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Abstract

Background: In recent years, there is aroused interest in expressing complex systems as networks of interacting nodes.
Using descriptors from graph theory, it has been possible to classify many diverse systems derived from social and physical
sciences alike. In particular, folded proteins as examples of self-assembled complex molecules have also been investigated
intensely using these tools. However, we need to develop additional measures to classify different systems, in order to
dissect the underlying hierarchy.

Methodology and Principal Findings: In this study, a general analytical relation for the dependence of nearest neighbor
degree correlations on degree is derived. Dependence of local clustering on degree is shown to be the sole determining
factor of assortative versus disassortative mixing in networks. The characteristics of networks constructed from spatial
atomic/molecular systems exemplified by self-organized residue networks built from folded protein structures and block
copolymers, atomic clusters and well-compressed polymeric melts are studied. Distributions of statistical properties of the
networks are presented. For these densely-packed systems, assortative mixing in the network construction is found to
apply, and conditions are derived for a simple linear dependence.

Conclusions: Our analyses (i) reveal patterns that are common to close-packed clusters of atoms/molecules, (ii) identify the
type of surface effects prominent in different close-packed systems, and (iii) associate fingerprints that may be used to
classify networks with varying types of correlations.
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Introduction

The study of real life networks, such as the world-wide web [1],

internet [2], power-grids [3] and math co-authorship [4], has put

forth properties that distinguish them from classical Erdös-Rényi

random networks [5]. The variety of degree distributions and

other statistical measures that emerge has heightened the interest

in complex networks. With the proposition of algorithms by Watts-

Strogatz [3] and Barabási-Albert [6] to generate real life-like

networks, this area has been investigated extensively [7,8]. The

classification of networks is mostly based on measures such as

degree distributions, average clustering, and average path length

[9,10]. Recently, spectral properties of networks gained attention

since the distribution of eigenvalues characterize several aspects of

the network such as algebraic connectivity and bipartiteness

[11,12,13]. Although there may be different graphs structures with

identical Laplacian spectra that define the network, they often

show similar characteristics in terms of network parameters [14].

Several heuristic algorithms are proposed to generate networks

from their spectra [15].

In recent years, proteins were investigated as networks, by

taking the amino-acids as nodes. Termed as residue networks

(RN), edges between neighboring nodes are represented by their

bonded and non-bonded interactions [16,17,18,19]. Several

studies have shown that residue networks have small-world

topology [16,20,21,22], characterized by their logarithmically

scaling average path lengths with network size, despite displaying

high clustering. Further studies also utilized network models for

protein structures to predict hot spots [23,24,25,26], conserved

sites [23,24,25,26,27,28,29], domain motions [23,24,25,26,30,31],

functional residues [32,33,34,35] and protein-protein interactions

[36]. The small-world topology of residue networks is established,

and various network properties such as the clustering coefficient,

path length, and degree distribution are used to account for, e.g.

the different fold-types in proteins [27], interfacial recognition sites

of RNA [28], and bridging interactions along the interface of

interacting proteins [17]. In light of these studies, we expect other

self-organized molecular systems of synthetic origin to display

similar topology.

In fact, a hierarchical arrangement of the nodes is expected to

occur in self-organization of atoms and molecules under the

influence of free energetic driving forces. In graph theory,

hierarchies have been quantified by the presence of (dis)assortative

mixing of their degrees, defined as nodes with high degrees having

a tendency to interact with other nodes of (low)high degrees [37].

Analytical and computational models for generating assortatively

mixed networks were proposed [38,39]. Newman has shown that

assortatively mixed networks percolate more easily and they are

more robust towards vertex removal [38,40]; most social networks

are examples of these. In this work, we find RN of proteins to also

have assortative mixing, although many biological networks such

as protein-protein interactions and food webs were found to

display disassortative behavior.
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It is expected that in networks displaying any degree of

correlations, local properties of the constructed graphs will have an

effect on the global features. However, a connection between the

local and global network properties and the underlying structure of

molecular systems has yet to be established. In this study, we

derive a relationship relating the nearest neighbor degree

correlation of nodes, their degree, and clustering coefficient. We

next show that a linear relationship is valid for two types of self-

organized molecular systems: (i) Folded proteins and (ii) block co-

oligomers in a solvent that encourages micelle formation.

Furthermore, simulated configurations of Lennard-Jones clusters

also approximate the findings as well as a simple polymeric system

forced into a close-packed structure under extremely high

pressure. We also show that model hexagonal close packed

(HCP) structures may be used to reproduce many of the graph

properties of the above-mentioned systems. A brief description of

the model systems are summarized under the Methods section.

This study is a first step towards using statistical characterization in

determining the design principles underlying organization of

complex molecular networks.

Results

Relationship between knn and k
We expand on the treatment in ref. [41] to derive a general

relationship for the nearest-neighbor degree correlation, knn, for

graphs with non-negligible clustering coefficients, C, defined

below.

An un-weighted simple network can be identified fully via the

adjacency matrix (A), constructed as

Aij~
1 ifnodesiandjareconnected

0 ifnodesiandjarenotconnected

�
ð1Þ

Several parameters are defined to classify networks; each can be

computed from the adjacency matrix and are considered as either

a local or a global parameter. The simplest parameter is the

connectivity, ki, of node i, also known as the degree;

ki~
XN

j~1

Aij ð2Þ

Poisson, Gaussian or Power law degree distributions are

frequently observed in many real life networks.

Higher order degree correlations are also of importance and

may be utilized to identify more distinguishing features of the

network. For instance, second degree correlation of a node i,

denoted by knn,i, is the average connections of its neighbors and

may be written in terms of the adjacency matrix.

knn,i~
XN

j~1

XN

m~1

AijAjm~
XN

j~1

Aijkj ð3Þ

knn,i is also referred to as nearest-neighbor degree correlation.

Normalized third degree correlations (Ci), also termed clustering

coefficient, is widely used to characterize the distinctness of

networks [3,6]. It is defined as the ratio of the number of

interconnections between a node’s neighbors to the number of all

its possible connections, i.e.;

Ci~

1

2

XN

j~1

XN

m~1
AijAjmAmi

ki ki{1ð Þ
2

ð4Þ

While ki, knn,i, and Ci are descriptors of local structure, another

common parameter used to classify the global structure of

networks is the average shortest path length, Li of a node. Given

that the shortest number of steps to reach node i from node j along

the network is Lij, it is the average number of steps that are

traversed from all other nodes to node i.

The generating function, G0(x), for the probability distribution

of vertex degrees k is given by,

G0 xð Þ~
X?
k~0

pkxk ð5Þ

where xj jƒ1, pk is the probability that a randomly chosen

vertex on the graph has degree k, and its distribution is normalized

with G0(1) = 1. The G0(x) function generates the probability

distribution, capturing all the discrete probability values through

the derivatives property,

pk~
1

k!

dkG0

dxk

����
x~0

ð6Þ

The nth moment of the distribution can thus be calculated from

SknT~
X

k

knpk~ x
d

dx

� �n

G0 xð Þ
� �

x~1

ð7Þ

In particular, the average degree of a vertex is SkT~z~P
k kpk~G

0

0 1ð Þ. Here the superscript prime denotes differentia-

tion with respect to x.

If one randomly chooses m vertices from a graph, than the

powers property of the generating function provides a route to

generating the distribution of the sum of the degrees of those

vertices by G0 xð Þ½ �m.

We define outgoing edges from the first neighbors of a randomly

chosen vertex as those connecting to vertices different from the

first neighbors of the originally chosen vertex. It is first necessary to

define the generating function for the distribution of the degree of

the vertices one arrives at, along a randomly chosen edge. That

vertex will be reached with probability proportional to its degree,

kpk, so that the normalized distribution is generated by

X
k

kpkxkX
k

kpk

~x
G
0
0 xð Þ

G
0
0 1ð Þ

ð8Þ

Starting from a randomly chosen vertex and following each of

its edges to arrive at the k nearest neighbors, each of the vertices

arrived at will have outgoing edges that is given by the degree of

that vertex less the edge that one arrives along and the backlinks, b.

The latter are defined as the edges that interconnect the nearest

neighbors of the original vertex. Thus, the generating function for
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the outgoing edges from each vertex is,

G1(x)~

X
k

kpkxk{1{bX
k

kpk

ð9Þ

Note that b itself depends on k.

The number of backlinks, b, is given in terms of the clustering

coefficient, C, around a given node with degree k. Using the

definition of C, with the number of interconnections, I, between its

first neighbors, C~I= k k{1ð Þ=2½ �, the average number of back-

links for each of the k neighboring nodes is, b~2I=k~C k{1ð Þ.
This will lead to the generating function for outgoing edges as:

G1 xð Þ~

X
k

kpkx k{1ð Þ 1{Cð Þ

z
ð10Þ

The generating function for the distribution of all outgoing links

from the k neighbors of the original node is then obtained from the

powers property:

Gk xð Þ~G1 xð Þk~

X
k

kpkx k{1ð Þ 1{Cð Þ

z

" #k

ð11Þ

The average number of outgoing links is computed from the

first moment of the generating function evaluated at x = 1. In

general, this leads to

G
0
k 1ð Þ~k

Sk2T
z

{1

� �
{

k

z

X
k

Ckpk k{1ð Þ ð12Þ

knn is the nearest neighbor correlations, defined as the total

number of neighbors of a given node which emanates from a

selected node of k neighbors. Thus, it is the sum of the number of

outgoing links per neighbor, the backlinks per neighbor and the

link that connects the original node to the first neighbor:

knn~
G
0
k 1ð Þ
k

zbz1~
Sk2T

z
{

1

z

X
k

Ckpk k{1ð Þ
� �

zC k{1ð Þ

ð13Þ

The first term in curly brackets is constant, carrying information on

the moments of the distributions, depending on how C is related to k.

The second term determines the assortative versus disassortative

behavior of the network. For example, if C decreases with k as a single

exponential, C! exp {akð Þ, we may get assortative or disassortative

mixing depending on the strength of the decay. For the cases of C R
0, one gets uncorrelated networks. On the other hand, for the

particular case of a system where C is finite, yet independent of k,

equation 13 reduces to the simple linear expression:

knn~Ckz
Sk2T 1{Cð Þ

z
ð14Þ

with slope C and the intercept depending on the degree

distribution. For example, for a Poisson distributed network, e.g.

approximated by RN constructed from folded protein structures as

was shown in [16,17], pk~zke{z=k!, the relation takes the form

knn~Ckz 1zzð Þ 1{Cð Þ ð15Þ

In this work, we study concentrated atomic/molecular systems

which have a weak dependence of clustering coefficient on degree.

We shall see that the linear dependence of equation 14 suffices to

describe their nearest neighbor degree correlations.

In passing, we note that an algorithm for generating networks

with given clustering dependence on degree has been proposed

[42]. However, the algorithm fixes the average clustering

coefficient and has no control over the distribution of clustering

for a given degree, while this distribution is crucial in our

derivation. Moreover, to construct the desired network, the

constraint for networks to be assortatively mixed is imposed.

Statistical properties of close-packed atomic/molecular
systems

The nearest neighbor degree correlations are displayed in

figure 1 for the five systems studied. We find that all of them

display assortative mixing. Furthermore, they are well-approxi-

mated by a linear relationship. In fact, one may use equation 14,

which was obtained assuming that clustering is independent of

degree, to predict the clustering coefficient (from the slope) and the

ratio ,k2./z (from the intercept), to assess the range of validity of

this assumption. In Table 1 is a comparative list of the predictions

and the actual values calculated for the systems at hand. We find

that the predictions overlap with the actual network values for all

systems. Since the linear dependence, as well as the match

between the predicted values of C and ,k2./z depend on C being

independent of k (see the reduction of eq. 13 to obtain eq. 14), we

further examine this property in conjunction with degree

distributions (figure 2). For all the systems studied, there is a

decreasing trend of C with k, although it is quite weak for RN,

micellar networks (MN) and Lennard-Jones clusters (LJC). Taken

together with the degree distributions, also displayed in Figure 2

with the gray shaded curves, the variation of C with k is even less

significant in the regions within one-standard deviation of the

average degree for these three systems. Below we discuss in detail

the implication of these observations for the individual systems

studied.

Self-organized molecular structures: Residue networks

and micellar networks. Previous studies on RN showed that

these networks have high clustering as opposed to their random

counterparts and have comparable shortest path lengths as the

random networks; therefore, they can be considered as having

small-world topology [16,20,21,22]. In these studies, comparisons

were performed for the average properties throughout the network

between the RNs and their randomly rewired counterparts.

Although average values do confirm that RNs have small-world

properties, detailed analyses of the individual parameters are

needed to assess similarity with artificially generated networks.

In reference [16] it was shown that the degree distributions of

RN are Poisson; the mean is 6.2. Therein, it was also shown that

the residues in the core have a mean clustering coefficient of ca. 1/

3, whereas this value approaches 0.5 for the nodes that reside

along the surface. Averaged over the set of 595 proteins, the

clustering coefficient of RN has the value 0.38. The linearity

between knn and k holds for all sizes of proteins, despite the size

differences, in addition to the slight decreasing dependence of C

with k. We adopt equation 15 to analyze the relationship between

Hierarchical Structure in Spatial Networks
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knn and k in RN and we find that the slope may be identified by the

average clustering coefficient of the network. The values of ,C.

and z = ,k2./z calculated directly from the network and

predicted via equation 14 are listed in Table 1. Within the error

bounds, the predictions of theory are valid; the only slight

deviation occurs as an underestimation of ,C. for the smaller

proteins where the surface effects (and the variance in C) are more

pronounced. We shall later elaborate further on the surface effects.

We expect other self-organized molecular structures to display

network properties similar to the RN obtained from proteins,

provided that they are thermodynamically stable and have a given

average structure around which fluctuations are observed. Similar

to the proteins, these structures follow certain organization rules

due to the (in)compatibility of their chemical units with the solvent.

Other environmental factors, such as the temperature or the

concentration, play a role on the type of organization observed. As

example systems, we choose micelles of different morphologies

formed by the ABC type co-oligomers, whose coordinates are

obtained from dissipative particle dynamics (DPD) simulations, as

described in the Methods section.

At low concentrations, these oligomers organize to form

spherical micelles. As the concentration increases, adjacent spheres

merge and attain a cylindrical morphology. Further increase in the

concentration results in the formation of lamellae. As an inset to

figure 3, we display the spherical, cylindrical and the lamellar

formations excerpted from oligomer concentrations of u = 0.3, 0.6,

and 0.9, respectively. Note that it is the core region (i.e. the

fluorinated regions shown as white spheres) that maintains the

stable morphology, while the corona formed by the red and gray

beads shows large fluctuations in conformatio xn. Thus, we use the

coordinates of the white blobs to generate the MN. The degree

distribution and the dependence of clustering coefficient on degree

of a sample network with u = 0.6 are shown in figure 2. It is

important to note that, regardless of the type of self organization,

these network parameters show the same pattern as RN. We

approximate their degree by Poisson distribution.

Similar to RN, analysis of k vs. knn relationship for MN reveals a

positive linear correlation regardless of morphology (Figure 1).

The values of ,C. and z = ,k2./z calculated directly from the

network and predicted via equation 15 are also listed in Table 1.

Nodes with less than four and more than 15 connections are

omitted due to lack of statistics of blobs with too few or too many

neighbors. Theoretical predictions of z = ,k2./z from the

intercept of the k vs. knn relation is in excellent agreement with

the numerical results. The slope of the best-fitting line slightly

overestimates the average clustering coefficient.

The linear relationship between knn and k also predicts the

increase in z with size in RN and the decrease in z with

concentration (and morphology change) in MN. The theory

slightly underestimates the clustering coefficient of RN whereas it

overestimates that of MN. This is due to surface effects: In

proteins, nodes along the surface have high clustering coefficients

as shown in reference [16]. Because these nodes have few links that

are interconnected, they increase the average clustering coefficient

Figure 1. Averaged knn vs. k plots for RN with N = 190–210 (29
proteins), MN with u = 0.60 (cylindrical micelle is formed in the
core), LJC (N = 500), HCP (N = 500), and PBD systems. Using
equation 14, the values for C and z are predicted and compared with
the actual values of the network in Table 1. For RN, nodes with degree
1, 13, 14 and 15 are omitted since there is relatively small number of
nodes with such degrees (, 25) to provide meaningful statistics.
Similarly, for MN, nodes with degree less than 5 and greater than 15 are
omitted to provide meaningful statistics.
doi:10.1371/journal.pone.0015551.g001
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then would be directly predicted by an overall fit to the data in

figure 1. Conversely, in MN surface nodes along the core are

connected to the solvo-phillic arms of the chains. These

connections, which are omitted in the calculations, since our

network construction is based on only the core of the micelles and

not the corona, have the reverse effect on the average value of the

clustering coefficient.

Effect of excluded volume: Lennard-Jones and HCP

clusters. Atoms or groups of atoms occupy a specific volume

in space, and as a result, there is an upper bound on the number of

neighbors that may be within the direct interaction range of a

given node. Since our nodes comprise of coarse-grained groups of

atoms that are not arranged spherically symmetric, we observe

number of neighbors as large as 19 for a few nodes. This is in

contrast to the maximum coordination of 12 expected of regular

lattices of spherical particles. All of the networks studied here have

this property of an upper bound on the degree. However, the

extent to which this excluded volume effect influences the

predictions of the previous subsections is unclear. To further

investigate this point, we study LJC, which are clusters of atoms of

minimum energy that interact purely via Lennard-Jones

interactions. We confine our attention to those within the size

range up to 550 particles which is compatible with the network

sizes of RN and MN studied here. Although LJC conform to an

icosahedral arrangement of atoms, they have incomplete cores (i.e.

holes within the structure). We therefore also study hypothetical

atomic clusters which have complete occupancy of HCP lattice

sites.

The degree distributions of these systems are jagged and cannot

be described as Poisson (figure 2). We find a linear relationship

between knn and k, as in the previous self-organized systems

(figure 1). For LJC, the dependence of C on k is very similar to

those of MN, following a nearly linear trend with a small negative

slope (20.02). For HCP, there is a stronger dependence of C on k,

yet for degrees that are observed more frequently, the average

clustering remains almost constant (C is 0.36 for k = 12 and 0.40

for k = 9). In both types of systems, while the ,k2./z values are

well-predicted by equation 14, we find ,C. to be consistently

underestimated by the theory, more so for LJC than for HCP

(Table 1). As discussed in the previous subsection for RN, this is

again due to the surface effects, which is more prominent for the

irregular surfaces of LJC.

Effect of chain connectivity: Polybutadiene (PBD)

Melts. Finally, we study polymeric melts to discern the

additional effect of connectivity on the statistical properties of

the networks. The linear relationship between knn and k is also

observed for this system which is forced into a close-packed

structure by applying very high pressure. Degree distribution

deviates from Poisson as for LJC and HCP, while clustering

behavior is similar to those obtained for HCP. Both ,C. and

,k2./z are predicted via the theoretical fit (Table 1), with a slight

overestimation of ,C.. The overestimation is due to the fact that

we truncate the system at the periodic boundaries of the cubic

simulation box, and therefore the neighbors of some of the surface

beads are artificially eliminated. Similar overestimation was also

obtained for MN, where the corona neighbors of the core beads

were removed. Thus, the effect of chain connectivity only plays a

role in defining a correct neighborhood structure for the surface

beads.

Putting together these results, we conclude that the excluded

volume leads to the assortative mixing of the local structure,

described by the positive slope of between knn and k curves.

Furthermore, the extrapolation of the curves to low connectivity

(k R 0) leads to an excellent prediction of the ,k2./z values,

regardless of the type of system studied (figure 4). Additional

constraints on the local organization of the beads would lead to

further local structuring which is measurable by the slope of these

curves converging to ,C.. We find that chain connectivity alone

does not bring about such local organization of the beads as

observed for PBD system at moderate density (data not shown).

Table 1. Network parameters ,C. and ,k2./z computed from the generated graphs and predicted from the least squares linear
fit to knn vs. k curves.

Calculated Predictedc

,C. ,k2./z ,C. ,k2./z

Residue Networksa 595 Proteins; ,N. = 254 0.38 6.2 0.3560.01 5.860.2

N = 140–160 0.38 6.1 0.3260.01 5.760.2

N = 190–210 0.39 6.2 0.3260.02 5.860.4

N = 290–310 0.37 6.6 0.3660.01 6.260.2

Micellar Networksa u = 0.3 0.45 10.3 0.4060.02 10.560.8

u = 0.6 0.43 9.9 0.5160.02 10.260.8

u = 0.9 0.41 9.4 0.5160.02 9.660.6

Lennard-Jones Clustersb N = 350 0.47 15.1 0.3360.07 14.461.4

N = 400 0.47 15.3 0.3160.06 14.561.1

N = 450 0.46 15.4 0.3360.07 14.661.3

N = 500 0.46 15.5 0.3360.07 14.661.4

N = 550 0.47 15.6 0.3760.12 15.362.6

HCPb N = 500 0.41 10.2 0.3860.06 9.960.8

PBDb T = 430 K, P = 100 GPa 0.45 12.8 0.5260.03 12.460.7

aDegree distribution is well-described by Poisson; therefore predictions by eq. 14 and 15 lead to the same result. z = ,k. = ,k2./z for these systems.
bDegree distributions are not well-described by Poisson. Predictions are made through eq. 14.
cError margins on the predicted values are reported.
doi:10.1371/journal.pone.0015551.t001
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However, systems attaining dense core structures do converge to

this limit. Such close-packing may be attained by imposing

external factors such as the high pressure on PBD; alternatively,

the core regions of self-organized systems prefer to realize such an

arrangement due to the free energetic requirements of arranging

chains with both solvo-phobic and solvo-phillic regions in a solvent

that creates the driving force for the formation of the densely

packed core [43].

Discussion

This study is based on the premise that network structures are

better classified by the distributions of their network parameters

rather than the average values. One previous example has been

with approximating residue networks derived from proteins with

the regular ring lattice: Although it is relatively easy to generate a

corresponding ring lattice with few random rewired links having

the same average degree and clustering coefficient as the RN [16],

neither the second degree correlations nor the global properties

(e.g. average path length) are reproduced with this approach.

However, comparison of distributions of the parameters involved

is not straightforward.

To make the problem tractable, we derive a relationship

between knn and k for networks with arbitrary degree distributions,

but with narrowly distributed finite clustering. This subset of

constraints is relevant to the study of complex systems, because the

results directly apply to the study of self-organized molecular

structures which are characterized by Poisson degree distributions,

and narrowly distributed clustering coefficients. In randomly-

packed chain systems this relationship is expected to be lost, as is

observed when the corona region of the micellar networks (i.e. the

disorganized parts of the chains protruding into the solvent) is also

included in the calculations (data not shown). We validate the

derived linear relationship between knn and k on several model

networks based on three dimensional regular structures, polymeric

melts forced into close-packing by external pressure as well as

those constructed from proteins and micelles of self-organizing co-

oligomers.

Excluded volume and close-packing together control the plateau

value of the clustering coefficient reached for nodes which are

located in the core of the systems studied; i.e. those with high

degree. Moreover, they impose a decreasing trend on C with

increasing k, as well as providing restrictions on degree

distributions. These constraints lead to assortative mixing in the

graph structure. The presence of a single chain (as in RN), many

chains (as in MN and PBD) or no chains (as in LJC and HCP) does

not have an effect on these trends.

The close packed structures emerge as model systems that

approximate the network properties of self-organized molecular

structures: They yield the local statistical averages and distribu-

tions similar to that of the self-assembled systems. Using these

model networks as the basis, one may generate novel networks by

introducing a few random links whereby the local properties are

preserved while the desired global properties are approximated.

The ultimate goal is to use both statistical and spectral

characterization to design networks with desired properties and

to determine the principles underlying organization of complex

networks.

Figure 2. Averaged clustering vs. degree plots for RN (N = 190–
210), MN (u = 0.60), LJC (N = 500), HCP (N = 500), and PBD on the
left y-axis. Degree distributions are superposed (shaded) and labeled
on the right y-axis.
doi:10.1371/journal.pone.0015551.g002
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Methods

Self-organized molecular structures
In this subsection we describe how the networks are constructed

for the two self-organized molecular structures studied in this

work.

Residue Networks. These networks are formed from experi-

mentally determined protein structures obtained from the Protein

Data Bank (PDB) [44]. For the RN calculations we utilize a set of

595 single-chain proteins with sizes between 54–1021 and having

a sequence homology less than %25 [45]. This protein set is

identical to the set we used in our previous studies [16,17] and is

listed as a supplementary file in [17].

Given a protein, each amino-acid is represented by a node that

is centered at the position of Cb atoms, or the Ca atom in the case

of Glycine. Edges are added between two nodes (i.e. Ai,j = 1 in

equation 1), if they are closer than a selected cutoff distance, rc. We

call these constructions RN. We use rc = 6.7 Å as in our previous

work, which is the distance where the first coordination shells ends,

as computed from the radial distribution function (RDF) shown in

figure 3. See references [16,17,46] for more details on the

construction of residue networks and the choice of rc.

Micellar Networks. Unlike proteins, there is no experi-

mentally available atomistic structure data for self-organized

synthetic molecules. We therefore generate such data using the

coarse grained simulation methodology DPD. In DPD, the

equilibrium morphology of a group of beads is obtained by

integrating out the fast motion of atoms. In addition to the random

and dissipative forces, the net forces on the beads are soft and

repulsive conservative forces. The simulation is carried out by

Figure 3. Radial distribution function g(r) calculated for sample
systems in the current work. Distance r is in Å for RN, PBD and LJC
structures, and is in reduced units (bead size = 1 unit) for the other
cases. The cutoff distances, rc, utilized for network construction are also
marked on the figures. An example network construction is displayed
for the residue network (RN) of the sample protein (PDB code 1esl) as
an inset; protein structure in ribbon diagram is on the left, the
constructed network at the rc value selected for all residue networks is
on the right. Also shown as inset are the MN structures formed at
various concentrations (u = 0.30, spherical; u = 0.60 cylindrical; u = 0.90,
lamellar).
doi:10.1371/journal.pone.0015551.g003

Figure 4. Comparison of predicted versus calculated values of
the ratio of second to first moments of the degree distribu-
tions, ,k2./z.
doi:10.1371/journal.pone.0015551.g004
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integrating Newton’s law of motion. DPD simulations allow

reaching long time scales for macromolecular systems. Thus,

morphologies of self-organized systems of large sizes can be

studied. Here, we simulate the micelle formation by ABC type

oligomers of styrene-co-perfluoroalkylethylacrylate in tetrahydro-

furan (F beads). The co-oligomer consists of ten styrene monomers

(A beads), seven perfluoroheptane monomers (C beads) and a

linker monomer (B bead). The styrene monomers in the co-

oligomer have a tendency to interact with the solvent, whereas the

fluorinated parts prefer to segregate, thus resulting in micelle

formation. The equilibrium morphology depends on the

concentration of oligomer in the solution [47]. Force on bead i

is given by f i~
P

j=i FC
ij zFD

ij zFR
ij

	 

z
P

k Fconn
ij , where the

respective forces are due to interaction, dissipative and random

forces between beads i and j, and chain connectivity between bead

i, its neighbors k along the chain contour. A general overview of

the DPD method and parameterization details for this particular

system is given in [48].

We report results from systems where the volume fraction, u, of the

oligomers is 0.3, 0.6 and 0.9, respectively. We find that at these

concentrations, the triblock co-oligomers self-organize into spherical,

cylindrical and lamellar morphologies respectively, as the concentra-

tion is increased. Once the organized structures are obtained, we

focus on one substructure from the simulated system; e.g. the set of

oligomers that form a complete sphere are taken as the structure

whose network will be formed. Thus, the spherical structure is made

up of 50 chains, the cylindrical structure has 100 chains, and the

lamellar structure has 150 chains. In each sample structure, we

concentrate on the fluorinated segments, which have self-organized

due to the driving forces inherent to the system beads. By computing

the RDFs around these beads, we find that the first coordination shell

ends at 1.1 DPD units (see figure 3). We use this cutoff distance to

form the network (equation 1) whose properties are studied. Chain

connectivity of a copolymer is preserved regardless of the particle

separation; i.e. (i, i+1) connections are always present. Also shown as

an inset to figure 3 are sample configurations of spherical, cylindrical

and lamellar formations excerpted from oligomer concentrations of

u = 0.3, 0.6, and 0.9, respectively.

Other atomic/molecular structures. We also study other

densely packed systems of atomic/molecular origin, to investigate

the effects of excluded volume and chain connectivity on the

observed statistical properties. To this end, we focus on the

structure of networks obtained from Lennard-Jones clusters and

clusters imposed on HCP lattices (to test influence of excluded

volume on the results) as well as polybutadiene melts (to test the

combined effect of excluded volume and chain connectivity). The

network data are obtained as described below.

Lennard-Jones Clusters. The structure of clusters of atoms

is an area of intense scientific research, since the properties of

materials become size dependent when systems are small enough.

By clusters, we refer to groups of atoms from tens to thousands of

atoms. LJC are a group of atoms that contain purely Lennard-

Jones interactions between pairs of atoms. Geometric optimization

of these clusters requires developing efficient search algorithms,

since the conformational space available to a cluster of atoms

increases explosively. The atomic coordinates of LJC for sizes 3-

1000 are deposited on the Cambridge Cluster Database [49].

Many of them are described by icosahedral motifs with an

incomplete core [50]. Here we examine clusters of sizes 350–550,

in intervals of 50 atoms. The cutoff distance for adjacency matrix

construction is 1.6 Å [51]; see figure 3 for the RDF.

Hexagonal Close Packed lattice based atomic

clusters. We pack a set of N-atoms (nodes) on the lattice sites

so that we have a finite system that has all lattice sites filled, unlike

LJC that have incomplete cores. We emphasize that, we have

studied the properties of simple cubic, body-centered cubic, face-

centered cubic and HCP arrangements, although here we present

representative data from the latter only, as all these systems lead to

similar conclusions. In the HCP structure, nodes are arranged on a

plane in a hexagonal formation, and planes are stacked on top of

each other with alternating order. Although we display the RDF of

this system in figure 3, we do not choose a cutoff distance where

the first coordination shell ends, but we rather connect the first

nearest neighbors to obtain the network; the fixed cutoff value is

marked on the figure with the vertical dashed line. The generating

function (equation 5) for N = 500 sites is

G0 xð Þ~0:004x3z0:032x4z0:076x5z0:028x6z0:060x7

z0:080x8z0:224x9z0:048x10z0:064x11z0:0384x12

Polybutadiene Melts. We investigate networks constructed

from PBD melts that have been obtained from molecular dynamics

(MD) simulations. The system consists of monodisperse cis-1,4-PB of

32-chains, each with 32 repeat units (C128). The initial coordinates

of the system studied was prepared in Amorphous Construction

Module of the Accelerys Material Studio 4.4 [52] at a density of

0.92 gr/cm3, which occupies a cubic box of 47 Å on each side.

Minimization, pre-equilibration and integration of the equations of

motions were done with the NAMD program [53]. The interaction

potentials for PBD chains reported in [54] are adopted. For all

simulations, 1 fs integration time step was used. Temperature and

pressure were maintained constant in the MD simulations at their

prescribed values by employing the Langevin thermostat-barostat.

For the non-bonding interaction cut-off distance of 10 Å was used

with a switching function turned-on at 8 Å.

To obtain well-equilibrated samples of PBD chains with correct

chain statistics, the initial structure which is energy minimized for

10000 steps is depressurized by placing the chains into a larger

cubic box of 300 Å on each side. NVT simulations of this low-

density system is carried out for 10 ns at 430 K. We then cool the

system to 300 K by equilibrating for an additional 20 ns.

Consequently, we compress it with NPT simulations at 1 atm at

430 K for 1 ns. We check that the conformational properties (as

measured by the characteristic ratio) and the thermodynamic

measurable (e.g. thermal expansion coefficient and compressibility)

are compatible with the values in reference [54]. The data used in

the current calculations are finally obtained from highly

pressurized PBD melts via NPT simulations at 100 GPa and

430 K. We collect data for 50 ns. PBD melts are coarse grained by

using the coordinates for the center of mass of carbon atoms in the

butadiene repeat units. RDFs are obtained as usual, and cutoff

distance for network construction is chosen at 5 Å, the ending

point of the first coordination shell (figure 3).
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42. Serrano Á, Boguñá M (2005) Tuning clustering in random networks with

arbitrary degree distributions. Physical Review E 72: 036133.

43. Can H, Kacar G, Atilgan C (2009) Surfactant formation efficiency of

fluorocarbon-hydrocarbon oligomers in supercritical CO2. Journal of Chemical

Physics 131: 124701.

44. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, et al. (2002) The

Protein Data Bank. Acta Crystallographica Section D-Biological Crystallogra-

phy 58: 899–907.

45. Fariselli P, Casadio R (1999) A neural network based predictor of residue

contacts in proteins. Protein Engineering 12: 15–21.

46. Atilgan C, Okan OB, Atilgan AR (2010) Orientational Order Governs

Collectivity of Folded Proteins. Proteins: Structure, Function, Bioinformatics

78: 3363–3375.

47. Ozen AS, Sen U, Atilgan C (2006) Complete mapping of the morphologies of

some linear and graft fluorinated co-oligomers in an aprotic solvent by

dissipative particle dynamics. Journal of Chemical Physics 124: 064905.

48. Kacar G, Atilgan C, Ozen AS (2010) Mapping and Reverse-Mapping of the

Morphologies for a Molecular Understanding of the Self-Assembly of

Fluorinated Block Copolymers. Journal of Physical Chemistry C 114: 370–382.

49. Wales DJ, Doye JPK, Dullweber A, Hodges MP, Naumkin FY, Calvo F, et al.

The Cambridge Cluster Database.

50. Xiang YH, Jiang HY, Cai WS, Shao XG (2004) An efficient method based on

lattice construction and the genetic algorithm for optimization of large Lennard-

Jones clusters. Journal of Physical Chemistry A 108: 3586–3592.

51. Xiang YH, Cheng LJ, Cai WS, Shao XG (2004) Structural distribution of

Lennard-Jones clusters containing 562 to 1000 atoms. Journal of Physical

Chemistry A 108: 9516–9520.

52. Accelrys Inc (2008) Materials Studio, Release 4.4. San Diego: Accelrys Inc.

53. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable

molecular dynamics with NAMD. Journal of Computational Chemistry 26:

1781–1802.

54. Tsolou G, Harmandaris VA, Mavrantzas VG (2006) Temperature and pressure

effects on local structure and chain packing in cis-1,4-polybutadiene from

detailed molecular dynamics simulations. Macromolecular Theory and Simu-

lations 15: 381–393.

Hierarchical Structure in Spatial Networks

PLoS ONE | www.plosone.org 9 December 2010 | Volume 5 | Issue 12 | e15551


