe thermometer, but
it has several disadvantages:

• High response time (which leads to problems when numerous measurements are
performed);

• Overestimating radiant contributions due to horizontal surfaces (ceiling and floor),
due to its (perfectly) spherical shape;

• Not allowing the radiant temperature asymmetry calculation in moderate environ-
ments;

• Complex interfacing to the embedded systems (such as Raspberry Pi [56]);
• The required instrumentation would not be suitable for the environment in question

(a classroom full of students) but rather for a “controlled” environment or a laboratory.

Air temperature is the most influential and easily measured objective datum. Fur-
thermore, by simulating different scenarios with the CBE Thermal Comfort Tool [63], it
was possible to carry out several tests concerning the ASHRAE-55 [12] and EN-16798 [7]
standards (both with the “PMV” and “adaptive” methods). Given the few differences
(as far as this case study is concerned), and the sensors on the market, it was decided to
follow the second approach and investigate only the direct measurements of AT and RH.
In summary, in this context, the chosen methodology for thermal comfort produces less
precise measurements but is undoubtedly cheaper, simpler, more compact, and better in
terms of interfacing.

The human ear is most sensitive to sound at frequencies between 1 and 4 kHz [64]. It
reaches its maximum sensitivity in the 800 to 2000 Hz frequency range, and it also strongly
attenuates sounds below 400 Hz. Please note that the noise level is measured in dBA to
take into account the human ear sensitivity.
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2.1. Hardware Implementation

Raspberry Pi 3 Model B+ [65], Enviro+ by Pimoroni [60], K30 (CO2 sensor) [66], and
the USB omnidirectional condenser microphone were adopted as part of the hardware
development of the IEQ logger. The hardware architecture is shown in Figure 1.

Figure 1. Wireless IEQ logger: hardware architecture.

In addition, other hardware was adopted, such as a “40-Pin cable” for the connection
between Raspberry Pi and Enviro+, the “GPIO Pin header”, to split the necessary wires
for the K-30 sensor connection, and an external box (ABS case). A common micro USB
power supply with an output voltage of 5 V and a maximum current of 3 A was employed.
Other hardware was exclusively required for sensor calibration and will be described later.
Figure 2 shows the sensors adopted by the system and their connections.

Table 2 summarizes the sensors used to monitor the considered physical parameters,
while Table 3 presents the technical features of the sensors.

Table 2. Physical parameters and corresponding sensors.

Physical Parameter Sensor

Air temperature BME280 sensor on Enviro+ board

Relative humidity BME280 sensor on Enviro+ board

Illuminance LTR-559 sensor on Enviro+ board

CO2 K-30 sensor

Noise level USB omnidirectional condenser microphone
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Figure 2. Sensors adopted by the system.

For more technical features and details, please refer to the corresponding datasheet
for BME280 [67], LTR-559 [68], and K-30 [66]. The Enviro+ board includes the follow-
ing sensors: BME280 (temperature, pressure, humidity sensor), LTR-559 (light and prox-
imity sensor), MICS6814 (analogue gas sensor), and SPH0645LM4H-B (MEMS micro-
phone). The board also contains an ADS1015 analogue to the digital converter (ADC),
0.96′′ colour LCD (16 mm × 8 mm), and a connector for the particulate matter (PM5003)
sensor. Finally, other features include a power supply of 5 V, a 40-pin header Raspberry Pi
model compatible (uses 16 GPIO pins), a communication interface I2C, and dimensions of
65 mm × 30 mm × 8.5 mm. For more details, please refer to the official website [60] and
pinout [69]. The Enviro+ board by Pimoroni was mainly used to detect air temperature,
relative humidity, and light level (thanks to the BME280 and LTR-559 sensors).

Currently, the microelectromechanical systems (MEMS) microphone does not have
full support, as the official Pimoroni website reports [70]). Furthermore, running several
tests with the available libraries, the noise detection range was reduced to a few meters and,
therefore, it was not very suitable for our purpose. For these reasons, a USB omnidirectional
condenser microphone (by Gyvazla brand) was chosen to detect ambient noise. This is
a low-cost microphone (EUR 10) that had good features for our study. The MICS6814
analog gas sensor [71] detects many different types of gases, such as carbon monoxide
CO, nitrogen dioxide NO2, ethanol C2H5OH, hydrogen H2, ammonia NH3, methane CH4,
propane C3H8, and isobutane C4H10. However, this sensor does not detect carbon dioxide
CO2. For this purpose, the K-30 sensor was added to the system. This sensor measures real
(not equivalent) CO2. It is a mid-to-high-end sensor with a good price–performance ratio
(it costs approximately EUR 60).

For the calibration and testing phases of the different sensors, the following instru-
ments were adopted: Sound Level Meter, VLIKE VL6708-LCD (for USB microphone
calibration), Netatmo NWS01-EC (for K30 CO2 sensor calibration), ThermoPro TP53 (for
temperature and humidity sensor calibration BME280), and a consumer-grade smartphone
with the corresponding app for the brightness sensor. Figure 3 shows the instruments in
operation during the calibration and testing phases.
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Table 3. Technical features of the sensors.

Technical Features BME280 LTR-559 K-30 Microphone

Interface

I2C
(up to 3.4 MHz)
SPI
(up to 10 MHz)

I2C (Fast Mode @
400 kbit/s)

I2C
UART

USB 2.0

Power
supply 1.71–3.6 V 2.4–3.6 V

5–9 V
(preferred
operating range)

5 V

Operating range

−40. . . +85 °C
(temperature)
0. . . 100%
(rel. humidity)

0.01–64 k Lux
(6 dynamic range)

0–10,000 ppm
(total)
0–5000 ppm
(within
specifications)

84 dB (SNR)

Accuracy

±1.0 °C
(temperature)
±3%
(rel. humidity)

-

±30 ppm ± 3%
(of measured
value within
specifications)

Sensitivity range:
within −3 dB (at 1 V)

Resolution
0.01 °C (temperature)
0.008%
(rel. humidity)

16-bit
(effective
resolution)

10 mV
(8.5 bits in the
range 0–4 V)

-

Measurement/
Response Time

Response Time
(τ63%): 1 s

Integration time:
50 ms
Measurement time:
100 ms

Response Time (T1/e):
20 s (diffusion time)
Response Rate:
2 s

Frequency
Response:
20 Hz–16 KHz

Dimensions 2.5× 2.5× 0.93 mm 2.4× 3.9× 1.3 mm ∼ 57× 51× 14 mm ∼ 20× 5× 5 mm

Other
specifications

3 power modes:
sleep, normal, forced

- Close to human eye
spectral response;

- Immunity to IR/UV
light source;

- Automatically
rejects 50/60 Hz
lighting flicker.

- Self-diagnostics
(complete function
check at startup);

- ABC (Automatic
background
calibration).

- Polar pattern:
omnidirectional;

- Impedance
≤2.2 KΩ;

- Sensitivity:
−30 ± 3 dB.

A smartphone app, i.e., “Lux light meter”, was used for Lux calibration, measured by
the LTR-559 sensor, and the “shift” was corrected via software. The sensor was tested with
different light types (with a bulb dimmable in light colour and intensity). The calibration
of the temperature (in degrees Celsius) and the humidity (in percent), measured by the
BME280 sensor, was performed via software. The sensor was tested in a room with a
heating, ventilation, and air conditioning (HVAC) system (in order to obtain different
temperature/humidity conditions). The readings were compared with the values shown on
the ThermoPro TP53 display. Calibration of the dBA measured by the USB omnidirectional
condenser microphone was performed via software. The microphone was placed close
to the sound level meter. A sound generator (at different frequencies) was used to obtain
different noise levels to compare with the values of the VLIKE VL6708 sound level meter
(displayed on the LCD). Lastly, the calibration of the CO2 concentration was conducted via
hardware. The sensor was placed in an outdoor environment (in fresh air corresponding
to 400 ppm), and Din1 was connected to the ground for at least 8 s (as instructed in the
datasheet [66]). In this way, the internal calibration code background calibration (bCAL)
was executed. Then, simply by spending some time in a room, it was possible to compare
the values between the K-30 sensor and Netatmo NWS01-EC. All sensors were tested
in a value range suitable for an indoor environment under non-extreme conditions. For
technical details, specifications and more information on these devices, please visit the
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corresponding web pages for VLIKE VL6708-LCD [72], Netatmo NWS01-EC [73], and
ThermoPro TP53 [74].

Figure 3. Instruments during calibration and testing phases.

2.2. Software Implementation

In structural terms, the software implemented for the IEQ logger system can be divided
into three macroblocks: (i) Sensor libraries, (ii) software core, (iii) API service and database.
The software architecture is shown in Figure 4.

Figure 4. Wireless IEQ logger: software architecture.

The sensor libraries contain all of the adopted libraries and are implemented in Python
programming language. Each library defines the methodologies for measurements from
the corresponding sensors as shown in Table 4:
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Table 4. Python files and corresponding sensors.

Python Library File Sensor

temperature.py BME280 sensor on Enviro+ board

humidity.py BME280 sensor on Enviro+ board

luminosity.py LTR-559 sensor on Enviro+ board

co2_level.py K-30 sensor

noise_level.py USB omnidirectional condenser microphone

The software core represents the central part of the system. Inside it, run.py is the
main Python script that calls up the previous sensor libraries. The purpose of run.py is to
obtain the reliable value of each sensor from the various libraries and generate a “payload”
(in JSON format). In addition to the sensor parameters, the username and password
were added at the payload beginning to perform operations on the online application
programming interface (API). For security reasons, authentication was server-sided, and it
was implemented in PHP scripting language. Furthermore, the run.py file uses the methods
contained in the request.py file. This last file has the only aim of obtaining the “payload”
as input and sending an HTTP request to the API server located on the website (which will
be discussed later).

The server-side includes the database and the required API services for interfacing.
Each module provides a different service, such as generating a new record, obtaining one
or more records from the database, and so on. The database is implemented in MySQL and
mainly consists of records from questionnaires and measurements of all sensors stored in
two different tables.

A website was developed to implement the questionnaire and to allow the link to be
reached via a QR code (for quick access from smartphones and tablets), collect questionnaire
information into the database, and report the acquired measures in a user-friendly layout.
The main components of the website are summarized in Figure 5.

Figure 5. Website components.

A measurements web page layout example is presented in Figure 6, while the ques-
tionnaire structure is described in Section 3.2.
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Figure 6. A web page layout example of measurements.

To simultaneously provide information about the status of the outdoor conditions,
such as temperature, humidity, and pressure, a weather section was added (thanks to the
OpenWeatherMap API service [75]).

3. Case Study and Methods
3.1. Deployment

A wireless IEQ logger was installed in a classroom of the university, located on the
second and top floor of “Collegio Raffaello” building. This classroom has an area of about
70 m2 (8.2 m × 8.5 m) and an average height of 2.8 m. Therefore the total volume is about
195 m3. Approximately 10 students (at minimum) usually occupy this classroom, to a
maximum of 30 (due to the COVID-19 pandemic), depending on the university course.
There are two windows in total; they are located at the bottom of the classroom, in the wall
facing south-east. The total window surface is 4 m2. Four natural light neon lamps provide
artificial light. There are no HVAC or mechanical ventilation systems in the classroom. Two
doors are 1.1 m wide and 2.1 m high for a total area of 4.6 m2. The only airflow is through
these doors and the windows (normally closed during lessons). Heating is provided by
three cast iron radiators of 0.1 m3 each. The system was installed at a height of 1.6 meters
from the floor and approximately halfway up one side of the classroom. This height was
considered as a reasonable average to measure the CO2 (which stratifies downwards), the
brightness (considering blackboard, windows, and eye-level), and the noise perceived by
the students. The IEQ logger placement on an internal wall was chosen for practical reasons
and to find a position that did not create an obstacle for people (both for the passage and
view). The IEQ logger position may not be the best for thermal comfort. However, no
appreciable differences compared to the classroom center were observed during testing
and calibration. According to the tests carried out before and during the calibration phases,
this installation on the internal wall still guaranteed good temperature measurements. The
position is the most suitable for the other three categories of comfort. The chosen position
met the following requirements:

• It was sufficiently far from radiators or windows, allowing for correct temperature
and humidity measurement;

• It was at a medium height, in order to correctly measure the CO2 concentration
(corresponding approximately to the height of the air inhaled by people);

• It was in the middle of the side, because it was optimal for the perceived noise level
(not too close to the teacher’s voice) and to detect both the artificial light (from neon)
and natural light (from the windows at the bottom of the classroom);

• It was not too far from the wireless repeater (to ensure a good wireless signal).

Eventually, the position was also comfortable, being close to a socket. Figure 7 illus-
trates the university classroom plan with the wireless IEQ logger and wireless repeater
locations. A picture of the classroom is shown in Figure 8 in order to provide a better idea
of the environment. Finally, the wireless IEQ logger installation in the classroom is shown
in Figure 9.
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Figure 7. IEQ placement on the university classroom plan.

Figure 8. A picture of the examined university classroom.
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Figure 9. Wireless IEQ logger: system installation in the classroom.

3.2. Data Collection

The study was carried out during the months of March, April, and May 2021. More
precisely, 85 complete questionnaires were collected from 3 March to 28 May and were
grouped into 29 sessions. A session was defined as a classroom lesson unit, typically one
hour long. Moreover, 10% of the sessions, with either a few or only one questionnaire
carried out improperly, were not included in the analysis described in the following section.
Environmental parameter data provided by the sensors were recorded every 5 min. This
time interval is adequate in order to avoid a data overload on the database, and it is
adjustable. In this way, within one-hour sessions, there are 12 different recordings for each
measured parameter. Figure 10 shows the parameters measured in a typical session. It is
evident how each factor is affected by the occupants.
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Figure 10. Measured physical parameters in a session example.

Sensor data were directly uploaded to the online database via a wireless connection.
In case of connection problems, the data were locally stored (in a file on a microSD) and
uploaded to the database as soon as the internet connection was back. On the other hand,
subjective data were collected by accessing the following online questionnaire. The ques-
tionnaire was divided into two parts: “Basic information” and “Comfort categories in the
last hour”. The questionnaire was drawn for a university classroom [48], adopting the post-
occupancy evaluation (POE) method [47]. The response range for the comfort sensation
was from 1 to 5 [20], where 1 is “very poor” and 5 is “very good”. All participation was
voluntary at the end of the lecture hour (session).

IEQ QUESTIONNAIRE
BASIC INFORMATION:
Gender: Male | Female | Not declared
Age: 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30+
How do you rate global comfort in the classroom?
VERY POOR 1 | 2 | 3 | 4 | 5 VERY GOOD
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COMFORT CATEGORIES IN THE LAST HOUR:
How do you rate thermal comfort in the classroom?
VERY POOR 1 | 2 | 3 | 4 | 5 VERY GOOD
How do you rate the air quality in the classroom?
VERY POOR 1 | 2 | 3 | 4 | 5 VERY GOOD
How do you rate visual comfort in the classroom?
VERY POOR 1 | 2 | 3 | 4 | 5 VERY GOOD
How do you rate acoustic comfort in the classroom?
VERY POOR 1 | 2 | 3 | 4 | 5 VERY GOOD

3.3. Methods

A multiple linear regression (MLR) analysis is a technique used to analyze the linear
relationship between a dependent variable (output/response variable) and two or more
independent variables (inputs/predictors). The MLR can be adopted for two purposes:
explanatory; that is, understanding and weighing the effects of independent variables on
the dependent variable as a function of a given theoretical model; and predictive/estimative,
to identify a linear combination of independent variables to best predict/estimate the
assumed value by the dependent variable.

In previous studies on comfort indices, MLR analyses were performed, or weights
were assigned to different comfort categories in order to provide an indoor global comfort
index (IGCI) [31,33,34,41,42,76,77]. From these studies, it is possible to generalize the
formula for an indoor global comfort index (IGCI):

IGCI = c + W1 I1 + W2 I2 + ... + Wn In (1)

where c is the constant or intercept (which is zero when passing through the origin), I are
the different comfort categories (expressed as indices of one or more physical parameters
or as satisfaction/dissatisfaction indices), W are the corresponding weights, and n are
the index numbers taken into account. In this case study, n = 4 when MLR is applied for
subjective data (corresponding to the four comfort categories) while n = 5 when MLR is
applied for objective data (corresponding to the five measured parameters).

In this study, objective data (from sensor measurements) and subjective data (from
questionnaires) were averaged for every session. Specifically, the following objective
and subjective data correspond to each session. The objective data are temperature average,
humidity average, CO2 concentration average, illuminance average, and noise level average.
While the subjective data are thermal comfort question rate average, IAQ question rate
average, visual comfort question rate average, acoustic comfort question rate average, and
global comfort question rate average. Age and sex were not considered because the data
collected were too homogeneous.

The objective data averages were performed between the collected measurements dur-
ing the regarded session time intervals, while the subjective data averages were performed
between questionnaires conducted at the end of every session. All these averages are thus
pre-set as inputs for the MLR technique.

4. Results and Discussion

The final goal of this study was to identify a predicted indoor global comfort index
(P-IGCI) model, starting from the measured physical quantities, by using this methodology
(MLR) and checking whether a better model existed. To achieve this, data were analyzed,
and the correlations between the overall comfort (as stated in the questionnaires) with the
comfort categories and physical parameters were investigated (in Section 4.1). Then, the
most suitable model for calculating a P-IGCI was identified and presented (in Section 4.2).
The objective data collected for analysis can be summarized graphically in Figure 11, which
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shows the averages of the physical parameters per session. The figure consists of five
histograms aligned with the X-axis. The X-axis represents the date and time of every
session. The Y-axis represents the average measured over the session interval for each
physical parameter.

Figure 11. Physical parameter averages per session.

4.1. Data Analysis

Firstly, MLR was applied to investigate the relationship between the comfort categories
and the global comfort question rate average, treated as the real perceived indoor global
comfort index (RP-IGCI). In this case, MLR was used for explanatory purposes, i.e., to
understand and weigh the effects of each of the four categories on RP-IGCI reported in
the questionnaires. The RP-IGCI stated in the questionnaires was the model’s dependent
variable, while the four comfort categories stated in the questionnaires were the indepen-
dent variables. IBM SPSS Statistics software (version 26) [78] was deployed to perform the
MLR. The resulting standardized coefficients (beta) were 0.517 (for thermal comfort), 0.418
(for IAQ), 0.223 (for visual comfort), and 0.246 (for acoustic comfort) with the coefficient
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of determination R2 equal to 0.74. These coefficients are reported on a percentage scale to
illustrate the subjective impact of each comfort category on overall comfort:

• Thermal comfort: 37%;
• IAQ: 30%;
• Visual comfort: 16%;
• Acoustic comfort: 17%.

Secondly, MLR was applied to estimate the correlation between the physical parame-
ters and the overall comfort average. Therefore, MLR was used for predictive/estimative
purposes, i.e., to identify linear combinations of objective variables to best predict the
assumed value by the RP-IGCI. Thus, RP-IGCI is held as the dependent variable, while the
four main physical quantities measured (temperature, CO2 concentration, illuminance, and
noise level) are independent variables.

As mentioned above, all of these variables were entered into the algorithm as averages
within a lesson (typically one hour). IBM SPSS Statistics software (version 26) was deployed
to perform the MLR. The resulting standardized coefficients (beta) are 0.377 (for tempera-
ture),−0.538 (for IAQ),−0.035 (for illuminance), and−0.022 (for acoustic comfort) with the
coefficient of determination R2 = 0.49 and the root mean square error (RMSE) = 0.40 (mean
square error (MSE) = 0.16). By adding humidity in the MLR algorithm, the coefficient
of determination does not change. For this reason, this parameter was removed from
the model; thus, maintaining one physical parameter for each comfort category. The XY
scatter plots are presented below. These graphs show the relationship between the comfort
category question rate and the corresponding measured objective physical parameter, such
as temperature (in Figure 12), CO2 concentration (in Figure 13), illuminance (in Figure 14),
and noise level (in Figure 15). A high comfort question rate corresponds to a high level of
comfort, i.e., 5 equals the “very good” comfort answer from the questionnaire.

For all measured physical quantities, a linear trend line was entered. Obviously,
there is a satisfaction value range for temperature and illuminance (unlike noise level and
CO2 concentration): high/low temperature and too much/too little illuminance generate
dissatisfaction. For these reasons, in general, a polynomial (second-degree) trend line
would be more suitable. However, in this specific case study, values corresponding to high
temperatures (it was not summertime) or glaring light were never detected. Hence, for
simplification, a linear relationship is also good.

Figure 12. Thermal comfort XY scatter plot and trend line.
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Figure 13. IAQ comfort XY scatter plot and trend line.

Figure 14. Visual comfort XY scatter plot and trend line.

Figure 15. Acoustic comfort XY scatter plot and trend line.

4.2. Model Building and Characterization

This section aims to find a model that outputs a P-IGCI, derived from the measured
physical quantities, as close as possible to the RP-IGCI, based on the questionnaires. Both
of these indices were calculated over a session. The chosen algorithm was the one that
returned the smallest possible RMSE. First, linear regression methods were investigated
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using SPSS, and the “stepwise” method performed best. Stepwise criteria are a probability
of F to enter ≤ 0.050 and a probability of F to remove ≥ 0.100. In this way, a model
with “CO2 concentration” and “temperature” as “variables entered” was achieved. The
coefficient of determination R2 was 0.46 and RMSE was 0.38 (MSE is 0.14). The “Regression
Learner” App in MATLAB (version R2021b) [79] was then used to test the “stepwise”
method against other models. Temperature, humidity, CO2 concentration, illuminance, and
noise level were entered as “predictors”, and RP-IGCI was entered as a “response”. The
app tested 19 different algorithms and calculated the corresponding RSME; the values are
listed in Table 5. “Stepwise” was confirmed as the best performing model, not only among
the linear regression methods, but across all tested methods.

Table 5. Tested algorithms and corresponding RMSE/MSE. Stepwise linear has the best RMSE/MSE.

Model Method RMSE MSE

Linear regression Linear 0.40 0.16
Interactions linear 0.40 0.16
Robust linear 0.42 0.18
Stepwise Linear 0.38 0.14

Regression trees Fine tree 0.58 0.34
Medium tree 0.51 0.26
Coarse tree 0.51 0.26

Support vector machines Linear SVM 0.47 0.22
Quadratic SVM 0.47 0.22
Cubic SVM 0.56 0.31
Fine Gaussian SVM 0.51 0.26
Medium Gaussian SVM 0.51 0.26
Coarse Gaussian SVM 0.47 0.22

Gaussian process Rational quadratic GPR 0.55 0.30
Regression Squared exponential GPR 0.53 0.28

Matérn 5/2 GPR 0.53 0.28
Exponential GPR 0.52 0.27

Ensembles of trees Boosted trees 0.51 0.26
Bagged trees 0.48 0.23

In the following, “predicted vs. actual plot” (Figure 16), “residuals plot” (Figure 17),
and “response plot” (Figure 18) are illustrated. A high indoor global comfort index (IGCI),
either real perceived (RP-IGCI) or predicted (P-IGCI), equals a high level of comfort, i.e.,
5 corresponds to the maximum comfort.

In Figure 16, the observation “cloud” around the perfect prediction line is displayed.
This figure also reveals that, in general, a good overall comfort was perceived (all points are
in the range 2.5–5). In Figure 17, the P-IGCI residuals on the true response (RP-IGCI) are
shown. All points are within the−1 and +1 range. This is a very good result since the scale is
potentially between −5 and +5. The errors can be better highlighted in Figure 18. The error
is minimum when the RP-IGCI point coincides with the P-IGCI point, while it is maximum
when the RP-IGCI point is far from the P-IGCI point, i.e., when the red line is longer. The
error ranges from a minimum of zero (in session 17, with RP-IGCI = P-IGCI = 3.67) to a
maximum of less than 1 (in session 23 with RP-IGCI = 4.67 and P-IGCI = 3.74). The result
is positive since it is a maximum error, and the RMSE is equal to 0.38. For example, this
means that if a session average comfort of 4 out of 5 is perceived, the model:

• In the worst case, will hardly go to 3 or 5 (±1);
• On average, will return 4.38 or 3.62;
• In the best case, will coincide with 4.00.
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This global picture is very good since these are estimates on subjective parameters and
a 5-point comfort scale.

Figure 16. Predicted (P-IGCI) vs. actual (RP-IGCI) plot.

Figure 17. P-IGCI Residuals on true response (RP-IGCI).
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Figure 18. “True (RP-IGCI) vs. predicted (P-IGCI)” error for every session.

5. Conclusions

This paper presented a wireless IEQ logger with a DIY philosophy. A simple but
comprehensive hardware and software implementation was proposed. The system is
designed to monitor all the main types of "comfort" that represent indoor environmental
quality, i.e., thermal comfort, indoor air quality (IAQ), visual comfort, and acoustic comfort.
The wireless IEQ logger hardware development was possible thanks to the employment
of different sensors connected to the Raspberry Pi board. This board operates in an open-
source ecosystem. Other hardware involved instruments adopted for the calibration and
testing phases of the different sensors. The structure of the questionnaire and, in general, of
the entire software, allowed for the organized collection of several objective and subjective
data. The specific case study concerns the logger’s use in a university classroom. However,
the system implemented is relatively low-cost and can be easily reproduced for monitoring
in other classrooms or, more generally, in different indoor environments. The total cost
of the IEQ logger was about EUR 150. The price is about the same as a medium quality
IEQ logger. The problem is that devices measuring all examined parameters can hardly
be found on the market. For example, Netatmo NHC-IT [80] costs about EUR 150 but
does not measure illuminance. A professional air quality detector, such as Airthings Wave
Plus [81], costs about EUR 250. This device also measures other parameters, such as
radon and TVOCs, but does not measure noise and illuminance. Therefore, the wireless
IEQ logger is as cheap as a mid-range product for indoor air quality, but it measures
all physical parameters related to IEQ categories. Furthermore, it has greater processing
capacity, thanks to Raspberry Pi, allowing for upgrade capabilities. Due to the methods
adopted, the main objective was achieved (i.e., identifying a P-IGCI model, starting from
the measured physical quantities). The MLR technique (between subjective data) allowed
to detect the weights of the different comfort categories (thermal comfort 37%, IAQ 30%,
visual comfort 16%, acoustic comfort 17%). A first predictive model was found through the
MLR technique between objective data and overall subjective comfort (RP-IGCI). Finally,
by testing and examining 19 different algorithms, the MLR model with the stepwise
method was the best one with the lowest RMSE/MSE. The SPSS (by IBM) and MATLAB
(by MathWorks) software were of great help and fundamental importance to achieve
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these results. Interestingly, the physical quantities excluded from the model identified
corresponded to the comfort categories that also subjectively had the lower weights (i.e.,
visual comfort and acoustic comfort). This result, in general, does not mean that these
comfort categories (or the corresponding physical parameters) are useless. The reasons why
MLR with the stepwise method discarded these two parameters are: (i) Objective difficulty
in measurements (e.g., the voice of the teacher to be distinguished, light varying depending
on the position in the room, etc.); (ii) always satisfactory levels: illuminance almost always
above 50 lx (as per EN 12464-1) and noise level always below 60 dBA (as per the World
Health Organization Community Noise Guidance). In this regard, there are studies [38,82]
stating that the level of satisfaction with a comfort type influences the classification of that
condition. In other words, the more dissatisfied people are with a condition, the more
weight will be given to it; conversely, when people are satisfied with a certain condition, it is
considered of less importance [54]. Finally, it is interesting to note that, in several studies on
indoor environments [33,34,37,42,82,83], IAQ and thermal comfort are considered the most
relevant categories. This fact is even more evident in different Green Building certification
schemes [46], in particular by KLIMA [84], LiderA [85], and NABERS [86].

Possible future research could involve the use of artificial intelligence algorithms, such
as machine learning techniques, to identify an increasingly accurate predictive model of
global comfort. However, these techniques require large amounts of data to be efficient.
In this case, more data could be collected by: (i) producing more wireless IEQ loggers,
(ii) installing them in more classrooms, in kindergartens, in school rooms (where there are
students for a minimum of 6–10 h per day), and (iii) collecting data for a much longer period
of time. The most commonly adopted physical parameters for each comfort category were
considered in this research. A likely future step could be to improve and certify the IEQ
logger with its sensors. For instance, in other contexts, an IEQ logger can be implemented
to assess individual comfort categories in accordance with the corresponding international
standards. Further investigations should concern even more precise measurements for each
comfort category. For thermal comfort, this would involve (i) measuring MRT; (ii) following
ISO 7730 [9] and adopting the instrumentation required by ISO 7726 [61]; and (iii) using
data from the weather. For visual comfort—it would involve measuring light quality
in colour rendering and the homogeneity of light [25]. Acoustic comfort would involve
considering echo and acoustic privacy [19]. Eventually, indoor air quality would involve
monitoring total volatile organic compounds (TVOCs) [87–90]. Therefore, the general idea
would be to increase the types of sensors to collect and verify if the new parameters have
significant impacts on overall comfort.
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