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Evidence suggests the existence of an intracardiac dopaminergic system that plays

a pivotal role in regulating cardiac function and fibrosis through G-protein coupled

receptors, particularly mediated by dopamine receptor 3 (D3R). However, the expression

of dopamine receptors in cardiac tissue and their role in cardiac fibroblast function

is unclear. In this brief report, first we determined expression of D1R and D3R

both in left ventricle (LV) tissue and fibroblasts. Then, we explored the role of D3R

in the proliferation and migration of fibroblast cell cultures using both genetic and

pharmaceutical approaches; specifically, we compared cardiac fibroblasts isolated from

LV of wild type (WT) and D3R knockout (D3KO) mice in response to D3R-specific

pharmacological agents. Finally, we determined if loss of D3R function could significantly

alter LV fibroblast expression of collagen types I (Col1a1) and III (Col3a1). Cardiac

fibroblast proliferation was attenuated in D3KO cells, mimicking the behavior of WT

cardiac fibroblasts treated with D3R antagonist. In response to scratch injury, WT

cardiac fibroblasts treated with the D3R agonist, pramipexole, displayed enhanced

migration compared to control WT and D3KO cells. Loss of function in D3R resulted

in attenuation of both proliferation and migration in response to scratch injury, and

significantly increased the expression of Col3a1 in LV fibroblasts. These findings suggest

that D3R may mediate cardiac fibroblast function during the wound healing response.

To our knowledge this is the first report of D3R’s expression and functional significance

directly in mouse cardiac fibroblasts.

Keywords: cardiac fibroblasts, dopamine D3 receptor, dopamine D1 receptor, proliferation, migration, scratch

injury, D3R agonist, D3R antagonist

INTRODUCTION

The catecholamine dopamine is heavily involved in a multitude of neural pathways of the brain.
Many of these pathways involve regulating body movement, motivation, behavior, and cognitive
function (1). Subsequently, dopaminergic transmission has been implicated in playing a key
role in neuropsychiatric disorders such as attention deficit hyperactive disorder (2), Tourette
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Syndrome (3), depression (4), and neurodegenerative disorders
such as Parkinson’s disease (5), Huntington’s disease (6), and
multiple sclerosis (7, 8). However, dopamine also regulates many
physiological functions in the periphery, including sympathetic
output, kidney function, cardiovascular functions, and olfactory
senses (7).

The biological actions of dopamine occur through five
different dopamine receptors classified into two groups, D1-
like or D2-like dopamine receptors (7, 9). The class of D1-like
dopamine receptors include dopamine D1 and D5 receptors
(D1R and D5R), while the class of D2-like dopamine receptors
include dopamine D2, D3, and D4 receptors (D2R, D3R, and
D4R). These dopamine receptors are G-protein coupled, with
the class of D1-like dopamine receptors typically coupled to
G stimulatory sites, Gs/q/olf, to activate adenylyl cyclase, which
results in increased levels of the secondmessenger molecule, 3’,5’-
cyclic-adenosine monophosphate (cAMP). Conversely, the class
of D2-like dopamine receptors typically couple G inhibitory sites
(Gi/o) to adenylyl cyclase, resulting in decreased levels of cAMP
(7, 9).

Since the 1980s dopamine has been implicated to play a role
in hypertension (10–13). More specifically, evidence has shown
that dysfunction in the D3R signaling system is associated with
an increase in blood pressure in mice (14, 15). Emerging evidence
suggests the existence of an intracardiac dopaminergic system
plays a role in regulating cardiac function, mainly mediated by
the dopamine receptor subtypes D1 andD3 (16, 17). In particular,
the global loss of D3R function has been shown to negatively
impact cardiac function and exacerbate the progression of
fibrosis inmice (16). In addition, we demonstrated that treatment
with a D3R agonist prevented morphine-induced cardiac fibrosis
(18). Recently, D1R was reported to be upregulated in lung
myofibroblasts of patients with idiopathic pulmonary fibrosis
(19). Together, these data indicate a role for D1R and D3R in
cardiac fibrosis. However, to our knowledge no studies have
pursued the expression of dopamine receptors in mouse heart
and their function in cardiac fibroblasts. Accordingly, this study
aimed to investigate whether dopamine receptors D1 and D3
are expressed both in mouse cardiac tissue and primary cultures
of cardiac fibroblasts and explored the potential role of D3R in
cardiac fibroblast function.

MATERIALS AND METHODS

Animals
All animal experimental procedures were approved by the
Institutional Animal Care and Use Committee at East Carolina
University and followed National Institute for Health guidelines
outlining animal care and use in a laboratory setting (The Guide-
NRC 2011; 8th edition). All efforts were made to minimize
the number of animals used. We used 3–6-month-old, male
and female wild-type (WT) mice (C57BL/6J, n = 20), and
dopamine D3 receptor global knockout mice (D3KO; strain
B6.129S4-Drd3tm1dac/J, stock # 2958; n = 20). The D3KO mice
were obtained from Jackson Laboratory, Bar Harbor, ME and
maintained as a breeding colony at ECU.

Cardiac Fibroblast Cell Isolation
The left ventricles were removed from whole hearts of
WT and D3KO mice for cell culture. Tissues were first
washed with ice cold 1x PBS (Invitrogen; AM9624) to
remove any remaining blood, minced, and then digested
with collagenase II (Worthington Biochemical Corp.;
46A034) containing DNaseI (Worthington Biochemical
Corp.; LS002139) at 37◦C for 15min. Next, the digested
tissues underwent two rounds of centrifugation (300 xg
for 7min each) with removal of supernatant each time
to discard any debris remaining from the collagenase
digestion. Finally, cell pellets were suspended in 1x DMEM/F-
12 (1:1) media (Gibco; 11320-033) supplemented with
10% fetal bovine serum (FBS) (Gibco; 10438-026) and
incubated at 37◦C + 5% CO2 in T25 cell culture flasks
until fibroblasts were firmly attached. After the cells were
attached, the flasks were washed in warmed 1x PBS to
remove debris and placed back into the incubator and
allowed to grow to 70% confluency before subculture.
Primary cultures were identified and confirmed as cardiac
fibroblasts by spindle-shaped morphological appearance and
vimentin staining.

Immunofluorescence Labeling of D1R and
D3R in Heart Tissue and Primary Cardiac
Fibroblasts
Hearts were excised from WT animals, rinsed with saline,
immediately inserted into OCT compound block molds, and
placed on dry ice for ∼30min before being stored in a
−80◦C freezer. The cryosections of 10 microns thickness
were positioned on glass microscope slides and fixed in 4%
paraformaldehyde for 15min at room temperature. Similarly,
primary cultures of cardiac fibroblasts from the LV of WT
and D3KO animals were seeded (5,000 cells/well) and grown
on 0.2% gelatin coated glass coverslips in a 24-well plate and
then fixed with 4% paraformaldehyde in PBS for 15min at
room temperature. Cells were permeabilized with 0.1% Triton
X-100 in PBS for 10min and blocked in 1% bovine serum
albumin (BSA) in 1x PBS containing 0.3% Tween 20 for
1 h at room temperature. Both cells and tissues were then
incubated with primary antibodies for Vimentin [M0725, lot
#027(102), Dako, 1:500 dilution], D1R (NB110-60017AF488, lot
#B-3-101620, Novus Biologics, 1:500 dilution), and D3R (bs-
1743R-Cy5, lot #AF12125641, Bioss, 1:500 dilution) overnight
at 4◦C. Both cells and heart tissue were then washed the
next day 3 times with 1x PBS containing 0.3% Tween 20.
Then they were incubated with secondary antibodies (Donkey
anti-Mouse Alexa Fluor Plus 647, 1:1000 dilution or Donkey
anti-Mouse Alexa Fluor Plus 555, 1:1000 dilution) for 1 h
at room temperature. Following 3 additional washes with
1x PBS containing 0.3% Tween 20 for 15min, cells and
heart tissue were then placed on slides and covered with
coverslips using ProLong Diamond antifade reagent with DAPI
(ThermoFisher). The images were captured with an Echo
Revolve microscope.
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Western Blot Analysis for D1R and D3R in
Heart Tissue and Primary Cardiac
Fibroblasts Isolated From LV
C57BL/6 mice (Charles River stock #027), male adults (n =

6 males), were euthanized with an overdose of inhalational
isoflurane and the heart removed as per the protocol approved
by the Institutional Animal Use and Care Committee. LV was
isolated and snap frozen in liquid nitrogen. The protein from the
LV tissues and confluent cardiac fibroblasts were isolated using
RIPA buffer with 1x protease and phosphatase inhibitors and
protein was quantified by Bradford assay. Western blots were
performed by loading 10 µg of protein into a 4–20% Bio-Rad
precast gel. After electrophoresis, proteins were transferred and
immunoblotting was performed for dopamine receptors: D1R
(1:500, ab78021 Abcam); andD3R (1:5000, ab42114 Abcam) (20).
Image acquisition was performed using a UVP ChemiDoc-It
TS2 Imager.

Cardiac Fibroblast Proliferation Rate
Equal number of sub-confluent cardiac fibroblast cells were
seeded in 24-well plates and placed in the incubator at 37◦C
and 5% CO2 for 36 h to allow cells to attach. The old growth
media was discarded, and cells were washed with 1x PBS
and supplemented with fresh media with treatments. Stock
solutions of the agonist and antagonist were prepared in DMSO
as per manufacturer guidelines and were diluted accordingly.
Treatments were performed in triplicates for both D3KO and
WT cardiac fibroblasts as follows: (1) Vehicle control (DMEM
+ 10% FBS + 0.1% DMSO); (2) Pramipexole [10µM] (Tocris
Bioscience), an agonist specific for D3R; (3) SB-277011-A (SB)
[10µM] (Tocris Bioscience), an antagonist specific for D3R.
Addition of treatments indicated the start of the experiment
and Pramipexole and SB were replenished every 12 h. At
the time points of 6, 12, 24, and 36 h, the respective 24-
well plates were removed from the cell culture incubator and
treated with 0.05% Trypsin-EDTA (1x) (GibcoTM; 15400-054) to
dissociate the cells. Once cells were detached, an equal volume
of Trypsin Neutralizer (1x) (GibcoTM; R-002-100) was added
and cell counts of each treatment were recorded for all samples
at different time points of 6, 12, 24, and 36 h, respectively.
Cell counts were achieved using 0.4% Trypan Blue staining
in conjunction with the Countess II Automated Cell Counter
(Invitrogen; AMQAX10000).

Cardiac Fibroblast Migration in Response
to Scratch Injury
WT and D3KO cardiac fibroblast cells were seeded on 6-well
plates at a count large enough to ensure ≥60% confluency
upon start of the experiment and placed in the incubator at
37◦C and 5% CO2 for 36 h to allow cells to adhere. Wells
were then washed with 1x PBS prior to making scratches and
adding treatments. Next, three parallel scratches were made in
each well-designated for scratches using Falcon R© Cell Scrapers,
creating a total of nine scratches (n = 9) for each treatment
group at each time point. Drug treatments were diluted in

DMEM/F12 containing low FBS (0.5%) to facilitate serum-
starved conditions and limit the effect of cell proliferation on
scratch closure. Treatment groups were added in duplicates and
were mirrored for both D3KO and WT cardiac fibroblast cells
as follows: (1) Vehicle control (DMEM + 0.1% DMSO); (2)
Pramipexole [10µM] (Tocris Bioscience), an agonist specific
for D3R; 3) SB-277011-A (SB) [10µM] (Tocris Bioscience), an
antagonist specific for D3R. Upon initiation of scratches and
treatments, pictures were taken of the initial scratches and the
cells were placed in the incubator at 37◦C+ 5% CO2. Additional
pictures were taken at the respective time points (3, 6, 12, and
24 h) to assess progression of gap closure under each treatment.
Images of scratches were measured for cell migration distance
(µm) at specific time points using the software ImageJ, installed
from https://nih.gov.

Real Time-Quantitative PCR
Hearts were excised from WT and D3KO animals and
snap frozen in liquid nitrogen. Frozen mouse heart tissue
samples (n = 3) were homogenized in TRIzol reagent
and confluent cardiac fibroblasts were lysed and suspended
in TRIzol reagent (15596-026). RNA was isolated from
mouse heart tissue and primary cardiac fibroblasts using
TRI/Direct-Zol RNA Miniprep Kit (Zymo Research; R2072).
A cDNA library of all samples was created using Superscript
IV reverse transcriptase with ezDNAse enzyme (Invitrogen;
11766050) according to manufacturer’s instruction (Pub. No.
MAN0015862). A volume of 1µL of cDNA from each
sample was added to the respective wells of a 384-well
DNase/RNase-free PCR plate as well as the necessary reagents
for RT-qPCR. Thus, each well-included materials as follows:
0.5µL primer for specified gene, 0.5µL β-actin (housekeeping
gene), 4µL TaqManTM Fast Advanced Master Mix (Applied
Biosystems, 4444557), 1µL cDNA, and 4µL DNase/RNase-
free ultrapure water (Invitrogen, 10977023) for 10µL total
volume in each well. Samples were added in duplicates.
TaqMan primers were acquired from Applied Biosystems (Life
Technologies, ThermoFisher Scientific) and are as follows with
assay IDs: Drd1 (Mm02620146_s1), Drd3 (Mm00432887_m1),
Col1a1 (Mm00801666_g1), Col3a1 (Mm00802296_g1) and
ACTB (Mm02619580_g1). Quantitative real-time-PCR was
performed using Applied Biosystems QuantStudio 6 Flex System
at manufacturer’s recommended settings. CT values from
QuantStudio program were then transformed to relative gene
expression values by the comparative CT method (21, 22).

Statistics
Analysis of Variance (ANOVA) was performed on proliferation
and migration mean values to determine if there was statistical
significance between 3+ sample means for each time point.
ANOVA was followed by two-tail, two sample Student t-tests
at time points that resulted in ANOVA p-values less than or
equal to 0.05. Two-tail, two sample Student t-tests were also
performed on all real-time PCR data, with p-values less than
or equal to 0.05 determined to be statistically significant using
GraphPad Prism.
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FIGURE 1 | The expression and distribution of dopamine receptors, D1R and D3R in mouse hearts: (A) Representative photomicrographs showing

immunofluorescence staining of D1R and D3R which co-localized with vimentin, a cardiac fibroblast-specific marker, in the heart tissue sections. No primary antibody

control sections were incubated with the antibody diluent alone and no primary antibody, followed by incubation with secondary antibodies and DAPI (the nuclear

stain), which confirms the antibody specificity of D1R and D3R. (B) Gene expression was determined using TaqMan primers by real-time qPCR. The normalized -dCT

values indicate that there is relatively higher expression of D1R compared to D3R in cardiac tissue. (C) Receptor protein expression determined by western blot using

receptor specific antibodies as described in methods section.

RESULTS

Heart Tissue and Cardiac Fibroblasts
Express Dopamine Receptors D1R and
D3R
We first confirmed the expression of D1R and D3R within
the hearts of WT mice. Immunofluorescence labeling using
specific antibodies against D1R and D3R revealed that both
receptors are expressed in mouse LV (Figure 1A). Furthermore,
the co-localization of D1R and D3R with the fibroblast marker
vimentin, confirmed the expression of these receptors in the
cardiac fibroblasts (Figure 1A). In addition, gene and protein
quantification confirmed the expression of both D1R and D3R in
the mouse hearts (Figures 1B,C). The data clearly demonstrate
that D1R and D3R express at mRNA and protein levels in
mouse hearts.

Furthermore, we confirmed the expression of D1R and D3R
in isolated mouse heart primary cultures of LV cardiac fibroblasts
from WT and D3KO mice. As indicated by co-localization of
receptor specific immunofluorescence with the fibroblast marker
vimentin, both D1R and D3R are expressed in mouse cardiac
fibroblasts, and the absence of D3R staining in D3KO reflected
the positive functional knockout for this model (Figure 2A).

In addition, gene (Figure 2B) and protein (Figure 2C) analyses
confirmed the expression of both D1R and D3R in the primary
cultures of cardiac fibroblasts.

D3R Deletion or Dysfunction Reduce
Cardiac Fibroblast Proliferation and
Migration
To determine whether D3R loss of function may play a role
in cardiac fibroblast processes, we compared proliferation and
migration rates between WT and D3KO cells. Cardiac fibroblast
proliferation differed over a period of 36 h between WT and
D3KO controls, with significant differences (p < 0.05) occurring
at 24 and 36 h (Figure 3A). Between 6 and 12 h, the proliferation
rates of D3KO and WT cells are comparable; however, while the
proliferation of the WT cells steadily increased until 36 h, no
further change was observed in the D3KO cells. Compared to
WT, the proliferation of D3KO fibroblasts significantly decreased
after 24 h (2-fold) and 36 h (3-fold) (Figure 3A). The data
indicate that D3R dysfunction could cause a decrease in the rate
of fibroblast proliferation. Next we utilized a pharmacological
approach to confirm the role of D3R in WT cardiac fibroblast
proliferation. Treatment with a D3R antagonist, SB-277011-A
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FIGURE 2 | The expression and distribution of dopamine receptors, D1R and D3R in mouse primary cardiac fibroblasts: (A) Representative photomicrographs

showing immunofluorescence staining of D1R and D3R which co-localized with cardiac fibroblasts specific marker vimentin staining in the isolated WT and D3KO

primary cardiac fibroblasts in culture. Cardiac fibroblast expression of D1R and D3R is not lost when primary cells are maintained in cell culture. As expected, there is

no observable staining for D3R in D3KO cardiac fibroblasts. No primary antibody control images show the specificity of the primary antibodies used. (B) Gene

expression determined using TaqMan primers by real-time qPCR. The normalized -dCT values indicate that there is relatively higher expression D1R compared to D3R

in cardiac fibroblasts. (C) Receptor protein expression determined by western blot using receptor specific antibodies as described in methods section.

(SB), resulted inWT cardiac fibroblast proliferation that behaved
similarly to that of D3KO + vehicle cells (Figure 3A, blue line).
This result further demonstrates the importance of functional
D3R on the rate of proliferation.

The migratory response of cardiac fibroblast cells is a key
element in the wound healing of the heart. Thus, we next

evaluated whether there was a difference in cell migration in
response to a scratch injury between WT and D3KO cells.
Figure 3B shows the difference in migration rates over 24 h
between WT + vehicle and D3KO + vehicle cells, as well as
WT cells treated with pramipexole, a D3R agonist. There was
no significant difference in the migration rate between cell types
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FIGURE 3 | Cardiac fibroblast cell proliferation and migration studies: (A) Cardiac fibroblast cell proliferation between WT + vehicle (black circle), WT treated with SB

(closed blue square), and D3KO + vehicle (red circle) over a time-period of 36 h. Cells were incubated in DMEM/F-12 growth media supplemented with 10% FBS; n =

3 for each treatment at each time-point, *p < 0.05 statistically significant. Bars represent standard error of mean. (B) Cardiac fibroblast cell migration distance in

response to a scratch injury over a 24-h time-period. Migration distance in µm between WT + vehicle (black circle), D3KO + vehicle (red circle), and WT cells treated

with D3R specific agonist, pramipexole (blue circle). Cells were incubated in DMEM/F-12 growth media supplemented with 0.5% FBS; n = 9 for each treatment at

each time-point, *p < 0.05 statistically significant. Bars represent standard error of mean. Statistical significance between WT treatment and D3KO + vehicle. (C)

Cardiac fibroblast cell migration distance in response to a scratch injury over a 24-h time-period. Migration distance in µm of D3KO + vehicle cells (red circle), D3KO

cells treated with pramipexole (closed blue square), and D3KO cell treated with SB (green square), compared against WT + vehicle cells (black circle); n = 9 for each

treatment at each time-point, *p < 0.05 statistically significant. Bars represent standard error of mean.

throughout the initial 12 h (Figure 3B). However, at 24 h post-
scratch, WT + vehicle cells and WT + pramipexole cells had
covered a significantly greater distance thanD3KO+ vehicle cells
(∼270µm more in the WT + pramipexole cells, and ∼145µm
more in the WT + vehicle cells) (Figure 3B). Treatment with
D3R agonist, pramipexole, resulted in an enhanced rate of
migration of WT cells after 24 h when compared to WT +

vehicle cells (∼400µm total inWT+ pramipexole and∼275µm
total in WT + vehicle, p < 0.05) (Figure 3B). The stimulation
of D3R resulted in an increased migration rate, implying that
active signaling through D3R could be essential in cardiac
wound healing.

Finally, to confirm that pharmacological treatments have no
significant influence on the knockout model, D3KO cardiac
fibroblasts were treated with either pramipexole or SB during
the migration assay. When treated with pramipexole, D3KO cells
appeared to have a greater rate of migration after 12 h when
compared to the other D3KO groups (Figure 3C). However, it
was observed that treatment of D3KO cardiac fibroblasts with
either pramipexole or SB did not result in any significant change
in migration distance over the 24-h period when compared to
D3KO control cells (Figure 3C). The lack of cellular response to
pramipexole and SB indicates that the D3R within the knockout
model are indeed non-functioning.

Expression of Col1a1 and Col3a1in Heart
Tissue and LV Cardiac Fibroblasts of WT
and D3KO
A predominant function of cardiac fibroblast is to secrete type
I and type III collagens. As such, we investigated whether loss
of D3R also influences cardiac collagen expression. Our gene
expression results indicate that the expression of both Col1a1 and
Col3a1 were quite different between D3KO and WT hearts, as

Col1a1 was significantly decreased and Col3a1 was significantly
increased in D3KO compared to WT (Figure 4A). Next, we
analyzed Col1a1 and Col3a1 gene expression in WT and D3KO
LV cardiac fibroblasts, the results of which showed a similar trend
as in the cardiac tissue (Figure 4B).

DISCUSSION

This is the first study to demonstrate that the D3 receptor is
present in mouse cardiac tissue and LV fibroblasts, and that it
has an influence on cardiac fibroblast proliferation, migration,
and collagen expression. While much of the literature describes
D3R’s role in tissues such as the brain (23, 24), kidney (25, 26),
and vasculature (27–29), a previous study inquired about the
influence of D3R in the aging heart (16). Several reports have
shown direct interaction between D3R and D1R (30–32); thus,
this study focused on both receptors and aimed to confirm the
expression of D1R and D3R in mouse cardiac tissues and cardiac
fibroblasts in addition to investigating whether D3R can affect
multiple cardiac fibroblast functions.

Confirmation of the expression of D1R and D3R within
WT mouse cardiac fibroblasts and heart tissue is essential due
to lack of comprehensive analysis in the existing literature.
Figure 1 shows LV tissue expresses both D1R and D3R;
although, expression of these receptors was not exclusive
to cardiac fibroblasts since expression was also observed in
vimentin negative cells. Likewise, Cai and colleagues have
demonstrated expression of D1R and D2R in cultured neonatal
rat cardiomyocytes (33), which may suggest the possibility that
D1R and D3R are also expressed in mouse adult cardiomyocytes.
Not surprisingly, previous studies have shown that both receptors
are expressed in mouse brain and spinal cord (7, 34, 35). Yet,
other studies have observedD1RRNA in fibroblasts isolated from
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FIGURE 4 | Collagen Gene Expression in WT and D3KO Cardiac Tissue and

Fibroblast Cells: (A) Gene expression determined using TaqMan primers by

real-time qPCR (n = 3, run in duplicates); Gene expression data for Col1a1

and Col3a1 was derived from WT and D3KO whole heart tissues. All values

are Fold Change normalized to WT. There is a significant decrease in Col1a1

gene expression in D3KO heart tissue compared to WT and a significant

increase in Col3a1 gene expression in D3KO heart tissue compared to WT.

*p < 0.05, **p < 0.01, statistically significant; Bars represent standard error of

mean. (B) Gene expression determined using TaqMan primers by real-time

qPCR (n = 4, run in duplicates); Gene expression data for Col1a1 and Col3a1

was derived from WT and D3KO LV cardiac fibroblasts. All values are Fold

Change normalized to WT, ****p < 0.0001 statistically significant, bars

represent standard error of mean.

both human and mouse lung tissue (36). So, in addition to other
organ systems, D1R and D3R are expressed in mouse cardiac
fibroblasts, demonstrating expression of these receptors across
multiple different tissue types.

Use of non-ergot dopamine agonists is common among
human patients with Restless Legs Syndrome (RLS) (37–39)
and Parkinson’s disease (40–44). Though these agonists do
not present the potential for heart valve regurgitation that
some ergoline-derived agonists do (44, 45), they can still lose
efficacy over prolonged use (46, 47). To investigate whether
manipulation of D3R affects cardiac fibroblast function, we
utilized D3R-specific agonist and antagonist, pramipexole and
SB, respectively, as well as a cardiac fibroblast D3KO model.
Our proliferation results indicate that there is a noticeable

attenuation of fibroblast proliferation upon loss of functional
D3R (Figure 3A). Additionally, it was observed that treatment
with SB resulted in WT cardiac fibroblast proliferation behavior
similar to the proliferation seen in D3KO + vehicle fibroblasts
(Figure 3A). Interestingly, this decrease in proliferation was
accompanied by a definite decrease in cell viability over the
36-h time-period in both D3KO + vehicle and WT + SB
(Figure 3A). A possible reason for these observations could
be that D3R modulates an apoptotic pathway in cardiac
fibroblasts. Previous work has shown that stimulation of D3R
has a protective effect against apoptosis in neural cells through
inhibition of JNK and caspase pathways and increased levels
of bcl-2 and pAkt (48). Additionally, stimulation of D3R has
been demonstrated to reduce kidney epithelial cell apoptosis,
likely through inhibition of Gα12 (49). Also, studies have shown
that D3R positively modulates the proliferation of cells of
different brain regions, either by stimulation of the receptor, as
reported by a study regarding neural cells of the subventricular
zone (50) or by inhibiting the receptor, as a study reported
regarding cells of the hippocampus (51). Furthermore (52), found
that knockdown of D3R results in cytokinesis defects in HeLa
cells (52).

Complementing the decreased proliferation observed in
vehicle-treated D3KO cardiac fibroblast cells was the observation
of attenuated migration in this same cardiac fibroblast model
(Figures 3B,C). Of note, decreased migration rate in D3KO
cells may be a cumulative effect of reduced migration and
proliferation. This potentially falls in line with the results from a
study performed by Yasunari et al. (53), wherein a specific D1-
like antagonist reversed the antimigratory effects of dopamine
in vascular smooth muscle cells (53). Since the two families of
dopamine receptors, D1-like and D2-like, are separated based
on each family’s opposing influences on cAMP production (1),
it could be inferred that they also have opposite influences on
cell migration. While some studies propose D1-like receptors
are antimigratory and antiproliferative in vascular smooth
muscle (53), other studies propose that D2-like receptors are
also antiproliferative (54) and antimigratory (55). Furthermore,
interaction between D1R and D3R in vascular smooth muscle
has been described (29) and could explain the antiproliferative
and antimigratory effects of these receptors in this tissue type.
Although these studies describe the role of the dopamine
receptors in vascular smooth muscle, these receptors could affect
migration differently in cardiac fibroblast cells, as was observed
in our migration assay (Figures 3B,C). Our data suggests that
the D2-like receptor family is antimigratory and antiproliferative
upon the knock down of D3R.

Collagen proteins are critical components of the extracellular
matrix and are present in various types throughout the
human body. Though with regards to the cardiac extracellular
matrix, collagen types I and III predominate, with the ratio
of these types serving as an important factor in cardiac
physiology and disease. If the ratio is tilted too far out
of balance in favor of either collagen type (I or III), then
complications will arise (56). Our collagen expression data
clearly indicate that there is a significant difference in basal
collagen Col1a1 and Col3a1 expression in the D3KO heart,
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likely contributed by the significantly altered collagen I and
III expression profiles of the D3KO LV cardiac fibroblasts
(Figures 4A,B). Hence, this shift in collagen ratio toward
increased deposition of collagen type III and reduced collagen
type I may make D3KO hearts more susceptible to cardiac
dysfunction and fibrosis.

Nonetheless, since detailing the mechanistic insight was
beyond the scope of this brief report, certain research limitations
accompany our study. For instance, the D3R-dependent
mechanisms which mediate fibroblast proliferation, migration,
and collagen expression remain to be established and future
studies will be required to better determine the effects of D3R on
cardiac remodeling and dysfunction.

CONCLUSIONS

Fibroblasts are key mediators in the synthesis and degradation
of collagen and are major regulators of the physiological and
pathological fibrotic states of the heart (57). Johnson et al.
previously observed a fibrotic state in 2-month-old D3KO
mice comparable to that observed in 2-year-old WT mice
(16). Our study investigated further into this observation to
determine whether cardiac fibroblast function may be altered
in this animal model. Accordingly, it was observed that
inhibition or dysfunction of D3R in cardiac fibroblasts results in
significantly altered collagen expression and attenuated fibroblast
proliferation and migration, whereas stimulation with a D3R
agonist enhances fibroblast migration in response to a scratch
injury. This suggests D3R may play a novel role in the wound
healing process. Therefore, the next step will be to elucidate
the mechanisms involved in cellular organization that may be
regulated by this receptor.
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