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Abstract
1. Functional traits have been examined to explain the growth rates of forest com-

munities in different sites. However, weak or nonexistent relations are often 
found, especially due to the following methodological aspects: 1) lack of an envi-
ronmental context (e.g., light, water, or nutrient supply), 2) use of nonfunctional 
traits, 3) an approach that does not contemplate phenotypic integration, and 4) 
neglect of intraspecific variation.

2. Here we measured relative growth rates, crown, and leaf traits in saplings of six 
tropical tree species growing in two light environments (Gap and Understory) to test 
whether contrasting light environments modulates trait– trait and trait– growth rela-
tionships. Moreover, we tested whether models that integrate traits of different di-
mensions of the plant (crown and leaf) improve the strength of trait– growth relations.

3. Light availability changed both trait– trait and trait– growth relationships. Overall, 
in Understory, crown traits (crown length and total leaf area) have a stronger effect 
on growth rates, while physiological traits related to nutrient acquisition (nitrogen 
concentration), photochemical efficiency (chlorophyll pigments and chlorophyll a 
fluorescence), and biochemical efficiency (potassium use efficiency) are strong in 
Gap. Models including multiple traits explained growth rates better in Gap (up to 
62%) and Understory (up to 47%), but just in Gap the best model comprises traits 
that are representative of different dimensions of the plant.

4. Synthesis. We advanced the knowledge behind the light effects on tree sapling by 
posit that trait– trait and trait– growth relationships vary across light environments. 
Therefore, light availability is a key environmental factor to be considered when 
choosing the set of traits to be measured in functional approach studies using trop-
ical tree saplings. In compliance with the phenotype integration hypothesis, func-
tional traits are better predictors of growth rates when grouped in a set of traits of 
different dimensions of the plant that represent different functional mechanisms.
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1  | INTRODUC TION

Functional traits are by definition any morphological, physiological, 
or phenological measurements performed at an individual level that 
indirectly affect fitness due to effects on some aspect of plant per-
formance (i.e., growth, survival, or reproduction) (Violle et al., 2007). 
Ecologists have long used traits to explain demography performance 
affected by abiotic and biotic environmental conditions around the 
world, especially growth rate (Chave et al., 2009; Paine et al., 2015; 
Wright et al., 2004). However, studies that found a moderate or 
strong trait– growth rate relationship are an exception (Swenson 
et al., 2020). In this sense, recent studies have concentrated efforts 
in understanding why weak relationships are frequent and defining 
standardized protocols for studies of trait- based community ecology 
(Caruso et al., 2020; Swenson et al., 2020; Worthy & Swenson, 2019; 
Yang et al., 2018). Some methodological aspects of sampling may 
affect the ability of traits to predict growth rates, such as 1) lack of 
environmental context, 2) use of nonfunctional traits, 3) approaches 
that do not contemplate phenotypic integration, and 4) neglect of 
intraspecific variation (Yang et al., 2018; Yang et al., 2020; Worthy 
& Swenson, 2019).

To understand how traits determine plant growth, it is neces-
sary to understand how traits correlate to form plant phenotype 
and how environmental context modulates these relationships (He 
et al., 2020; McGill et al., 2006). Globally, trait– trait relationships 
were ordered in a single axis of variation, where species with high 
specific leaf area, high photosynthetic rate, high nitrogen content, 
and low wood density (among other traits) have acquisitive strategies 
and a high growth, while the opposite trend reflects conservative 
strategies and low growth (Chave et al., 2009; Reich, 2014; Wright 
et al., 2004). However, these trends of covariation may change 
among environments (Nicotra et al., 1997; Poorter et al., 2014; 
Wright et al., 2005), from global to local scale (Messier et al., 2017) 
and from interspecific to intraspecific analysis (Laughlin et al., 2017). 
For example, a maximum photosynthetic rate (Amax) increases pos-
itively according to specific leaf area (SLA) among species (Wright 
et al., 2004), but across a light gradient the intraspecific correla-
tion is negative, as acclimation of leaves to high light increases Amax 
but reduces SLA (Kenzo et al., 2015; Santos & Ferreira, 2020b). 
Furthermore, trait– growth relationships may also change according 
to light environment (Poorter, 1999). For example, in high- light en-
vironments, physiological traits related to photosynthetic nutrient 
use efficiency are highly related to growth (Guimarães et al., 2018), 
while in low- light environments, morphological traits related to light 
interception are highly related to growth (Liu et al., 2016). Studies 
that examine the effects of environmental contexts on trait– trait 
and trait– growth relationships are necessary, especially in tropical 
forests (Worthy & Swenson, 2019).

Beyond the environmental context, a good selection of traits is 
fundamental. The traits commonly measured and the type of analy-
ses conducted represent little the complexity of the growth process. 
Most studies developed to date have focused on measuring soft 
traits due to an easy applicability and a lower required investment 

(Gibert et al., 2016; Worthy & Swenson, 2019; Yang et al., 2018). 
However, hard traits are more informative of physiological processes 
that drive plant performance because they highlight, for example, 
the different steps of photosynthesis (Santos & Ferreira, 2020b; 
Volaire et al., 2020; Worthy & Swenson, 2019; Yang et al., 2018). 
Additionally, a set of traits can better explain demographic rates 
than a single trait does (Li et al., 2017) because plant growth depends 
on a complex integration of multiple traits. Therefore, models that 
allow integration of many traits measured in different dimensions 
of the plant, such as crown, leaf, roots, and stem (the phenotypic 
integration hypothesis), that represent mechanisms related to demo-
graphically complex processes, such as growth, may have a greater 
explanation power (Yang et al., 2020).

The great variation in outcomes found in the literature on func-
tional trait– demographic rate relations is one of the most important 
topics in plant biology (Salguero- Gómez et al., 2018). Considering 
light, the most limiting factor to plant growth in tropical forests 
(Goldstein et al., 2016; Graham et al., 2003; Nicotra et al., 1999; 
Wagner et al., 2017), the role the availability of this resource plays 
in trait– growth relationship remains unclear. Thus, to fill this gap, 
an analysis that controls light variation and species composition 
can better demonstrate how traits determine the performance of 
plants (Wright et al., 2010). Therefore, based on a two- year experi-
ment of secondary forest enrichment planting with six tropical tree 
species introduced in artificial gaps, we selected individuals growing 
in contrasting light environments (Gap and Understory) and then 
measured thirty traits (from crown and leaf) at an individual level. 
We analyzed the relationships among traits and between traits and 
growth rate and tested the following three questions. First, how 
does light environment modulate trait– trait relationships in tropical 
tree saplings? We hypothesize that the plant phenotype is mani-
fested by different trait- to- trait relationships at the different light 
environment. Second, does the light environment modulate the rela-
tionships between traits and growth rate? We hypothesize that light 
environment changes the plant phenotype in a way (first hypothesis) 
that affects traits most related to growth. Third, do trait– growth re-
lationships improve by using an integrated set of traits, measured 
in different dimensions of the plant (crown and leaf)? We hypothe-
size that a set of traits of different dimensions of plants— the whole 
phenotype hypothesis— and physiological traits (e.g., photosynthetic 
process) represents growth better in both environments.

2  | MATERIAL AND METHODS

2.1 | Study site

This study was conducted in a secondary forest enrichment planting. 
In 1997, the forest was cut and burned to implement a Theobroma 
gradiflorum (Willd. ex Spreng.) K. Schum. (cupuaçu tree) crop. 
However, the area was abandoned, giving way to a naturally regener-
ating forest. Therefore, silvicultural treatments were applied during 
the last quarter of 2016 to begin the enrichment planting experiment 
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in a 19- year secondary forest. The site is at the Fazenda Experimental 
da Universidade Federal do Amazonas (02º38'S, 60º03.5'W), 38 km 
north of Manaus, Amazonas, Brazil. The annual rainfall in Manaus is 
2,350 mm, the monthly average air temperature ranges from 26.4 to 
28.5ºC, and the average air humidity ranges from 75% in the dry sea-
son to 85% in the wet season (data from 1988– 2018; INMET, 2019). 
Rainfall seasonality is generally moderate, with a dry season (rainfall 
<100 mm) between August and September (Sombroek, 2001).

2.2 | Experimental design

The light manipulation from the secondary forest to the subsequently 
enrichment planting consisted of understory slashing: removal of all 
herbaceous plants and small trees (DBH < 5 cm) at the beginning 
of the experiment and twice a year, and canopy refinement: bring-
ing trees down (DBH ≥ 5 cm) by the canopy and subcanopy with a 
chainsaw in progressive levels of basal area reduction (0, 20, 40, 60, 
80, and 100%). Each level of canopy refinement was applied to a plot 
of 2,318 m2 (61 × 38 m), and understory slashing was applied in a 
subplot half the size of the main canopy refinement plot (Figure S1). 
Treatment combinations were replicated five times (blocks), each 
with 12,768 m2 (114 × 112 m). Six tropical tree species were se-
lected by the criteria of economic and social importance, life history 
strategy, and availability of seeds following a minimum number of 
five matrices. The species are of two ecological groups: long- lived 
pioneer (Cedrela fissilis, Tabebuia rosea, and Swietenia macrophylla), 
and partial shade- tolerant (Bertholletia excelsa, Carapa guianensis, 
and Hymenaea courbaril) (Chazdon, 2014; Finegan, 1992; Poorter 
et al., 2006; Swaine & Whitmore, 1988). A preview study within 
the same experiment showed a wide range of growth responses 
of these species to a light gradient created by thinning (Santos & 
Ferreira, 2020a). The seedlings were planted in these plots in March 
2017. In each subplot, five seedlings of each species were planted, 
3 × 3 m apart, with an edge of 10 m between plots and 11 m between 
subplots (Figure S1). During planting, the soil surrounding each seed-
ling was fertilized with P2O5 (46 g), N (11.6 g), KCl (12 g), and micro-
nutrients (10 g of FTE- BR12: 1.8% B; 0.8% Cu; 3.0% Fe; 2.0% Mn; 
0.1% Mo). The application methods and doses that ensured the mini-
mal nutrient requirements of tropical trees were obtained from a 
literature review (Alvarado, 2015; Campoe et al., 2014; Furtini Neto 
et al., 2000; Resende et al., 2005). Further details are provided in 
Santos et al. (2020) and Santos and Ferreira (2020a).

For this study, we selected only two subplot combinations with the 
most contrasting light environments: 1) clear- cut (100% of canopy re-
finement) and understory slashed subplots— hereinafter named Gap 
(photosynthetic photon flux density— PPFD = 27.9 mol/m2 day−1), 
and 2) plots without basal area reduction (0% of canopy refinement) 
combined with understory slashing— hereinafter named Understory 
(PPFD = 1.3 mol/m2 day−1) (Santos et al., 2020) (Figure S1). We se-
lected only subplots with understory slashed with the objective to 
reduce the eventual effects of herbaceous competition on sapling 
growth.

2.3 | Growth rate measurements

We monitored saplings planted in this experiment for two years 
in bi- monthly campaigns from March 2017 to March 2019. In each 
monitoring campaign, we measured the root collar diameter (D) 
(5 cm above the soil) and total height (H) of each sapling. The above-
ground biomass was approximated by D2H, as Kohyama and Hotta 
(1990) proposed. We calculated annual relative growth in biomass 
for each individual according to Hunt (1978).

where RGx = relative growth in biomass, lnX2 − lnX1 = increase in log-
arithmic biomass between two measurements, and T2– T1 = interval 
between measurements.

2.4 | Trait measurements

We measured a set of crown and leaf traits at the end of the second 
year after planting (Table 2). We measure all live individuals in each 
plot of each treatment selected and used individuals values for all 
analyses. In total, we measured the traits in 113 individuals in Gap, 
ranging from 16 to 23 per species, and 89 individuals in Understory 
subplots, ranging from seven to 22 per species. The differences in 
sampling between light conditions and across species are due the 
greater mortality of individuals in Understory, especially of shade- 
intolerant species (long- lived pioneers). All leaf traits were measured 
on healthy, fully expanded leaves visually without herbivory in the 
middle third of the crown. We grouped traits in two main groups 
(crown and leaf) and leaf traits in six sets of traits: leaf display, nutri-
ent acquisition, light absorption efficiency, light use efficiency, gas 
exchange, and nutrient use efficiency.

2.5 | Crown

We measured crown diameter in two orthogonal directions and 
crown length (CL) from the first leaf insertion (or branch) to the top 
of the crown. Then, we calculated mean crown diameter (MCD, av-
erage of two orthogonal crown diameters), crown projection area 
(CPA, using the formula for ellipse area), crown ratio (CR, MCD/D), 
crown length ratio (CLR, CL/H), and relative crown length (RCL, CL/
MCD) (Li et al., 2017).

We estimated total leaf area (TLA) as follows: First, we counted 
the numbers of leaves in each plant and measured leaf length and 
width in the field for 30% of leaves. Then, we used leaf- size and 
species- specific models that relate leaf area to leaf length and width 
to estimate the area of leaves measured in the field (length and 
width). The parameters of the models were adjusted using leaves 
previously measured in laboratory by a leaf area meter (CI- 202, CID, 
Inc. Beds). The coefficient of determination (R2) of models ranged 

RGx =
ln X2 − lnX1

T2 − T1
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from 0.86 to 0.99 (Table S1). Finally, we estimated the total leaf area 
of each plant using the proportion of leaf area in 30% of leaves. From 
TLA, we also calculated leaf area index (LAI) as the ratio between TLA 
and CPA (Poorter, 1999).

2.6 | Leaf display

We measured the leaf area of a range of three to six leaves for each 
individual using a leaf area meter (CI- 202, CID, Inc. Beds) and then 
calculated the average to obtain the individual leaf area of each plant 
(LA). Ten leaf disks (2.83 cm2) were cut from three leaves per plant, 
saturated in distillated water, and oven- dried at 65ºC. Specific leaf 
area (SLA) was calculated as the ratio between fresh leaf area (cm2) 
and oven- dried mass (g). Leaf dry matter content (LDMC) was calcu-
lated as the ratio between oven- dried mass (mg) and water- saturated 
mass (g) (Pérez- Harguindeguy et al., 2013).

2.7 | Nutrient acquisition

We estimated mass- based nitrogen, phosphorus, and potas-
sium concentration in three to six leaves per plant. Leaf nitrogen 
(Nmass) was determined by the Kjeldahl method using digestion, 
distillation, and titration (Bremner, 1996). Leaf phosphorus (Pmass) 
was determined by spectrophotometry (λ = 750 nm) following 
the molybdate method (Murphy & Riley, 1962). Leaf potassium 
(Kmass) was obtained by atomic absorption spectrometry (1100B, 
PerkinElmer).

2.8 | Light absorption efficiency

We estimated mass- based chloroplast pigment concentrations in 
three leaves of each plant. Chlorophyll a (Chl a), chlorophyll b (Chl 
b), and carotenoids (Carc+x) concentrations were extracted with ac-
etone (10 ml of 80% acetone with 0.05 g of MgCO3 per 0.1 g of 
fresh leaf) followed by filtration (Lichtenthaler & Wellburn, 1983). 
The concentrations were calculated by absorbance reading at three 
wavelengths (663, 645, and 480 nm; Biochrom Libra s50 UV/Vis) fol-
lowing Hendry and Price (1993). Total chlorophyll concentration (Chl 
a + b) and chlorophyll a and b ratio (Chl a/b) were calculated by sum 
and ratio of Chl a and Chl b concentrations, respectively.

2.9 | Light use efficiency

The fluorescence parameters were measured in twelve leaves per 
plant between 8 a.m. and 10 a.m. using a portable fluorimeter (PEA, 
MK2- 9600, Hansatech) adjusted to emit a saturating light pulse of 
3,000 µmol/m2 s−1 at a wavelength of 650 nm for 1 s. Before the 
measurements, the leaves were acclimated to the dark during 30 min 
for a complete oxidation of the photosynthetic electron transport 

chain. Maximum quantum yield of PSII (FV/FM), ABS- based perfor-
mance index (PIABS), and total performance index (PItotal) were cal-
culated by performing JIP test applied to chlorophyll a polyphasic 
transient stages (Strasser et al., 1995; Strasser et al., 1999; Strasser 
et al., 2010; Tsimilli- Michael & Strasser, 2008). These parameters 
have been widely used in studies to show the responses of plants 
to abiotic and biotic stresses and light use efficiency on the pho-
tosynthetic process (Santos & Ferreira, 2020b; Santos et al., 2019). 
The JIP test calculates light use performance parameters throughout 
the electron transport chain. According to this method, light energy 
is absorbed (ABS) by the antenna of the photosystem II (PSII), and 
a fraction is trapped (TR) by open PSII reaction centers, leading to 
quinone A reduction (QA). The QA electron is transported to inter-
system electron acceptors (ET) and to the final electron acceptors 
(RE) of the photosystem I (PSI). The following parameters using the 
JIP test are obtained: reaction center density (RC/ABS), maximum 
quantum yield of PSII (FV/FM), efficiency of intersystem transport 
(ET0/TR0), and efficiency of the electron transport in reducing the 
final electron acceptor of PSI (RE0/ET0). PIABS is an integrated index 
of the efficiency at which electron is trapped by the PSII (FV/FM) and 
transferred further than the QA (ET0/TR0).

PItotal is an integrated index of the PIABS and the efficiency at 
which electrons reduce the end acceptors in the PSI.

2.10 | Gas exchange

We measured leaf gas exchange on one leaf per plant using an in-
frared gas analyzer (IRGA’s, LI- 6400XT, LI- COR). Prior to recording, 
tests were performed on at least three leaves per plant to ensure 
the selection of leaves with the maximum values of Amax and gs. The 
measurements were made between 8 a.m. and 11 a.m. The IRGA’s 
chamber was adjusted to a flow rate of 400 µmol/s, CO2 concentra-
tion of 400 µmol/mol, H2O vapor concentration of 21 mmol/mol, 
leaf temperature of 31ºC, and photosynthetic photon flux density 
(PPFD) of 2,000 µmol/m2 s−1 for maximum photosynthetic rate 
(Amax), stomatal conductance (gs), and transpiration rate (E), and 
0 µmol/m2 s−1 for respiration rate in the dark (Rd).

2.11 | Nutrient use efficiency

We calculated carbon use efficiency (CUE) as the ratio between Amax 
and Rd, and nitrogen (PNUE), phosphorus (PPUE), and potassium 
(PKUE) use efficiency as the ratios between maximum photosyn-
thetic rate per unit mass (Amax × SLA × 0.1) and the nutrient concen-
trations in molar mass units.

PIABS =

(

RC

ABS

)

∗

(

FV∕FM

1 − FV∕FM

)

∗

(

ET0∕TR0

1 − ET0∕TR0

)

.

PItotal = PIABS ∗

(

ET0∕TR0

1 − ET0∕TR0

)

.



6484  |     MODOLO et aL.

2.12 | Statistical analyses

We assessed trait and growth rate variation in the 5th and 95th 
percentile of each light environment (Gap and Understory). To 
evaluate whether trait– trait relationships changed between light en-
vironments, we performed plant trait network analyses (PTNs; He 
et al., 2020) derived from the Pearson correlation matrix (p < 0.05) 
(Tables S2 and S3) for each light environment and trait level (crown 
and leaf) separately. In PTNs, complex relationships among traits 
are explained by the calculation of parameters, which enables an 
improved view of plant adaptation in response to the changes in 
resource availability. For each PTNs, we calculated edge density 
(ED), modules, and hub traits. ED is the ratio of actual connections 
among traits in relation to the total possible connections and reflects 
the complexity of the network. Networks with a high ED reflect a 
stronger coordination among multiple traits. Modules are clusters 
formed by traits that show covariation among themselves, rela-
tively independently from other clusters. Biologically, modules are 
a grouping of traits that reflect the functional mechanisms of plants. 
Hub traits are those with a higher number of actual connections in 
the network in relation to all possible connections. These traits play 
a central regulatory role, probably affecting the entire phenotype. 
For details of PTNs construction and parameters calculation, see He 
et al. (2020).

To evaluate whether trait– growth relationships were modulated 
by light environment, we used an individual- level analysis with traits 
measured on the same individuals that they were used to predict 
growth. We adjusted mixed effects models with growth rate as the 
dependent variable, traits as the independent variable, light environ-
ment as the independent categorical variable, and we tested species 
and plots as random effects. We performed this analysis for each 
trait separately. We observed interaction effects on relationships 
with a significance level (p < 0.05). When we observe significant in-
teraction effects on relations, we compare the slopes between light 
environments and showed uncertainty around the estimates. The 
best models (random effects definition) were selected based on the 
Akaike's information criterion (AIC). In all models, we observed the 
coefficients of determination both marginal (for fixed effects) and 
conditional (for fixed and random effects). Logarithmic transforma-
tions were performed to meet linearity and normality of assump-
tions whenever necessary.

To investigate whether trait– growth rate relationships im-
proved when performed models that integrate traits of different 
dimensions of the plant, we adjusted mixed effect models with 
growth as the dependent variable and a set of traits as the in-
dependent variable for each light environment. In all models, we 
tested species and plot as random effects. We performed this 
analysis with original and composite traits. Composite traits were 
derived from PCA axes scores. First, we performed a principal 
component analysis (PCA) for all traits (general PCA). However, 
when traits had a high correlation or represented a similar biolog-
ical mechanism, we selected only one of them. In the final calcu-
lation, we used 19 traits for the general PCA (Figure S2). Then, we 

used the scores of general PCA axes that jointly explained most 
of the variation (~60%) as independent variables in the models. 
Secondly, we performed PCA for traits of each group (crown, leaf 
display, nutrients acquisition, light absorption efficiency, light use 
efficiency, gas exchange, and nutrient use efficiency) separately 
(categorized PCAs). Next, we used the scores of the first and sec-
ond axis of each categorized PCA as independent variables in the 
models. We performed categorized PCAs because they summa-
rize plant mechanisms in a few axes of variation and can improve 
the explanatory power of models due aggregate the explanation 
power of many traits, the same idea is applied to general PCA. 
Finally, we selected the best model for all traits based on the AIC. 
We also observed the best model with a single trait to compare 
how much the multiple models improve the power of explanation 
of growth rates. All traits were standardized, subtracting each in-
dividual trait value from the trait mean and then dividing by its 
standard deviation. Coefficient of determination marginal and sig-
nificance level (P value) were observed to determine the strength 
of the relations.

The PTNs were fitted using the igraph package (He et al., 2020), 
and mixed effects models were fitted using the nlme package (Zuur 
et al., 2009). All analyses were performed using the statistical soft-
ware R, version 3.5.1 (R Core Team, 2018).

3  | RESULTS

3.1 | Effects of light environment on variations and 
relations of functional traits

The range of variation (5th– 95th) of growth and traits changes be-
tween light environments (Table 1). The PTNs analyses showed that 
trait– trait relationships were affected by light environment accord-
ing to overall connectivity, distinction of modules, and traits with 
a higher connectivity (Figure 1). Overall, ED was higher for crown 
traits (ED at Gap = 0.89; Understory = 0.61) than for leaf traits 
(Gap = 0.43; Understory = 0.48). All crown traits were grouped in 
a same module in Gap, while in Understory traits related to crown 
depth (CL, CLR, RCL, and LAI) formed a distinct module. Regarding leaf 
traits, both light environments formed two main modules, but in Gap 
these modules were more distinct. Leaf traits in Gap were grouped 
in two distinct modules as follows: photochemical efficiency traits 
(light- blue shaded area) with predominance of traits related to light 
absorption efficiency and light use efficiency (except Kmass), and bio-
chemical efficiency traits (purple shaded area) with predominance of 
traits related to gas exchange and nutrients use efficiency (Figure 1). 
In Understory, we identified an overlap of modules related to photo-
chemical and biochemical efficiency and the presence of more leaf 
display traits (Figure 1). Crown traits had a high connectivity among 
them in both light environments. The ratio of connections of each 
trait in relation to all possible connections ranged from 75% to 100% 
in Gap and from 50% to 75% in Understory. Among leaf traits, those 
with a connectivity greater than 50% were PKUE (68%), Amax (64%), 
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Nmass (59%), Chl a (55%), FV/FM (55%) and PNUE (55%) in Gap; Amax 
(86%), PItotal (68%), PPUE (68%), SLA (64%), LDMC (59%), PIABS (59%), 
Nmass (55%), CUE (55%), and PNUE (55%) in Understory.

3.2 | Effects of light environment on trait– growth 
relationships

Light environments modulated trait– growth rate relationships for 
some traits, as the significant interaction effects show (Figure 2). 
Overall, traits related to light interception (CL and TLA) had higher 

positive effects on growth rates in Understory than in Gap, with 
slopes of the relations being 52% to 66% higher. However, for CLR and 
RCL, the slope of the relation in Gap was 122% and 233% greater than 
in Understory, respectively. The positive effects of LA on growth rates 
were high for plants growing in Understory, while the negative effect 
of SLA was greater in Gap (five- fold). Traits related to nutrient acqui-
sition (Nmass), light absorption efficiency (Chl a, Chl b, Carc+x, and Chl 
a + b), light use efficiency (PIABS), and photosynthetic nutrient use ef-
ficiency (PKUE) had higher and positive effects on growth rates in Gap 
than in Understory, with slopes of relationships being seven to 103 
times higher. Table S2 shows the values of slopes and uncertainties.

TA B L E  1   Name, abbreviation (AB), units, and 5th and 95th percentiles of relative growth rate and thirty measured traits in Gap and 
Understory

Name AB Units Gap Understory

Growth rate

Relative growth rate RGR percent year−1 1.85– 3.46 0.33– 1.45

Crown trait

Mean crown diameter MCD m 0.71– 3.25 0.32– 0.99

Crown projection area CPA m2 0.40– 8.31 0.08– 0.76

Crown length CL m 0.27– 3.53 0.03– 1.09

Crown ratio CR 1.67– 5.13 2.78– 6.97

Crown length ratio CLR 0.11– 0.83 0.05– 0.89

Relative crown length RCL 0.17– 2.15 0.04– 1.78

Total leaf area TLA m2 1.02– 15.66 0.03– 0.45

Leaf area index LAI 0.58– 7.20 0.18– 0.80

Leaf trait

Leaf area LA cm2 21.22– 156.75 16.89– 118.45

Specific leaf area SLA cm2 g−1 80.91– 137.12 152.32– 427.54

Leaf dry matter LDMC mg/g 256.59– 464 0.23 178.06– 400.25

Leaf nitrogen Nmass g/kg 11.25– 21.77 10.23– 19.38

Leaf phosphorus Pmass g/kg 0.51– 1.02 0.60– 1.31

Leaf potassium Kmass g/kg 4.38– 14.84 3.09– 13.18

Chlorophyll a Chl a µmol/g 0.56– 2.13 0.92– 3.08

Chlorophyll b Chl b µmol/g 0.18– 0.66 0.36– 1.13

Carotenoids Car c+x µmol/g 0.29– 0.81 0.37– 1.09

Total chlorophyll Chl a + b µmol/g 0.72– 2.82 1.26– 4.21

Chlorophyll a and b ratio Chl a/b 2.36– 3.82 2.32– 3.10

Maximum Quantum yield of PSII FV/FM 0.738– 0.827 0.814– 0.846

ABS- based performance index PIABS 0.940– 4.927 1.217– 3.601

Total performance index PItotal 0.737– 2.793 0.324– 1.130

Maximum photosynthetic Amax µmol CO2 m−2 s−1 7.86– 19.49 4.19– 11.78

Dark respiration Rd µmol CO2 m−2 s−1 0.88– 2.64 0.18– 1.23

Stomatal conductance gs mol H2O m−2 s−1 0.12– 0.53 0.07– 0.29

Transpiration rate E mmol H2O m−2 s−1 2.57– 7.50 1.50– 4.64

Carbon use efficiency CUE 5.02– 16.41 4.95– 51.37

Nitrogen use efficiency PNUE nmol CO2 mol−1 N/m2 s−1 82.36– 191.58 92.44– 247.40

Phosphorus use efficiency PPUE nmol CO2 mol−1 P m−2 s−1 3,957.48– 10,029.23 2,881.22– 10,067.65

Potassium use efficiency PKUE nmol CO2 mol−1 K/m2 s−1 290.57– 1,515.12 390.79– 1,650.62
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3.3 | General and categorized principal 
component analyses

Most trait variations were explained by the first four axes of the 
general PCA in both light environments (Figure S2). In the Gap en-
vironment, showed by traits with the highest loadings (L), the first 
four axes of general PCA explained 59.5% of trait variation and as-
sociated with biochemical efficiency (PC1 = 23.2%; L = Amax, PKUE, 
PPUE and PNUE), leaf structure, nutrient acquisition (PC2 = 15.2%; 
L = Pmass, Nmass, Kmass and SLA), nutrient use efficiency (PC3 = 11.9%; 
L = PNUE), and carbon balance (PC4 = 9.2%; L = Rd and CUE). In 
Understory, the first four axes explained 64.3% of trait variation 
and associated with biochemical and photochemical efficiency 
(PC1 = 21.5%; L = Amax, PNUE, PPUE and PItotal), leaf structure 
(PC2 = 21.3%; L = SLA and LDMC), nutrient acquisition and use ef-
ficiency (PC3 = 11.6%; L = PKUE, Kmass and Pmass), and respiration 
(9.9%; L = Rd). The first axis of the categorized PCAs explained 45.5 
(crown) to 74.3% (light absorption efficiency), and the second axis 
explained 20.3 (light use efficiency) to 37.2% (crown) of trait varia-
tion in Gap (Figure S3). In Understory, the first axis of the categorized 
PCAs explained 41.2 (crown) to 76.6% (light absorption efficiency), 

and the second axis explained 18.3 (light use efficiency) to 32.5% 
(crown) of trait variation (Figure S4).

3.4 | Relationships among growth rates and an 
integrated set of traits

The combinations of traits and the power of explanation of models 
changed according to light environments and the set of traits (sin-
gle, multiple, or multiple with PCA scores, Table 2). First, the best 
models with a single trait explained 50% of growth variation in Gap 
(CL) and 36% of growth variation in Understory (MCD). Secondly, the 
best multiple traits model including all traits in their original form 
explained 62% of growth variation at Gap (MCD + CL + CR + PItotal) 
and 47% at Understory (MCD + CL + CR). Thirdly, the models in-
cluding the first four axis of general PCA explained 41% of growth 
variation in Gap (PC1 + PC2 + PC3 + PC4) and 5% in Understory 
(PC1). Finally, the models including the first and second axes 
of categorized PCAs explained 52% of growth variation in Gap 
(PC1crown + PC2crown + PC1light use efficiency + PC2light use efficiency) and 
28% in Understory (PC2crown + PC2nutrients acquisition). Therefore, all 

F I G U R E  1   Plant trait network analyses 
(PTNs) of crown traits and leaf traits in 
two light environments. Modules that 
reflect biological mechanisms of plants 
are indicated by the colors of circles 
and shaded regions. Lines represent 
a significant relationship (connection) 
between traits. Black lines represent 
the connection between traits of the 
same module. Red lines represent 
the connection of traits of different 
modules. PTNs with a higher number of 
connections (lines) have a higher edge 
density. For abbreviations, see Table 1 in 
the section Results
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F I G U R E  2   Effect of light environment on trait– growth relationships for traits with significant interaction effects. Points displaying values 
of growth and trait of individuals. Shading displaying 95% confidence intervals. For abbreviations, see Table 1 in the section Results
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models explained better growth rates in Gap than in Understory 
and multiple trait models improved growth prediction, however not 
using a PCA score approach.

4  | DISCUSSION

The relationships between functional traits and demographic rates 
consist in the main framework of trait- based plant ecology. They 
are a major challenge in studies on tropical tree ecology (Chave 
et al., 2009; Wright et al., 2004, 2010). However, ecologists have 
reported many traits as poor predictors of tree growth, leading 
to questioning whether these traits are indeed functional or not 
(Poorter et al., 2018; Swenson et al., 2020; Worthy & Swenson, 2019; 
Yang et al., 2018). Three core reasons have been stated for the lack 
of success of traits in determining demographic outcomes in trait- 
based functional approach ecology: frequently ignored contextual 
information (e.g., environmental gradients), functional processes 
(e.g., photosynthesis) that determine plant performance are not 
completely explained using only soft traits or a single trait, and focus 
on species relative to individuals (Worthy & Swenson, 2019; Yang 
et al., 2018). Here we combined multiple morphophysiological traits 
and provided evidence on the importance of including the environ-
ment context in studies of trait- based community ecology due its 
role in modulating the trait– growth relationships of tropical tree 
saplings. Moreover, we reinforce that growth is the result of the ex-
pression of many traits, but may be decoupled of an integrated plant 
phenotypic expression in light- limited environments. Even though 
our results are for six species, these species show a wide variation in 

the whole plant economic spectrum (Reich, 2014), as values of traits 
show (Table 1).

4.1 | Relations among traits change according to 
light environment

Light environment affected relationships among traits and conse-
quently integrated phenotype (Figure 1). Growing in Gap, all plant 
crown traits were coordinated and formed a single module, while 
in Understory only crown traits related to crown depth formed 
a dense module. Crown depth in Understory can reflect a con-
servative mechanism because we observed that plants with deep 
crowns had older leaves inserted at the lowest stem height and 
some since planting. Plants growing in poor environments show 
a long leaf lifespan and tend to be more successful in surviving 
because they compensate for the high payback times needed 
to return carbon investments on leaf construction (Kitajima & 
Poorter, 2010; Poorter & Bongers, 2006; Poorter et al., 2006). 
Evidently, photochemical and biochemical efficiency traits were 
grouped into two distinct modules in Gap. However, these mod-
ules are similar and have many connected traits, proving that pho-
tochemical and biochemical efficiency are strongly coordinated 
(Chou et al., 2020; Santos et al., 2019). Traits related to biochemi-
cal and photosynthetic nutrient use efficiency were “hub traits” 
in both light environments. However, LDMC and SLA had a high 
connectivity (>50%) only in the network of Understory. Therefore, 
photosynthetic efficiency is key in both Understory and Gap; how-
ever, in a light- limited understory, a conservative strategy related 

Set of traits Model R2
m AIC

Gap

Single trait (0.985***) CL 0.50 209.05

Multiple traits (0.665***) MCD + (0.390***) CL + (−0.612***) 
CR + (0.161**) PItotal

0.62 158.71

Four first axis of 
general PCA

(−0.440***) PC1 + (0.292**) PC2 + (−0.552***) 
PC3 + (−0.194*) PC4

0.41 252.26

First and second 
axis of categorized 
PCAs

(−0.716***) PC1crown + (−0.226*) PC2crown 
+ (−0.213**) PC1light use efficiency + (0.177**) 
PC2light use efficiency

0.52 215.69

Understory

Single trait (0.656***) MCD 0.36 188.56

Multiple traits (0.727***) MCD + (0.304**) CL + (−0.428***) 
CR

0.47 155.84

Four first axis of 
general PCA

(−0.226*) PC1 0.05 230.23

First and second 
axis of categorized 
PCAs

(0.597***) PC2crown + (−0.174*) PC2nutrients 

acquisition

0.28 186.24

Notes: Random effects of the best models are controlled for intercepts of species. Coefficient of 
determination marginal (R2

m) of relationships. P values of traits in the best models are * p < 0.05, 
** p < 0.01, *** p < 0.001, not significant (n.s.). p ≥ 0.05. For abbreviations, see Table 1 in the 
section Results.

TA B L E  2   Results of mixed effect 
models examining the relations between 
growth rates and an integrated set of 
traits and between growth rates in both 
light environments
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to physically structured and durable leaves for protection against 
herbivores and long- term carbon investment also play a role 
(Kitajima, 1994; Kitajima & Poorter, 2010).

4.2 | Relationships between growth rates and 
functional traits are modulated by light environment

Overall, in Understory, light interception traits (LA, CL, and TLA) play a 
more important role in growth than in the Gap (Figure 2). The dispro-
portional effects of light foraging traits are expected in more limited 
light environments and have been reported as a strategy to opti-
mize the interception of diffuse light or sun flecks reaching the for-
est floor (Delagrange et al., 2006; Iida et al., 2014; Niklas, 1989). On 
the other hand, traits representing mechanisms of nutrients acquisi-
tion (Nmass), photochemical efficiency (Chl a, Chl b, Carc+x Chl a + b, 
PIABS), and biochemical efficiency (PKUE) more strongly affected the 
growth rates in Gap than in Understory. Plants growing in Gap have 
a greater amount of light energy for use in the physiological process 
(Chazdon & Fetcher, 1984). In this sense, it is more important for 
saplings to have a high potential for processing this energy in Gap 
than in Understory (Figure 2). Our results support the hypothesis 
that the relationships between functional traits and growth rates of 
tropical tree saplings depend on the environmental context (Worthy 
& Swenson, 2019) and specifically light environment.

4.3 | Growth rates are better explained by a 
multiple set of traits

Our results sustain the hypothesis that an integrated set of traits 
measured in different dimensions of the plant better explains plant 
growth. Moreover, the set of traits related to growth and the strength 
of relations changed between contrasting light environments 
(Table 2). Growth models that include multiple traits of different di-
mensions of the plant in the original form of traits or in composite 
traits better explain growth rates because they allow performing a 
phenotypic integration, that is, the integration of multiple traits that 
form the phenotype (Yang et al., 2020). The selection of traits in 
different plant organs (e.g., crown, leaf, stem, branches, and roots), 
which are related to different mechanisms that affect the growth 
process, is interesting for phenotypic integration, making it possible 
to have a broad view of the main factors that determine plant growth 
(Rosas et al., 2019; Swenson et al., 2020; Wright et al., 2005; Yang 
et al., 2020). The production ecology model (PEM) theory states that 
plant productivity depends on the availability of natural resources 
and on the efficiency of plant in acquiring and using those resources 
(Binkley et al., 2004; Monteith, 1977). Thus, measuring traits re-
lated to the different stages of PEM is important to understand the 
factors that determine the differential performance of plants be-
tween light environments. Light interception traits at a crown level 
(MCD, CL, and CR) were included in the best models in both Gap and 
Understory, but one light use trait (PItotal) was also present in the 

best model for Gap. Therefore, an integrated approach with multiple 
trait models improves the growth prediction in the sense that more 
mechanisms are represented in high and low- light environments.

Although composite traits (such as those summarized on a PCA 
axis) could be potential predictors of growth rates (Liu et al., 2016; 
Yu et al., 2020), in our study they did not capture the variation of 
the main processes related to growth, mainly in a light- limited en-
vironment (Table 2). The main leaf traits (hubs) observed in plant 
network traits did not compose the best models in both environ-
ments. In Understory, the best multiple trait model comprised no 
leaf trait. This result may be interpreted as a decoupling between 
the integrated phenotype expression of leaf traits and growth per-
formance. In this sense, the mechanisms behind leaf traits could be 
expressed as a strategy to maximize another component of plant 
fitness (e.g., sapling survival), mainly in a light- limited environment 
that demands conservative strategies (Kunstler et al., 2016; Wright 
et al., 2010). Moreover, the strength of relationships was higher for 
Gap than for Understory (Table 2). These results corroborate with 
the hypothesis Poorter et al. (2018) proposed. The authors stated 
that low- light availability harms the expression of growth and traits, 
resulting in a convergence of these values and hence weak or non-
existent relationships.

4.4 | Implications for functional approach studies

Gap dynamics is one of the main factors that leads to biodiver-
sity in tropical forests. However, to investigate demographic 
rates in the gap dynamics is expensive and time- consuming 
(Chazdon, 2014; Connell, 1978). Thereby, the use of functional 
traits to uncover mechanisms that control the dynamics of forest 
communities following appropriate methodologies is an option 
for quick results in ecology studies (Salguero- Gómez et al., 2018; 
Swenson et al., 2020; Worthy & Swenson, 2019; Yang et al., 2018). 
We add knowledge to this functional approach by showing that a 
complex process such as growth is better represented by multiple 
trait models, with traits measured in different dimensions of the 
plant. Thus, future studies measuring traits in different plant or-
gans (i.e., crown, leaf, stem, branches, and roots) that are related to 
different processes of plant growth can provide a broader view of 
factors that determine plant growth. Following this approach, our 
results also highlight the importance in considering the environ-
mental context (e.g., light supply) during the selection of traits to 
be measured. Traits measured at crown level are more associated 
with growth rates of saplings in low- light environments but are 
also good predictors of growth rates in high- light environments. 
Nevertheless, PItotal, an index of the entire photochemical effi-
ciency accessed by chlorophyll a fluorescence, is a good predictor 
of growth rates in a high- light environment. Chlorophyll a fluores-
cence parameters are related to photochemical stage of photosyn-
thesis and have been considered a proxy of carbon assimilation 
in tropical trees along the vertical profile of Central Amazonian 
forest (Santos et al., 2019). Therefore, chlorophyll a fluorescence 



6490  |     MODOLO et aL.

parameters should be incorporated in functional studies because, 
in addition to its power to explain sapling growth, it also repre-
sents a fast and noninvasive method. Finally, due to the capacity 
of plants to achieve similar performances with alternative designs 
of traits (Dias et al., 2020; Marks & Lechowicz, 2006; Worthy 
et al., 2020), future studies should consider the intraspecific trait– 
growth relation of each species and/or ecologic group.

5  | CONCLUSIONS

This study provides evidences on the importance of considering the 
environmental context (light supply) when deciding which traits to 
measure in future functional ecological researches. Functional traits 
seem to be better predictors of growth performance in high- light 
environments, especially when grouped in multiple traits. Multiple 
trait measurements in different dimensions of the plant that repre-
sent different processes of plant growth can contribute significantly 
to key ecological questions related to the main mechanisms behind 
tropical forest dynamics.
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