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Antimicrobial defense is an essential component of host-microbial homeostasis and

contributes substantially to oral health maintenance. Dental mesenchymal stromal cells

(MSCs) possess multilineage differentiation potential, immunomodulatory properties

and play an important role in various processes like regeneration and disease

progression. Recent studies show that dental MSCs might also be involved in

antibacterial defense. This occurs by producing antimicrobial peptides or attracting

professional phagocytic immune cells and modulating their activity. The production of

antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced

by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides

also have anti-inflammatory effects in dental MSCs and improve their differentiation

potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their

clinical application in dentistry.
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INTRODUCTION

One of the main prerequisites for oral health is the maintenance of the host-microbe homeostasis
in the oral cavity [1, 2]. A symbiotic relationship between the oral microbiome and the host
immune system is maintained by numerous complex mechanisms and exhibits resilience against
various external stimuli [3, 4]. Many oral diseases, including caries and periodontal disease, are
associated with disruption of this homeostasis and dysbiosis [5, 6]. Besides the host immune system,
the production of antimicrobial peptides (AMPs) is an important factor in controlling the oral
microbiome, health maintenance and in developing various oral pathologies [7].

Mesenchymal stromal/stem cells (MSCs) are plastic adherent fibroblast-like cells expressing
specific surface markers (expression of mesenchymal markers CD29, CD73, CD90, CD105, while
lacking expression of hematopoietic markers CD14, CD34, CD45) and exhibiting multipotent
differentiation capacity to osteoblasts, adipocytes, and chondrocytes [8, 9]. Initially, these cells were
isolated from bone marrow, but later MSCs were found in various other adult tissues, including
almost all dental tissues [10, 11]. Although MSCs are recognized as a powerful tool in regenerative
medicine, the mechanisms of their action in vivo are rather elusive. Their differentiation potential
in vivo and survival after the transplantation is limited, and their therapeutic effect is supposed to
be mainly achieved by secretion of trophic factors and immunomodulation [12–14].

Recently, a potential contribution of MSCs into antimicrobial defense was reviewed. Two
major possibilities for antimicrobial activity were proposed, namely a direct and an indirect
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mechanisms [15]. Directly, MSCs may produce various
antimicrobial products, like AMPs, interleukin (IL-)17 and
indoleamine-2,3,-dioxygenase (IDO). Indirect antimicrobial
effects of MSCs are associated with the modulation of
the phagocytic activity and the production of numerous
chemoattractants stimulating their recruitment. However, MSC’s
input into antimicrobial defense remains controversial and
rather limited. Even less is known on the antimicrobial activity
of dental MSCs. Therefore, the present review attempts to
summarize and critically discuss state of knowledge about this
topic. As in our previous reviews [14, 16], information from
studies with confirmed MSC’s phenotype as well as from those
using fibroblasts-like cells will be included.

ANTIMICROBIAL ACTIVITIES OF DENTAL

MSCS

Antimicrobial Peptides
Antimicrobial peptides are small natural peptides produced by
multicellular organisms and possess antibacterial activity [17].
Most AMPs are positively charged and therefore can easily bind
negatively charged bacteria and kill them by incorporation in
their cytoplasmic membrane [18]. As recently reviewed, human
AMPs exhibit a cytotoxic activity toward numerous oral bacterial
species in planktonic and biofilm forms [19]. Three major types
of oral AMPs are reported in humans: defensins, cathelicidins,
and histatins [20].

Defensins and cathelicidin are the only AMPs reported
to be produced by dental MSCs. Defensins in humans are
subdivided into two large subfamilies: α-defensins (human
neutrophil peptides, HNP) and β-defensins (hBDs), which
further comprise several peptides encoded by various genes.
HNPs are mainly produced by neutrophils, while hBDs are
produced by epithelial cells [21, 22]. Human defensins exhibit
antibacterial activity toward numerous oral species, including S.
mutans, E. faecalis, A. naeslundi and Lactobacillus spp. [23, 24].
The only cathelicidin described in humans is LL-37, which is
mainly produced by neutrophils, monocytes, and lymphocytes
and inhibits growth and biofilm formation by various oral
species [25, 26].

Defensins
Earlier studies denied the expression of hBDs in human gingival
fibroblasts (hGFs), which can be explained by the methodological
limitations at that time. Krisanaprakornkit et al. [27] showed
using reverse transcription PCR that the hBD1 gene is not
expressed in hGFs, in contrast to gingival epithelial cells.
Another study using reverse transcription PCR did not detect the
expression of hBD1, hBD2, and hBD3 in hGFs [28]. However,
later studies in hGFs using more sensitive detection methods
implied that these cells produced different hBDs. Most studies
suggest that the expression of defensins in dental MSCs is
regulated by various inflammatory stimuli. Rizzo et al. [29]
revealed that the expression of hBD2 in hGFs is activated
by viable but not heat-inactivated Chlamydia pneumoniae.
Dommisch et al. [30] showed that Porphyromonas gingivalis
and Streptococcus gordonii increased mRNA expression of hBD2

and hBD3, but not that of hBD1 in hGFs. IL-1β upregulated
the expression of hBD1 and hBD2 and downregulated that
of hBD3 in hGFs [31]. Jang et al. [32] demonstrated that
the expression of hBDs in hGFs is also regulated by various
oral bacteria in a different way: the expression of hBD2 is
stimulated by Leptotrichia wadei, whereas the expression of hBD3
is inhibited by this species as well as by P. gingivalis. Besides
direct inflammatory stimuli, the expression of hBD2 in hGFs was
increased in the wound healing model after scratching the cell
monolayer [33].

In periodontal ligament-derived MSCs (hPDLSCs), the
expression of hBDs was shown to be regulated not only by
inflammatory stimuli but also by vitamin D3. Vitamin D3 is a
steroid hormone involved in the regulation of bone metabolism
and immune response [34, 35]. The major form of vitamin
D3 in the blood is 25(OH)D3, which is further converted into
biologically active 1,25(OH)2D3 in the kidney [36]. There is
some evidence that the bioactivation of vitamin D3 might also
occur in the oral tissues [37]. De Filippis et al. [38] showed that
the production of hBD3 in human periodontal ligament cells
(hPDLCs) is stimulated by P. gingivalis lipopolysaccharide (LPS)
and vitamin D3. Moreover, hPDLSCs-derived hBDs inhibited
P. gingivalis growth [38]. hPDLCs also express defensin alpha
4, which is upregulated by LPS and regulated by epigenetic
mechanisms [39, 40].

A study on odontoblast-like cells showed that these
cells express both hBD1 and hBD2 [41]. Interestingly, the
recombinant hBD2 decreased hBD1 expression, did not
influence hBD2 expression and increased the production of
various inflammatory cytokines by these cells [41]. Production
of hBDs in dental pulp-derived MSCs is also increased by
inflammatory stimuli. Thus, hBD2 gene expression in human
dental pulp cells (hDPCs) was upregulated by LPS [42] and
muramyl dipeptide, a cell wall component of both Gram-positive
and Gram-negative bacteria [43]. Another study showed that
the gene expression and protein production of hBD2 in hDPCs
is increased by tumor necrosis factor (TNF)-α and IL-1β in a
synergistic manner [44].

Cathelicidins/LL-37
Compared to defensins, there is less evidence on the production
of LL-37 by dental MSCs. To date, there are only two reports
showing that gene expression and secretion of LL-37 in hGFs
and hPDLCs was substantially upregulated by 25(OH)D3 and
1,25(OH)2D3, which was further enhanced by P. gingivalis
lipopolysaccharide [45, 46].

Effects of AMPs on the Inflammatory

Response and Regenerative Potential of

Dental MSCs
Besides antimicrobial function, AMPs are also known to
influence the characteristics of dental MSCs. As recently
reviewed, LL-37 exerts an anti-inflammatory effect in hPDLCs
[47]. In hGFs, LL-37 exerted not only an anti-inflammatory
effect but also stimulated the production of various growth
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factors involved in tissue remodeling [48]. hBD3 and LL-
37 exhibit synergistic anti-inflammatory effects in 3D co-
culture models of gingival epithelial cells and fibroblasts [31].
In contrast, one study suggested that the effect of LL-37 in
hGFs may be either anti-inflammatory or pro-inflammatory
depending on the present Toll-like receptor (TLR) agonist
[49]. In addition, hBD3 inhibited the inflammatory response
in hDPCs [50]. AMPs might also influence the differentiation
capacity of dental MSCs. Recent reports showed that hBD3
enhanced osteogenic differentiation of hPDLCs [51], whereas
LL-37 enhanced odontogenic differentiation of hDPCs [50].

Indoleamine 2,3 Dioxygenase
The major function of IDO is the depletion of tryptophan by
its conversion into L-kynurenine, which results in the inhibition
of the immune response. Besides dampening the immune
response, tryptophan depletion also inhibits bacterial growth;
moreover, it happens even earlier than immunosuppression [52].
HumanMSCs stimulated with different cytokines exhibited IDO-
mediated antibacterial, antiprotozoal, and antiviral effects in vitro
[53]. Interestingly, IDO-dependent antimicrobial effects were not
observed in murine MSCs, which do not express IDO. Instead,
murineMSCsmight inhibit bacterial growth through nitric oxide
production by inducible nitric oxide synthase [53].

The expression of IDO in resting dental MSCs is low and
is stimulated by various inflammatory cytokines such as TNF-
α, IL-1β, and interferon (IFN)-γ, and to a lesser extent by TLR
agonists, mainly by TLR3 activation [14, 16, 54]. The highest
IDO expression and activity in dental MSCs is achieved upon the
stimulation with IFN-γ [55, 56]. However, the exact role of MSC-
derived IDO in bacterial defense has to be further investigated.

Indirect Modulation of Antimicrobial

Activity by Dental MSCs
Similar to MSCs from bone marrow and other tissues, dental
MSCs exhibit immunomodulatory properties and can influence
the activity of almost all types of immune cells [14, 57, 58].
The immunomodulatory ability of dental MSCs is strongly
upregulated by various inflammatory cytokines and some Toll-
like receptors [14, 58]. Among others, dental MSCs regulate
the activity of polymorphonuclear neutrophils (PMNs) and
macrophages, the cells of the innate immune system primarily
involved in infection control. Additionally, dental MSCs produce
high amounts of various chemoattractants and thus stimulate
bacterial killing via recruitments of phagocytic immune cells.

PMNs, the most abundant type of white blood cells,
continuously migrate in the gingival sulcus and play an essential
role in controlling oral infection and biofilm growth. PMNs
phagocytose the invading bacteria and kill them by releasing
various antibacterial enzymes or producing reactive oxygen
species (ROS). A further antimicrobial effect of PMNs is the
release of neutrophils extracellular traps (NET) after their death
[59]. Few studies showed that the antimicrobial functions of
PMNs could be influenced by dental MSCs. Blufstein et al. [60]
showed that conditioned media of IL-1β-treated gingival MSCs
have an anti-apoptotic effect on PMNs isolated from peripheral
blood. This was not observed for untreated or TNF-α-treated

cells. No effect of gingival MSC’s conditioned media on ROS
production by PMNs was observed. An extended lifespan of
PMNs could mean that their ability to phagocytose invading
pathogens remains for a longer time and could be interpreted
as enhancement of antimicrobial activity. Misawa et al. [61]
investigated the effect of conditioned media of differently treated
hPDLSCs on the functional activity of human promyelocytic
leukemia HL-60 cells sharing many properties of PMNs. Phorbol
myristate acetate-induced ROS production by HL-60 cells was
enhanced by the supernatants of hPDLSCs treated by P.
gingivalis protein extract and decreased by those of untreated
hPDLSCs. Thus, it seems that dental MSCs might potentially
improve the antimicrobial function of PMNs, especially in the
inflammatory environment.

Macrophages are professional phagocytic cells of the innate
immune system and, besides bacteria recognition, are involved
in numerous processes such as the clearance of apoptotic
cells, regulation of tissue repair, and homeostasis [62, 63].
The macrophages exhibit high plasticity and their function is
determined by environmental factors [64, 65]. In a very simplified
view, macrophages are polarized either into pro-inflammatory
M1 phenotype or anti-inflammatory M2 phenotype [65]. Both
types of macrophages possess a strong phagocytic ability
compared to non-primed M0 macrophages [66].

As previously reviewed, in most cases, dental MSCs shift the
polarization of macrophages toward the M2 phenotype [14]. It
is not entirely clear how such polarization will influence the
antibacterial activity of macrophages. On the one hand, pro-
inflammatory M1 macrophages drive the immune response and
promote bacterial clearance [67]. On the other hand, there
is evidence that M2 macrophages can exhibit an even higher
phagocytic activity and ROS production thanM1 phenotype [68].

It should also be noted that most of the studies showing the
shift of macrophages toward M2 phenotype in the presence of
MSCs performed their experiments with macrophages derived
from monocytic cell lines or even mouse macrophages. The
situation in primary human macrophages could be less obvious.
Our study showed that the conditioned media of differently
primed macrophages can stimulate or inhibit the expression of
both pro- and anti-inflammatory markers in primary human
macrophages [69].

Tzach-Nahman et al. [70] investigated the effect of
conditioned media of human periodontal ligament fibroblasts
and hGFs on macrophages derived from a monocytic THP-1
cell line. Conditioned media of dental fibroblasts decreased the
production of TNF-α and enhanced macrophage phagocytosis
of P. gingivalis. These effects were promoted in fibroblasts
primed with inflammatory stimuli or derived from inflamed
peri-implant tissue. However, it should be considered that P.
gingivalismight survive phagocytosis by M2 macrophages [71].

Besides direct immunomodulatory effects, dental MSCs
produce a high amount of chemoattractants upon stimulation
with bacterial products or inflammatory cytokines [16, 72,
73]. The main chemoattractants produced by dental MSCs
are IL-8 and monocyte chemoattractant protein 1 (MCP-1),
which promote migration of phagocytic PMNs and monocytes,
respectively, [74, 75], and thus enhance bacterial elimination.
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Besides, a recent study showed that MCP-1 produced by
equine MSCs stimulates the production of AMPs by primary
keratinocytes isolated from horse skin [76]. The existence of such
mechanisms for dental MSCs and oral epithelial cells should be
considered by further studies.

CONCLUSION AND FUTURE

PERSPECTIVES

Host antimicrobial peptides are considered as a prospective tool
in the treatment of diseases associated with polymicrobial
biofilms [77] and particularly periodontal disease and
endodontic infections [78, 79]. Dental MSCs exhibit some
antimicrobial properties through the production of AMPs and
immunomodulation. The contribution of these mechanisms
to antibacterial defense is not yet clear. However, stimulation
of the endogenous production of AMPs could be a good
strategy for oral health maintenance. This could be achieved, for
example, by increasing systemic and/or local levels of vitamin
D3. Another possibility to increase AMPs production by dental
MSCs is their transfection with specific genes. For example,
transfection of hPDLSCs or sheets of hPDLSCs with hBD3 have
anti-inflammatory and antibacterial effects toward different
periodontal pathogens [80].

The occurrence of antibiotic resistance increased within the
last decades and is one of the biggest challenges in medicine,
particularly in dentistry [81–83]. The development of alternative
strategies for antimicrobial defense is one of the challenges
of contemporary dental research [84]. MSCs antimicrobial
activity could be a useful instrument to overcome this problem.
Combination of amoxicillin therapy with MSCs pre-activated

with TLR3 agonist Poly I:C exhibited a synergistic antimicrobial
effect in vivo [85]. Recently, the secretome of equine MSC was
shown to inhibit planktonic growth and biofilm formation of
various bacteria, including methicillin-resistant Staphylococcus
aureus [86]. Naturally produced AMPs or the secretome of
AMPs producing cells could theoretically help to overwhelm the
problem of increasing antimicrobial drug resistance.

MSCs are a powerful instrument in regenerative dentistry
and immunotherapy. Strategies to enhance their antimicrobial
properties are promising to improve their efficiency in clinical
applications and particularly dentistry. Transfection of MSCs
with AMPs results in antibacterial effects and might also improve
regenerative processes [87]. Current studies suggest that the
production of AMPs by dental MSCs is regulated by bacterial
products, inflammatory cytokines and vitamin D3. However, the
information on the regulation of AMPs production is still limited
and further research in this field is necessary. Understanding the
antimicrobial activity ofMSCs and their role in health and disease
would be very important for improving current therapeutic
approaches in dentistry.
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