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Independent reproducibility is essential to the generation of scientific knowledge.

Optimizing experimental protocols to ensure reproducibility is an important aspect of

scientific work. Genetic or pharmacological lifespan extensions are generally small

compared to the inherent variability in mean lifespan even in isogenic populations

housed under identical conditions. This variability makes reproducible detection of

small but real effects experimentally challenging. In this study, we aimed to determine

the reproducibility of C. elegans lifespan measurements under ideal conditions, in the

absence of methodological errors or environmental or genetic background influences.

To accomplish this, we generated a parametric model of C. elegans lifespan based

on data collected from 5,026 wild-type N2 animals. We use this model to predict

how different experimental practices, effect sizes, number of animals, and how different

“shapes” of survival curves affect the ability to reproduce real longevity effects. We find

that the chances of reproducing real but small effects are exceedingly low and would

require substantially more animals than are commonly used. Our results indicate that

many lifespan studies are underpowered to detect reported changes and that, as a

consequence, stochastic variation alone can account for many failures to reproduce

longevity results. As a remedy, we provide power of detection tables that can be used

as guidelines to plan experiments with statistical power to reliably detect real changes

in lifespan and limit spurious false positive results. These considerations will improve

best-practices in designing lifespan experiment to increase reproducibility.
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INTRODUCTION

Over the last few years, science has been plagued by a reproducibility crisis (Editors, 2005;
Loannidis, 2005; Baker, 2016). This crisis has also taken root in the aging research community,
with several high-profile controversies regarding lifespan extensions. Frequently cited reasons for
the failure of a result to reproduce are substandard technical ability, lack of attention to detail,
failure to control environmental factors or that the initial positive result was a statistical outlier
that was never real in the first place. One way to address these reproducibility problems would be
to list the numerous controversies and to attempt to identify the individual underlying causes and
to provide a possible explanation (see note #1 in Supplementary Materials). This would be a long
and arduous task resulting in largely speculative explanation and provide little in terms to resolve
future controversies. An alternative way would be to assume that these controversies arise mostly
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through honest disputes of scientists standing by their results.
If so, their frequency would suggest an underlying technical
problem with standard practices in the field that foster such
disputes. We decided to take the alternative way and to ask how
reproducible lifespan experiments are under ideal conditions,
in silico, allowing to control every environmental and technical
aspect.

Statistical analysis provides powerful tools to increase
reproducibility. Statistics provides a metric on how likely it is to
observe a result by chance (Krzywinski and and Altman, 2013).
In statistical analysis of experiments that measure the effect of
pharmacological, genetic, or environmental factors on lifespan,
the null hypothesis, H0, states that the perturbation has no effect
on the lifespan. This hypothesis is commonly tested in lifespan
experiments by comparing Kaplan-Meier survival estimates and
log-rank tests (Pletcher, 1999; Ziehm and Thornton, 2013). The
two advantages of the Kaplan-Meier/logrank approach are that
(i) they are non-parametric and do not require the data to
be distributed in a specific way (e.g., normal distribution) and
(ii) that they include a method to deal with censored data,
assuming that the censored animals would otherwise have the
same survival function of non-censored animals (Cleves et al.,
2004). As with any type of statistical test, Kaplan-Meier analyses
are subject to two types of statistical errors: Type I errors, or
false positives, reject a true null hypothesis (H0: no extension
in lifespan), whereas type II errors, or false negatives, retain the
hypothesis, H0 when it truth it should be rejected in favor of
an alternative hypothesis (H1:increase in lifespan). Both errors
affect reproducibility. If a result does not appear reproducible the
original finding could be the result of a false positive or the failure
to replicate the result could be due to a false negative result.

One important experimental consideration to minimize both
false positive and false negative results is the power of detection
(POD), or statistical power of a given experimental design. POD
is defined as the probability to appropriately reject H0 in favor of
the alternate hypothesis. For lifespan experiments, where H0 is
that there is no effect on lifespan, the POD is the probability to
correctly detect a true lifespan extension. Power calculations are
a statistical tool to determine whether the experimental design is
sufficient to detect the expected effects size. Power calculations
are widely used in long term expensive mouse experiments or
in clinical trial to ensure that the planned experiments have the
necessary power to detect the expected effect. However, power
calculations are rarely employed in experiments to measure the
effects of genetic or environmental perturbations that could affect
lifespan in invertebrate model organisms such as C. elegans.

In this study, we asked how POD is influenced by different
experimental practices and how likely it is that underpowered
experiments lead to scientific disputes between two groups
conducting identical experiments. To address these questions, we
generated a parametric model based on the Gompertz equation
using lifespan data of 5,026 C. elegans (Johnson, 1990; Pletcher,
1999; Ye et al., 2014; Kirkwood, 2015). We then used this model
to simulate lifespan experiments with different conditions to
determine how experimental parameters affect the ability to
detect lifespan increases of certain sizes. We considered two
important experimental features that contribute to the workload

of lifespan experiments: frequency of scoring and number of
animals in each cohort. Our data show that the POD is greatly
affected by the number of animals in each group, but less so
by scoring frequency. We further show how inappropriately
powered experiments negatively affect reproducibility. Our
results make clear that current standard practices are unlikely
to consistently reproducible results for real longevity effects
below 20%, even under ideal conditions. We provide a series
of power calculation tables to be used as general guidelines to
plan and execute C. elegans lifespan experiments with adequate
POD, though our approach is applicable to any organism for
which a robust set of mortality data is available to derive
the parameters of the Gompertz equation. Taking our findings
into consideration will increase the reproducibility of lifespan
measurements, thereby avoiding unproductive controversies,
and help ensure the field focuses on genetic and environmental
factors that have real effects on longevity in animals.

RESULTS AND DISCUSSION

The goal of this study was to evaluate how different experimental
parameters could affect reproducibility of lifespanmeasurements.
To accomplish this, we derived a parametric model based on
the Gompertz equation that allowed us to simulate thousands
of lifespan experiments in silico. Our model, described below,
is based on experimental observation of 5,026 wild-type (N2)
C. elegans. We then used this model to simulate lifespan
data collected under different experimental parameters to
evaluate how different factors influence lifespan curves and their
reproducibility. The great advantage of this in silico approach
is that it allowed us to precisely control sources of variability
and experimental behavior; therefore, our results demonstrate
the effect of each manipulation under ideal conditions.

A Parametric Model to Simulate Lifespan
Data
To simulate lifespan data that share the distribution and
characteristics of real experimental data, we generated a
parametric model that describes C. elegans mortality data from
the observed lifespans of 5,026 N2 control animals of one of our
previous lifespan screens (Ye et al., 2014). The lifespan of these
animals was measured in liquid media at 20◦C and resulted in
an average lifespan of 21.1 days, a median of 22 days, and a
maximum lifespan, defined as the longest lived 10th percentile
of 32 days, which are all in the range of the published literature
(Kenyon et al., 1993). We fit these data with the Gompertz model
and used regression analysis to determine the parameters G and
γ (Figures 1A,B).

We experimentally validated our parametric model to ensure
that the underlying assumptions were sound. For this test,
we took advantage of the observation that Mianserin, an
atypical antidepressant, increases C. elegans lifespan by ∼35%
(Petrascheck et al., 2007; Ye et al., 2014). Mianserin extends
lifespan by causing a perfect parallel shift of the lifespan
curve, suggesting a modulation of the Gompertz G parameter
(Kirkwood, 2015; Rangaraju et al., 2015). We used the S(t)
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equation (Figure 1A) to calculate G for Mianserin-treated
animals, and then simulated 10,000 lifespan datasets consisting of
a control and Mianserin-treated cohorts of 40 animals each. For
each of the 10,000 datasets we ran a log-rank test to determine
how likely the experimental design was to detect the lifespan
extension by Mianserin. Our simulation predicted that 99%
of Mianserin-treated populations should be detected by this
experiment. To test this prediction, we recorded the lifespan
of an additional 127 N2 populations, 4,994 animals total, of
which six populations were treated with Mianserin (50 µM). The
experiment was conducted blind with the experimenter knowing
neither the number of Mianserin-treated populations nor their
identity. As predicted by our simulation, all Mianserin-treated
populations were distinguished from untreated controls with P
values ranging from 0.0057 to 1.6E-8 (red circles, Figure 1C). We
conclude from this test that our parametric model agrees well
with real experimental data from lifespan experiments.

Knowing the values of G and γ allowed us to generate a
parametric model of wild-type (N2) lifespan data by defining the
density function f(t), and the survivor function S(t) based on the
Gompertz equation h(t) (Figure 1D). We have provided these
equations and a description of how they relate to each other in
Supplementary Materials. To generate random lifespan data sets
with the distributions we observed in lifespan data of the 5,026
N2 control dataset we derived the quantile function Q(u) with u
being a random number between 0 and 1. The quantile function
Q(u) enables Monte-Carlo simulations of lifespan experiments
by creating pairs of datasets with different lifespans and to test
for statistical significant differences between them bussing the
log-rank test (see material and methods). This Q(u) equation can
be used to simulate lifespan data for any species for which the
parameters G and γ have been derived from an existing dataset.
To test our parametric model, we generated 10 random dataset of
5,026 animals each and compared it to the original experimental
data. The simulated cohorts had a lifespan of 21.15± 0.1 days (vs.
21.1 days), a median lifespan of 22.0± 0.1 days (vs. 22 days), and
a maximum lifespan defined as the longest lived 10th percentile
of 30.83 days ± 0.1 vs. (32 days) (Figures 1A,B). Thus, our
model generates lifespan data in close agreement with empirical
observation.

We based our simulations on the Gompertz equation because
of its extensive use in the past and because it models death times
reasonably well across many species (Johnson, 1990; Pletcher,
1999; Bronikowski et al., 2002; Mair et al., 2003; Jones et al., 2014;
Kirkwood, 2015; Koopman et al., 2016). There are, however,
some limitations to the Gompertz model. These limitations only
minimally affect the results presented, but are nevertheless worth
mentioning. The Gompertz model was conceived by fitting an
equation to a large human mortality data set to calculate life
insurance premiums (Kirkwood, 2015). Insofar as the Gompertz
equation is not based on a mathematical formulation of how
aging works, its parameters G and γ do not necessarily describe
any biological or molecular entity. However, it is common to
interpret the G as a measure of initial mortality, or the mortality
of individuals before the beginning of physiological decline, and
γ as the “rate of aging” (Johnson, 1990; Rangaraju et al., 2015).
Although the Gompertz curve fits mortality reasonably well

FIGURE 1 | Gompertz-based Parametric Model for C. elegans lifespan. (A)

Gompertz equation, h(t), describing the mortality (hazard) function, and its

corresponding survivor function, S(t). The fit parameters G and γ from

wild-type lifespan data are shown in black. (B) Maximum likelihood estimation

was used to fit a parametric model (black) to the survival data of 5,026 N2

control animals (experimental data in orange), with a 95% CI for γ =

0.127–0.134. (C) Scatter plot showing the experimentally-measured lifespan of

127 population of ∼40 animals each. The 6 populations treated with mianserin

are indicated with red circles (33% increase). (D) Hazard function h(t), survival

time S(t), and density function f(t) plotted for wt (black) and cohorts with a

+30% increase in lifespan, achieved by either modulating G (red) or γ (green).

across lifespan, in many species the ∼last 5–10% of the animals
do not die off exponentially and therefore deviate from the
Gompertz curve (Vaupel et al., 2004; Kirkwood, 2015; Stroustrup
et al., 2016). The Gompertz equation does not allow us to correct
for this discrepancy without compromising the accuracy of
mean and median lifespan. In general, this discrepancy in fitting
highlights an important shortcoming of the Gompertz equation
that was recently discussed in detail by Tarkhov et al. (2017).
For our study, regarding the POD, these are minor discrepancies,
as the fraction of animals affected is small. However, this
shortcoming does affect the determination of maximum lifespan,
as can already be observed by the somewhat larger error in our
simulated data with regards to maximum lifespan compared to
the actual data (30.83 vs. 32 days). How to best evaluate and
report maximal lifespan from experimental cohorts is an issue
that has not yet been systematically addressed and thus our study
focuses on mean and median lifespan.

For the remainder of this study, we used our experimentally-
validated model to generate POD plots and to determine how
the POD, and thus reproducibility, is affected by different
experimental practices or circumstances. In these studies, each
data point in the POD plots shown was derived by conducting
10,000 simulations to determine the probability of the log-rank
test to detect a statistical significant difference.Whether a result is
deemed significant or not is determined by setting a significance
level, α, which describes how likely it is for each result to occur

Frontiers in Genetics | www.frontiersin.org 3 June 2017 | Volume 8 | Article 92

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Petrascheck and Miller Reproducibility of Lifespan Experiments

by chance. We present data with α values α = 0.05, 0.01, to
0.001. To maximize the applicability of this study, the POD
tables and graphs included in this study have been constructed
with experimental scientists in mind, whose main concerns are
practical considerations for designing robust and conclusive
experiments (note #2 in Supplementary Material). For this
reason, we have determined POD as a function of the % change
in mean lifespan, rather than as a function of the hazard ratios.
Our decision was based on a biological and a practical reason.
The biological reason was that many interesting experiments
require the comparison of populations with different γ rather
than proportional hazards (Figures 1D, 4, below). Practically,
it is conventional for most geneticists using invertebrate model
organisms to study aging to report changes in mean lifespan
rather than changes in hazard ratios.

In our analysis, we simulated populates with increased
lifespan. As shown in Figure 1D, the Gompertz equation allows
for the generation of long-lived populations by either reducing
the value of G (red graphs) or γ (green graphs) or both.
Throughout this manuscript, red curves have been generated
by modulating G while green curves have been generated
by modulating γ. Modulating G (red) causes a parallel shift
of the mortality curve h(t), and thus a parallel shift in the
entire lifespan curve S(t). In contrast, modulating γ (green)
reduces the slope of the mortality curve h(t), and flattens the
lifespan curve S(t) (Figure 1D). We decided to first generate
long lived populations by modulating G rather than γ, as this
does not alter the properties of the f(t) distribution. However,
as conditions that modulate γ are particularly interesting
from a biological perspective as this might slow the rate
of aging, we separately consider this situation later in the
manuscript.

Effect of Frequency of Scoring on POD
Ideal experimental planning minimizes workload without
compromising the ability to collect data necessary to test the
hypothesis in question. The frequency of scoring for dead
animals during lifespan experiments is a major determinant of
the workload of lifespan experiments. We therefore used our
parametric model to determine how the frequency of scoring the
number of dead animals in lifespan experiments affects mean
lifespan and POD. Figure 2A shows how the lifespan graphs
changes by increasing the frequency of scoring sessions from
once every 20 days to once every 12 h. The further spaced
scoring sessions are, the larger the error in mean and median
lifespan, which is asymmetric and always increases lifespan.
The asymmetry is due to the nature of the experiment: if
the animal dies shortly after it was determined to be alive,
its death will only become apparent during the next session.
If that session is 12 h or 10 days away will clearly make a
difference as the animal is recorded to have died on the day
death was discovered. Thus, the error will increase the apparent
lifespan of the animal proportionally to the space between
scoring sessions. Figure 2B shows the percent increase in lifespan
as a function of the frequency of scoring. For organisms
with a relatively short lifespan, like C. elegans, the scoring
frequency causes considerable differences in the measured mean

lifespan. This effect may contribute to the large variation of N2
lifespan observed across the literature (Gems and and Riddle,
2000).

We next used our model to determine how the scoring
frequency affects POD. As mentioned above, we constructed
POD plots by randomly generating 10,000 pairs of lifespan
datasets for each data point, increasing the lifespan of one
of the two sets by increments of 2%, and analyzed each
pair by the log-rank test. To account for the difference in
scoring frequencies each day of death was rounded up to the
next scoring interval. For each scoring interval (e.g., every
day, every 2nd day) we plotted the probability to observe a
significant lifespan extension as a function of the % increase
in lifespan for populations with either 50 (Figure 2C) or 100
(Figure 2D) animals using a common significance level α =

0.05. The associated POD plots reveal two insights. First,
the POD depends on the frequency on scoring dead animals
(Figures 2C–E). There was a clear difference in the ability to
detect changes in lifespan when animal survival was scored
every 0.5 days as compared to every 20 days. Second, the
effect of increasing the frequency of scoring on POD dropped
off rather dramatically. We observed relatively little change
in the POD between scoring the number of dead animals
every 12 h or every 5 days, even though there is a 10-
fold difference in workload between these two experimental
approaches (Figures 2C,D). Thus, increasing the frequency of
scoring increases the accuracy of the determination of mean and
median lifespan (Figure 2B), but has surprisingly little effect on
POD for changes in lifespan. Note however, that this statement
holds only if test and control cohort are scored on the exact same
day.

The small effect of repeated scoring on POD surprised us.
We therefore analyzed the effect in more detail and asked
whether increasing the frequency of scoring could improve
the POD in experiments in which the number of animals
assayed is low relative to the expected effect. As we will
show below, a population of 100 animals detects lifespan
increases from 8 to 16% in less than half of the experiments
(underpowered) and thus an n of 100 is not large enough
to reliably detect such effects. In underpowered experiments,
frequent scoring of animals improves POD and has a bigger
effect than on sufficiently powered experiments. Figure 2E

shows that for lifespan extensions of 20% or more the scoring
frequency has little effect on POD as the cohort of 100
animals is sufficient for robust detection. However, for lifespan
extensions between 8 to 16% cohorts of 100 animals are not
sufficient to reliably detect the effect on lifespan and frequent
scoring becomes important as to not diminish POD further
(Figure 2E). Taken together these simulations show that the
frequency of scoring of dead animals proportionally improves
the accuracy by which mean and median lifespan can be
determined (Figure 2B) and that scoring frequencies are an
important parameter to be considered when mean lifespans are
compared between labs. They further establish that the frequency
of scoring has relatively little effect on POD for appropriate
sized samples but becomes important if sample sizes are low
(Figures 2C–E).
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FIGURE 2 | Frequent scoring of lifespan strongly affects accuracy of lifespan measurement but only modestly affects power of detection. (A) Lifespan curves

simulated from populations of 100 animals/cohort with a difference in lifespan of 30%. Scoring was every 20, 10, 5, 3, 2, 1, or 0.5 days as indicated. (B) Low scoring

frequency artificially increases the apparent increase in lifespan. Plot shows normalized difference between measured lifespan (LSM) and true lifespan (LST ). %

discrepancy = (LSM – LST )/LST. (C) Power of detection (POD) plot, showing the probability to detect a significant increase in lifespan as a function of % increase.

Each simulation used 50 animals and a significance level α = 0.05. The frequency of scoring the fraction of animals alive or dead was every 20, 10, 5, 3, 2, 1, or 0.5

days. Each data point was simulated 10,000 times. (D) Same as (C) but using 100 animals/cohort. (E) Graphs POD as a function scoring frequency for lifespan

extensions ranging from 4 to 24% (n = 100, α = 0.05). Note that the loss in detection power is most pronounced for lifespan extensions of 8–16%. The labels on the

right indicate the % change in lifespan. See supplementary Table 1 for precise values.

Effect of Population Size on POD
The number of animals to be scored for lifespan also contributes
greatly to the work required for an experimental determination
of lifespan. Thus, it is preferable to test the smallest possible
cohort sizes. However, it is intuitive that increasing the number
of animals has a dramatic effect on how consistently changes
in lifespan can be detected, which becomes already apparent
in POD graphs in Figures 2C,D. Consistent with this, we
found that a 30% increase in lifespan could not reliable be
detected from populations of 20 animals each in simulated
experiments (Figure 3A). We used a 3-day scoring interval
for these simulations (d3). Although there is a 30% difference
between the two populations, this difference is detectable in only
one of the two in silico experiments (Figures 3B,C). Note that
failure to detect the real 30% increase in lifespan in Figure 3C

is related to the control cohort (black) that lives longer than
expected simply due to random fluctuations. Also note that
Figure 3B arrives at the correct result only by accident. Both, the
control lifespan (black 21.2 days) as well as the increased lifespan

(27.9 days) are shorter than expected. As we have shown above,
counting every 3 days proportionally increases the lifespan due to
the asymmetric error. Thus, the lifespans should be roughly 1.5
days longer than the real lifespan shown in Figure 3A. However,
due to the low number of animals, both cohorts happen to
be shorter lived and thus, entirely accidentally, the experiment
arrives at the true increase in lifespan of 30%. The advantage
of doing these experiments in silico is that we know for certain
that these results arise through random fluctuation and not due
to environmental differences or inadequate technique by one of
the researchers. These graphs illustrate that random fluctuations
preclude the ability to reliably detect a 30% change in lifespan
when the cohort size is 20 animals or less.

Although lifespan experiments with only 20 animals in
each cohort may be somewhat of an extreme example, our
simulations illustrate the difficulty in interpreting underpowered
experiments. In our example, we know that there is a true
increase of 30% in the mean lifespan as detected in Figure 3B.
However, without this a priori knowledge we could not
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FIGURE 3 | Population size has important effect on power of detection. (A)

Parametric model as in Figure 1 (left) and Kaplan-Meier plots of two

independently simulated lifespan experiments (B,C) using n = 20 for wild-type

animals (black) and a perturbation that increases lifespan by 30% due to a

change in G (red). Scoring frequency indicated in the upper right corner,

P-value indicated above each graph. Mean lifespan in days and % change for

both cohorts is indicated on each graph. (D) Power of detection plotted as a

function of % increase in lifespan for α = 0.05 and a 2-day scoring frequency

(d2) in determining the fraction of animals dead/alive. Cohort sizes range from

20 to 200 animals. Lifespan was increased by modulating the parameter G in

the Gompertz equation. (E) same as (D) but α = 0.01. (F) same as (D) but α =

0.001. For (B–D) each data point was simulated 10,000 times. (See

Supplementary Table 2 for precise values)

distinguish whether the difference between Figures 3B,C arose
through environmental differences, inadequate experimental
skill, or random fluctuation. In short, if an experiment is
underpowered, random fluctuations cannot be distinguished
from real biological effects.

In order to determine the number of animals required to
detect changes in lifespan of various magnitude, we used our
model to calculate how the POD changes a function of % increase
in lifespan for different population sizes (Figures 3D–F). For
each of these experiments, we maintained the significance levels
α as well as the scoring frequency constant (every 2 days). As
expected, these POD graphs show that for any given change
in lifespan, the POD is higher with larger cohorts of animals.
The POD graphs further reveal that the number of animals

required to reliably detect smaller changes in lifespan require
substantially more animals than are generally used for lifespan
experiments. For example, to detect a true 12% increase in
lifespan at a significance level α = 0.05 in at least 4 out of
5 experiments (>80%) requires 150 animals for each cohort
(control and test cohort) or a total of 300 animals. If we use a
more stringent significance level of α = 0.01 will require 200
animals in each cohort, a total of 400 animals. Note that the
number of animals required will increase further if the animals
have differences in genetic background or if there are additional
factors increasing the variance which are not part of our model
(we have included a list of common confounding factors in
the Supplementary Material). Based on these data, a sizable
number of publications reporting increases in lifespan of 10–
15% are seriously underpowered (see note #1 in Supplementary
Materials). This does not automatically mean that these results
are all erroneous, but that a definitive conclusion cannot drawn
from the lifespan experiments alone, due to the small cohort sizes.

For the experimental scientist, the POD graphs shown in
Figure 3 provide a reasonable guide of how many animals are
required to reliably detect a given change of lifespan for C.
elegans experiments. However, we want to stress that these
graphs constitute a best-case scenario. Any additional variation
resulting from experimental conditions is more likely to increase
the number of animals required (see Supplementary Data).
The only scenario that would reduce the numbers shown in
Figure 3 and in the Supplementary POD Table, would be a
tighter distribution in the lifespan data. It is possible that lifespan
data from some labs show a slightly tighter distribution than
the one in our model for two reasons. First, to some degree,
our model incorporates researcher to researcher variation as the
original dataset was derived from lifespan data determined by
two researchers, Second, censoring early deaths will tighten the
death time distribution f(t). The data used for our model have
a censoring rate of less than 1%, and were censored only at the
end, but not at the beginning of the experiment. However, even
if the distribution achieved by others is slightly tighter, which
should be verified by deriving γ from a data set of several hundred
control animals, the reductions in sample size are likely going
to be minor. Therefore, we suggest that the numbers presented
should be read with an “at least” in mind. Together, the data
in Figures 2, 3 indicate that the optimal experimental design to
verify the reproducibility of a lifespan extending effect should
include more animals in each cohort with a longer interval
between scoring session to most efficiently maximize the POD.

Effect of Altered Hazard Distributions on
POD
Our parametric model is based on the Gompertz equation, so
lifespan can not only be modulated by modulating G, as we
have used in the previous experiments, but also by modulating
γ (Figure 1). Extending lifespan by changing γ changes the pace
by which mortality increases (Figure 4A). Interventions (e.g.,
mutations, compounds) that slow the pace of age-associated
mortality, compared to wild type animals, and thus show a
different γ value, are of great biological interest. We therefore
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FIGURE 4 | Lifespan extensions caused by changing γ values has little effect on POD. (A) Demonstration of how changes in γ (green) affect the mortality curve h(t),

frequency distribution f(t), and survival plots S(t). n = 100 animals, scoring frequency every 2 days. (B) Power of detection as a function of magnitude of % change in

lifespan caused by changes in γ. Each curve represents a different cohort size, from 20 to 200 animals. α = 0.05. (C) same as (B), but α = 0.01. (D) same as (B), but

α = 0.001. For all curves, scoring was every 2 days (d2). Each data point was simulated 10,000 times for (B–D). (E) Example on how simultaneous changes in G and

γ introduce difficulty in interpreting lifespan data. Lifespan curves were simulated for populations of 100 animals scored every 2 days. The two populations have the

exact same mean lifespan (21.1 days), but different median lifespans (22, 14.6 days), and maximum lifespans (30. 8, 49 days). The control (black) population lives

longer with respect to the median lifespan, whereas the blue population lives longer with respect to the maximum lifespan. The values for G and g are indicated for

both populations above the graph. (See Supplementary Table 3 for precise values)

explored how the POD is affected in experiments involving
cohorts with different γ values.

Changing γ alters the density function, f(t) and lifespan
curves, S(t) (Figure 1). In practical terms the density function
f(t) is the normalized version of a histogram plotting the number
of animals that died at a given day (see Supplementary Data).
Higher γ values will cause a narrow f(t) distribution, as all the
animals die within a short window of time. As can be seen in
Figure 4A, decreasing γ (green) widens the f(t) distribution and
cause the animal to die of over an extended period. Decreasing

γ also reduces the slope of the lifespan curve S(t), which is
commonly considered to represent a decrease in the rate of
aging(Gems et al., 2002). However, another interpretation is that
γ is a measure of stochastic variation in lifespan, as reflected in
the f(t) distribution. In this interpretation, the apparent rate of
aging in a population is, somewhat counterintuitively, related to
stochastic variation in lifespan. Although these are interesting
considerations, as we noted above, the Gompertz model is not
a mathematical model based on a hypothesis how aging works,
but a convenient equation that describes survival time data.
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We used our parametric model to simulate lifespan curves
by progressively lowering the values of γ to extend lifespan
(Figures 4B–D). The POD curves generated in this experiment
are surprisingly similar to POD curves we calculated in
experiments where lifespan changes result from changing G
(compare Figures 4B–E with Figures 3B–D and Supplementary
POD Table). As an experimentalist, in which it is impossible to
predict whether a given perturbation will influence G or γ, this is
quite reassuring. We conclude that, for practical purposes, POD
for experimental design can be determinedwithout consideration
of whether lifespan is extended by modulating G or γ.

Because the log-rank test was unexpectedly resilient to
changes in γ, we explored how well the log-rank test would
perform under extreme circumstances. In this test, we changed
both γ and G to construct an example in which two cohorts have
the exact same mean lifespan of 21.1 days but entirely different
density distributions f(t) and, consequently, very different
lifespan curves S(t) (Figure 4E, blue). Although both populations
have the same mean lifespan (21.1), the median lifespan of the
control (black) cohort is longer (22 days vs. 14.6 days), whereas
the maximum lifespan of the green cohort is longer (30.8 vs. 49
days). By log-rank analysis, the difference between these lifespan
curves is significant (p= 0.045, n= 100) favoring the cohort with
the longer maximum lifespan. This seems biologically sensible as
most people would weight the greater maximum lifespan as more
important than the shorter median lifespan. Our POD tables do
not account for such extreme cases as the tables are based on
changes in mean lifespan. Judging from the current literature,
such cases seem rare if they exist at all, but it is important to know
that at least theoretically cases exist in which currentmethods will
break down.

Examples of How Power of Detection
Affects Reproducibility
The motivation behind this study was to determine the
reproducibility of results under ideal conditions, using the
current practices. In the examples below, we demonstrate how
inadequate POD considerations can have practical implications
on the interpretation of lifespan data and their reproducibility.

Example 1: Effect of POD on Lab to Lab

Reproducibility
The framework we have established thus far allows us to evaluate
reproducibility with random variation being the only sources
of variation. The POD graphs shown in Figures 2–4 plot the
probability to get a significant result in a single experimental
trial. However, most lifespan assays are, appropriately, repeated
multiple times to test for the effect of compounds, mutations,
or RNAi on lifespan. Nevertheless, when replicate experiments
are conducted with underpowered cohorts, reproducibility will
seriously be reduced.

Consider the situation where a group or researchers identifies
a compound that has a modest effect to increase lifespan (e.g.,
12%). To validate this observation, the researchers retest the
compound in triplicate with cohorts of 50 animals in both the
control and treated group, scoring the fraction of animals alive
and dead animals every 2 days. They also send the compound

to a second lab, which runs the same experiment in triplicate.
The POD table (Supplementary Table) indicate that with n = 50
and α = 0.05, a 12% increase in lifespan will be detected in 41%
of all trials. Thus, there is a 0.5% chance (0.46) that both labs
will confirm the (real) effect of the drug on lifespan in all three
experiments. In this situation, the underpowered experiments are
likely to result in a false negative conclusion.

This example raises the question of what should be considered
a “reproducible” result. A more relaxed and probably reasonable
definition of reproducibility would be not to require that the
effect on lifespan to be observed in all 6 trials, but only in at
least 2 successful trials in each lab. This relaxed definition of
reproducibility would raise the probability of reproducing the
result to∼15%. This is still far from a robust result: In over∼45%
of the cases the two labs will obtain contradictory results or worse,
wrongly agree that that the compound does not extend lifespan
(∼40%). Increasing the number of animals has large effects on
POD (Figure 3), but even if both labs had used 100 animals in
drug and control cohort the chance that both labs would have
obtained a significant extension in all six trials would still be a
mere 11.5% (POD = 69.7% per experiment). Using the relaxed
definition of reproducibility (at least two or more successful trials
in each lab) would raise the chance of reproducibility to 61%.
Based on our experiments, to have a∼90% chance that both labs
would detect the real change in lifespan in 2 or more of the three
experiments would require at least 150 animals in each cohort, a
minimum of 1,800 animals [n= 150, 2× (control & compound)
× 3 trials× 2 labs= 1,800]. These cohort sizes are far bigger than
those generally published. Note that in this example the failure
to reproduce the result has nothing to do experimental skill or
sloppiness but is purely the result of the variation inherent in
lifespan data. On the contrary, these are best case scenarios, with
perfect conditions, and identical perfect scientists performing the
experiments, and still the chances of reproduction are low.

Example 2: Screening for Compounds that Can

Increase Lifespan
A real example of how underpowered experiments can lead to
unexpected results can be observed in one of our own studies.
Screening for compounds that extend lifespan we consistently
and non-intuitively identified more compounds that extended
lifespan by 10–20% (24) than compounds that extended lifespan
by 1–10% (4) (Figure 2A; Ye et al., 2014). Our experimental
design involved 80–100 animals, and to be considered a
hit, a compound had to reproducibly extend lifespan across
multiple experiments. However, 80–100 animals are insufficient
to repeatedly detect lifespan extensions from 1 to 10%. Thus,
many compounds with real but small effects were removed from
our list of hits because the POD of our experimental design made
it unlikely to repeatedly observe a significant result. Considering
the POD of these experiments, we can conclude that the low
number of compounds that extended lifespan by 1–10% was not
the result of some mysterious biology but the direct result of the
experimental design.

Examples 1 and 2 both illustrate the difficulty in reproducing
small lifespan extensions. However, more encouraging is that
the odds start to improve dramatically at increases of +20%
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or more. In example 1, even using only 50 animals in each
cohort, the chances for reproducibility between two labs are
84%, and for effects sizes of +30% it is close to 100% under
ideal conditions. This result highlights that POD becomes
increasingly important for lifespan extensions below 20%. This
example also highlights another caveat of how lifespan results are
communicated: reporting lifespan extension by citing the best %
increase in lifespan, generally published as an “up to X% increase
in lifespan,” is counterproductive to reproducibility. Creating the
impression that the highest increase in lifespan is equivalent
to the mean increase in lifespan by using fuzzy and unclear
language will lead to underpowered experiments by others trying
to reproduce these results. This will result in a reproducibility
problem, not because the intervention doesn’t work, but because
it doesn’t work as well as advertised.

Example 3: POD Considerations for Epistasis

Analysis
This last, and in our view, most serious problem is caused by
underpowered studies in epistasis analysis. Let’s again assume
researchers have identified a mutant that extends lifespan by 12%
after having diligently outcrossed the strain. They compared the
lifespan of this mutant to N2 in six independent experiments
using 50 animals in each cohort. They only observed a significant
effect in three out of these 6 experiments (chance to detect 3 or
more = 47%). Pooling the data, however, the effect on lifespan
became highly significant, convincing them (correctly, in this
situation) that the mutant is long-lived.

To determine whether the longevity effect acts through the
insulin-signaling pathway, the experimenters next decided to
conduct experiments to determine if the increased lifespan
depends on the FOXO transcription factor DAF-16. To avoid
genetic background effects, the researchers used daf-16 RNAi
in 4 independent trials with 50 animals in each cohort. In
truth, and unknown to them, the longevity effect is completely
independent of daf-16. Unfortunately, in their experimental
setup the probability to miss the 12% increase in lifespan in
at least 3 of the 4 trials is 46%. This does not even take into
consideration variation resulting from RNAi itself. Thus, the
chances arriving at the correct result by conducting a series of
4 trials using their experimental design are only marginally better
than that of a coin toss, despite the substantially greater effort
involved. In nearly half of the experimental series, the longevity
effect will appear to be daf-16 dependent because no lifespan
extension will be detected in at least 3 out of 4 experiments. If a
lifespan extension is observed in only one of the 4 experiments, it
is easily explained away by the occasional inefficiency of RNAi.
The only indication that the lifespan extension might in truth
be daf-16 independent will be uncovered by pooling the data (n
= 200). Pooling the data in which case a lifespan extension will
become apparent in 94% of the experimental series. However, this
indication will only become apparent if the variability between
the experiments is minimal. In silico pooling is an effective
strategy as there is no inter-experimental variation; however,
pooling real-life data is highly problematic due to the variability
between experiments, which will increase the overall variation
obscuring any real effect further, or causing non-existing effects.

Even if pooling is successful, no sensible reviewer will accept a
claim of daf-16 independence if 3 out of 4 experiment show no
significant lifespan extension.

CONCLUSIONS

In this study, we generated a parametric model of C. elegans
lifespan from a large cohort of wild-type lifespan data. We
used this model to demonstrate the importance of considering
POD in experimental design to measure the effect of genetic
or pharmacological perturbations of lifespan. Based on our
data, we provide tables to facilitate the planning of rigorous
lifespan experiments. Avoiding insufficiently powered studies will
improve the reproducibility of lifespan experiments within and
between labs, thereby enhancing the efficiency of research in this
important field.

EXPERIMENTAL PROCEDURES

The experimental method used to generate the lifespan data of
5,026 N2 animals which formed the basis of the parametric model
can be found in Solis and Petrascheck (2011).

Generation of a Parametric Survival-Time
Model
The model used in this publication is similar as we have used
previously to model some of our lifespan screens (Ye et al., 2014).
It is a parametric survival-time model based on the Gompertz
equation. Using this survival-time model we generated artificial
datasets using Monte-Carlo simulations. Each data point was
simulated 10,000 times. Simulating a parametric model allowed
us great flexibility in changing experimental practices. It may
be possible to derive the exact equations without the need of
simulations but our approach avoided some rather intimidating
equations, some of which we were admittedly unable to solve.

Definitions:

T: non-negative random variable denoting the time to a death
event
F(t): cumulative distribution function: F (t) = Pr (T ≤ t)
S(t): survivor function, lifespan curve: S (t) = Pr (T > t) =

1− F (t) and f or S (0) = 1
Gompertz equation: h (t) = G ∗ e(t∗γ )

Equations to derive the quantile function Q (u) = F(u)−1

necessary to simulate lifespan data with the same (or altered)
characteristics as the lifespan data obtained from the 5,026 N2
control animals.

(1) h (t) = f (t)/S(t)

(2) F
′

(t) = f (t)

(3) F (t) = 1− S (t) => F
′

(t) = f (t) = −S
′

(t)

(4) h (t) = −S
′

(t)/S(t)
(5) h (t) = H′ (t)

(6) H (t) =
t
∫

0

− S
′

(u)
′

/S (u) du

(7) H (t) = −ln(S (t))
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(8) S (t) = e(−H(t))

(9) F (t) = 1− e−H(t)

(10) f (t) = h (t) ∗ e−H(t)

after determining the relations of S(t), F(t) and f(t) to h(t) we can
introduce the Gompertz equation h(t).

(11) H (t) =
t
∫

0

G ∗ e−γudu [Gompertz: h(t) = G*e−γ t ]

(12) H (t) =
(

G
γ

)

∗ (eγ t − 1)

(13) S (t) = e
−

(

G
γ

)

∗(eγ t −1)

(14) f (t) = G ∗ eγ t ∗ e
−

(

G
γ

)

∗(eγ t −1)

(15) F (t) = 1− e
−

(

G
γ

)

∗(eγ t −1)

(16) Q (u) = F(u)−1

(17) Q (u) = t =
(

1
γ

)

∗ ln(1−
( γ
G

)

∗ ln(1− u))

Maximum likelihood estimation was performed using the STATA
streg command to estimate the parameter γ and subsequently
G from the survival-time data of the 5,026 control animals. To
simulate the survival-times for control and long lived animals,
the quantile function, defined as the inverse of the cumulative
distribution F(t) for the Gompertz was obtained (Equation 17).
Monte Carlo simulations were then used to artificially generate
datasets using randomly generated numbers for u (0 ≤ u < 1)
resulting death times t that show the same distributions as real
C. elegans data using Q(u) (Equation 17). Q(u) in combination
with a random number generator generating values for u (0 ≤

u < 1) can be used to simulate lifespan data for any species by
determining γ and G using regression analysis from real data.

Graphical depiction on how the different equations relate to
each other.

Construction of POD Plots
For each data point in each curve, we generated 10,000
paired datasets consisting of a control and test population
and evaluated potential statistical differences using the log-rank
test. The POD, or probability of detection, was determined as
the fraction of times a true lifespan extension was detected
for a given significance level α. For the POD curves shown
in Figure 2 we maintained a constant number of animals
n = 50 or 100 and a significance level α = 0.05 but altered
the frequency of scoring by rounding up death times to the
next scoring session. To plot each curve, we increased the
lifespan in increments of 2% (by changing G), each time
simulating 10,000 datasets to determine the probability of

detection by the log-rank test (Mantel and Haenszel, 1959
version). We then plotted the probability of detection for
different scoring intervals as a function of % increase in
lifespan.

For the POD curves shown in Figure 3 we maintained a
constant scoring interval of 2 days, a significance level α of 0.05
(b), 0.01(c), 0.001(d), and plotted the probability of detection
as a function of % lifespan increase for different number of
animals. As before, we simulated 10,000 datasets to determine
the probability of detection for each lifespan increment of 2% (by
changing G).

The POD curves shown in Figure 4 were constructed as the
POD curves in Figure 3 except this time we modulated γ instead
of G to extend lifespan.

Probabilities in examples 1 and 3 were calculated
by generating the entire probability tree diagrams
and by subsequently adding up the probabilities of
successful and unsuccessful outcomes, as defined in the
example.
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