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Abstract

Background: RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events,
both known and novel. However, given its recent development and the proliferation of library construction
methods, understanding the bias it introduces is incomplete but critical to realizing its value.

Results: We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the
technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro
transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the
most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive,
each base in each transcript should be equivalently represented. However, with common RNA-seq applications
and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in
within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically
unpredictable sequencing coverage between samples, confounding accurate determination of their expression.
We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the
most significant variability in coverage, and several sequence determinants also strongly influence representation.

Conclusions: These results show the utility of IVT-seq for promoting better understanding of bias introduced by
RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced
during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend
caution when interpreting RNA-seq results.
Background
High-throughput sequencing of RNA (RNA-seq) is a
powerful suite of techniques to understand transcriptional
regulation. Using RNA-seq, not only can we perform trad-
itional differential gene expression analysis with better
resolution, we can now comprehensively study alternative
splicing, RNA editing and allele-specific expression, and
identify novel transcripts, both coding and non-coding
RNAs [1-3]. In contrast to the more established microarray-
based RNA expression analysis, the flexibility of RNA-seq
has allowed for the development of many different protocols
aimed at different goals (for example, gene expression of
polyadenylated (polyA) transcripts, small RNA sequen-
cing, and total RNA sequencing). However, this same
flexibility has the potential for complex technical bias, be-
cause different methods are routinely employed in RNA
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isolation, size selection, fragmentation, conversion to
cDNA, amplification and, finally, sequencing [4-7]. While
progress has been made in generating and analyzing
RNA-seq data, we understand comparatively little about
the technical biases the various protocols introduce. Un-
derstanding these biases is critical to differential analysis,
to avoiding experimental artifacts (for example, in charac-
terizing RNA editing), and to realizing the full potential of
this powerful technology.
Previous efforts at understanding bias identified several

contributing sources, including GC-content and PCR en-
richment [8,9], priming of reverse transcription by ran-
dom hexamers [10], read errors introduced during the
sequencing-by-synthesis reaction [11], and bias introduced
by various methods of rRNA subtraction [7]. Studies that
revealed these sources of bias typically used computa-
tional methods on existing sequencing data to assess the
performance of various sequencing technologies and li-
brary protocols. One downside to this approach is that it
can be difficult to know whether anomalies in coverage
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are natural, or are due to technical artifacts. For example,
nearly every RNA-seq study has differences in intra-exonal
coverage, which could arise from naturally occurring splice
variants sharing part of an exon, or could be due to tech-
nical error in library construction or sequencing.
Given that researchers are continually developing new

sequencing methodologies and library generation proto-
cols [12], we need a means for assessing the technical
biases introduced by each new iteration in technology.
One attractive alternative is to generate libraries from
RNA that has been in vitro transcribed (IVT) from cDNA
clones, where the nucleotide sequence at every base is
known, the splicing pattern established and inviolate, and
the expression level is known to be uniform across the
transcript. Thus, any observed biases in coverage or ex-
pression must be technical rather than biological. This is
the experimental equivalent of simulated data that com-
putational researchers commonly use to develop and as-
sess alignment algorithms [13-15]. Jiang and colleagues
used a similar approach with 96 synthetic sequences de-
rived from Bacillus subtilis or the deep-sea vent microbe
Methanocaldococcus jannaschii genomes [16], organisms
that do not have RNA splicing or polyadenylation. The
focus of that work, though, was creating a useful set of
standards that could be used in downstream analysis, not
exploring library construction bias in a comprehensive set
of complex mammalian samples.
Here we present and apply IVT-seq at scale to better

understand bias introduced by RNA-seq. In brief, indi-
vidual plasmids were produced, pooled, and subjected to
in vitro transcription. Next, this RNA was mixed with
complex mouse total RNA at various concentrations,
and sequenced using the two most common RNA-seq
protocols, polyA-seq or total RNA-seq, on the Illumina
platform. We found coverage bias in most IVT transcripts,
with over 50% showing greater than two-fold changes in
within-transcript coverage and 10% having more than 10-
fold differences attributable to library preparation and se-
quencing. Additionally, we found greater than 6% of IVT
transcripts contained regions of high, unpredictable se-
quencing coverage, which varied significantly between
samples. These biases were highly reproducible between
replicates and suggest that exon-level quantification may
be inadvisable. Furthermore, we created sequencing librar-
ies from the original plasmid templates and using several
different RNA selection methods (rRNA depletion, polyA
selection, and no selection). We found that both rRNA de-
pletion and polyA selection are responsible for a signifi-
cant portion of this coverage bias, and computational
analysis showed that poorly represented regions of tran-
scripts are associated with low complexity sequences.
Taken together, these results show the utility of the IVT-
seq method for characterizing and identifying the sources
of coverage bias in sequencing technologies.
Results and discussion
IVT-seq library preparation and sequencing
To generate IVT-seq libraries (for full details, please see
the Materials and methods section), we produced indi-
vidual glycerol stocks each harboring a single, human,
fully sequenced plasmid from the Mammalian Gene Col-
lection (MGC) [17]. Next, we extracted the plasmid
DNA and plated it at 50 ng per well in 384-well plates.
We mixed the contents of three 384-well plates containing
a total of 1,062 cDNA clones (Additional file 1), trans-
formed this mixture into bacteria, and plated the bacteria
as single colonies. Following an overnight incubation, we
scraped these plates, amplified the bacteria for a few hours
in liquid culture, and purified plasmids from the bacteria
as a pool (Figure 1A). Next, we linearized the plasmids,
and used SP6 polymerase to drive in vitro transcription
of the cloned cDNA sequences (Figure 1B). Following a
DNase I treatment to remove the DNA template and
RNA purification, we were left with a pool of 1,062 differ-
ent human RNAs derived from fully sequenced plasmids.
To approximate what happens in a total RNA-seq reac-

tion, we subjected this IVT RNA to rRNA depletion and
then prepared libraries using the Illumina TruSeq protocol
(Figure 1C, IVT only). To account for possible carrier ef-
fects, we also mixed the IVT RNA with various amounts
of mouse total RNA derived from liver. The addition of
the mouse RNA gave these samples greater diversity (tran-
scripts from approximately 10,000 genes versus 1,062) and
more closely resembled a real biological sample. Also, by
adding background RNA from a different species (mouse)
than the IVT RNA (human), we made it easier to differen-
tiate between the IVT transcripts and mouse sequences
during downstream analysis. Because the IVT RNA did
not contain rRNA sequences whereas the mouse RNA
did, the quantity of mouse RNA would be significantly re-
duced by the rRNA depletion step. To account for this,
we mixed IVT and mouse RNA such that, following rRNA
depletion, we would have final pools with IVT:mouse
ratios of 1:1, 1:2, and 1:10. Finally, to account for mouse
RNAs potentially mapping to the human reference genome
and our IVT sequences, we prepared a pool consisting of
mouse RNA alone. We pooled the resulting six libraries
and sequenced them using an Illumina HiSeq 2000. We
performed this entire process in duplicate.

Mapping and coverage of IVT-seq data
Following sequencing and de-multiplexing, we aligned all
of the data to the human reference genome (hg19) using
the RNA-seq Unified Mapper (RUM) [14]. For all ana-
lyses, we only used data from reads uniquely mapped to
the reference, excluding all multi-mappers (data contained
in RUM_Unique and RUM_Unique.cov files). Of the
1,062 original IVT transcripts, we found 11 aligned to
multiple genomic loci, while 88 aligned to overlapping
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Figure 1 Construction of IVT-seq libraries. (A) Preparation of a pool of 1,062 human cDNA plasmids. Contents of three 384-well plates containing
MGC plasmids were pooled together. Pool was amplified via transformation in Escherichia coli, and resulting clones were purified and re-pooled.
(B) Generation of IVT transcripts. Pool of MGC plasmids was linearized and used as a template for an in vitro transcription reaction. Enzymes
and unincorporated nucleotides were purified, leaving pool of polyA transcripts. (C) Creation of IVT-seq libraries. Listed quantities of IVT RNA
were mixed with mouse liver total RNA to create six pools with final RNA quantities of 1 μg. Ribosomal RNA was depleted from these pools
using the Ribo-Zero Gold kit. IVT RNA and mouse RNA are now present in pools at the listed ratios, following depletion of rRNA from mouse
total RNA. These pools were used to generate RNA-seq libraries using Illumina’s TruSeq kit/protocol. This entire process was performed in
duplicate. Replicate libraries were pooled separately and sequenced in separate HiSeq 2000 lanes (two lanes total). IVT, in vitro transcribed;
MGC, Mammalian Gene Collection.
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loci. To avoid any confounding effects in our analyses,
we filtered those transcripts from all analyses, leaving us
with 963, non-overlapping, uniquely-aligned IVT tran-
scripts. We saw excellent correlation in expression
levels between replicates (transcript-level R2 between
replicates >0.95; Additional file 2: Figure S1A). Sec-
ondly, at least 90% of the 963 IVT transcripts were
expressed with fragments per kilobase of exon per mil-
lion mapped reads (FPKM) values ≥5 in all IVT-seq
datasets, except mouse only (Table 1). In the IVT-only
samples, over 80% of the IVT sequences were expressed
above 100 FPKM (Additional file 2: Figure S1B). Be-
cause we prepared the MGC plasmids and IVT tran-
scripts as pools, it is likely that the IVT transcripts
showing low or zero coverage were initially present at
low plasmid concentrations prior to the transformation
and IVT steps. Using the IVT-seq technique, we were
able to specifically detect the vast majority of the human
IVT transcripts with high coverage in both the absence
and presence of the background mouse RNA.
While we do see reads aligned to the human IVT tran-

scripts in the mouse-only data, these transcripts collectively



Table 1 Detection of source cDNA sequences in IVT-seq

Total number of cDNA clones: 963

Replicate 1 Replicate 2

Number of clones detected (FPKM ≥5):

IVT only 869 870

1:1 Mix 877 876

1:2 Mix 886 883

1:10 Mix 896 892

Mouse only 278 271

PolyA selection 829 -

No selection 870 -

Plasmid library 924 -

Average, normalizeda depth
of coverage for detected clones:

IVT Only 76.09 80.22

1:1 Mix 75.15 75.06

1:2 Mix 65.79 69.40

1:10 Mix 37.50 47.46

Mouse only 01.58 02.42

PolyA selection 72.27 -

No selection 72.74 -

Plasmid library 42.08 -
aAverage depth of coverage is normalized by the number of millions of
fragments mapped to the human reference in each sample.
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represent approximately 2% of reads (Table 1). Those
transcripts with higher coverage are likely the result of
mouse reads aligning to highly similar human sequences.
We excluded these sequences from our analyses.

Within-transcript variation in RNA-seq coverage of IVT
transcripts
Consider first the IVT-only data. Given that these tran-
scripts were generated from an IVT reaction using cDNA
sequences, these data are unaffected by splicing or other
post-transcriptional regulation. Thus, most regions of
transcripts should be ‘expressed’ and present at similar
levels. The exceptions would be repetitive sequences that
map to multiple genome locations and may be poorly rep-
resented, and the ends of the cDNAs, which are subject to
fragmentation bias. To account for this, we created a sim-
ulated dataset that models the fragmentation process and
deviates from uniform data only by the randomness in-
curred by fragmentation. We generated two such datasets
using the Benchmarker for Evaluating the Effectiveness
of RNA-Seq Software (BEERS) [14]. The first dataset
contained all of the IVT transcripts expressed at roughly
the same level of expression (approximately 500 FPKM).
For the second, we used FPKM values from the IVT-only
samples as a seed, creating a simulated dataset with ex-
pression levels closely matching real data (Additional file 3:
Figure S2). These datasets are referred to as simulated and
quantity matched (QM)-simulated, respectively. The sim-
ulated data provide an ideal result, while the QM data
allow us to control for any artifacts arising from expres-
sion level (for example, transcripts with lower expression
may show more variability). Next, we aligned both simu-
lated datasets using RUM, with the same parameters as
for the biological data. Thus, both simulated datasets
also serve as controls for any artifacts introduced by the
alignment (for example, low coverage in repeat regions).
For full details on the creation of simulated data, see the
Materials and methods section.
Using IVT data derived from the BC015891 transcript

as a representative example, the ideal, theoretical coverage
plot from the simulated data shows near-uniform cover-
age across the transcript’s entire length, with none of the
extreme peaks and valleys characteristic of biological data-
sets (Figure 2A). However, our observed data showed a
high degree of variability, with peaks and valleys within an
exon (Figure 2B). Furthermore, these patterns were repro-
ducible across our replicates (Additional file 4: Figure S3).
We saw many other cases of extreme changes in coverage:
over 50% of the IVT transcripts showed greater than
two-fold changes in within-transcript coverage attribut-
able to library preparation and sequencing (Table 2 and
Additional file 5: Figure S4). For example, BC009037
showed sudden dips to extremely low levels of expression
in both of its exons (Figure 2C). Both simulated datasets
showed no such patterns, which indicates this coverage
variability is not the result of alignment artifacts. Further-
more, the absence of this pattern in the QM-simulated
data indicates these fold-change differences in coverage
were not due to sampling noise introduced by transcripts
with low or high coverage. In the case of BC016283, the
peaks and valleys in coverage led to greater than five-fold
differences in expression levels between exons (Figure 2D).
Once again, these patterns were reproducible across repli-
cates (Additional file 4: Figure S3). The SP6 polymerase
cannot fall off and then re-attach at a later point in the
transcript, leaving a region un-transcribed. Therefore,
given that these patterns showed troughs followed by
peaks, they cannot be the result of artifacts from in vitro
transcription. Furthermore, we sequenced the IVT prod-
ucts directly and found the vast majority were transcribed
with little to no bias. Taken together, these data suggest
that these coverage patterns are primarily the result of
technical biases introduced during library construction,
rather than biology. These results are consistent with a
previous study that used IVT RNA as standards in RNA-
seq experiments [16], suggesting that our IVT-seq meth-
odology is suitable for identifying technical variability in
sequencing data.
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Figure 2 Within-transcript variations in RNA-seq coverage. (A) Simulated RNA-seq coverage for a representative IVT transcript (BC015891).
RNA-seq coverage plot (black) is displayed according to the gene model (green), as it is mapped to the reference genome. Blocks correspond to
exons and lines indicate introns. The chevrons within the intronic lines indicate the direction of transcription. Numbers on y-axis refer to
RNA-seq read-depth at a given nucleotide position. (B) The actual RNA-seq coverage plot for BC015891 in the IVT-only sample. Representative
coverage plots for the IVT transcripts (C) BC009037 and (D) BC016283 are displayed according to the same conventions used above. All transcripts
are displayed in the 5ʹ to 3ʹ direction.

Table 2 Fold-change differences in within-transcript
coverage by library type

Number of IVT-transcripts with fold-change
differences:

>2 >10 >100

rRNA-depleted 713 (74.0%) 110 (11.4%) 17 (1.7%)

PolyA selection 678 (70.4%) 163 (16.9%) 7 (0.7%)

No selection 400 (41.5%) 31 (3.2%) 3 (0.3%)

Plasmid 189 (19.6%) 14 (1.5%) 3 (0.3%)

Simulated 0 0 0

QM-simulated 0 0 0

The plasmid data provides a measure of bias from library preparation/sequencing,
while the no selection data accounts for potential artifacts from the in vitro
transcription (IVT) step. To calculate the percentage of transcripts affected by bias
due specifically to library preparation and sequencing, but not sequence or
in vitro transcription artifacts, we performed the following calculation: rRNA
depletion% - no selection%+plasmid%. So we found 74% – 41.5%+ 19.6%= 52.1%
of transcripts in the rRNA-depleted data have greater than two-fold difference in
coverage, and 11.4% – 3.2% + 1.5% = 9.7% have greater than 10-fold difference in
coverage. QM, quantity matched.
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Between-sample variation in RNA-seq coverage of IVT
transcripts
In addition to this variability within transcripts, we also
found many transcript regions showing extreme variabil-
ity in coverage across samples (Figure 3). For example,
the sixth exon of BC003355 varied wildly relative to the
remainder of the transcript across all IVT:mouse dilutions.
Interestingly, the overall pattern of variation relative to the
rest of the transcript across the dilutions was maintained
between the replicates. Almost no reads in the mouse-
only sample map to this transcript, which eliminates the
possibility that this variability was due to incorrect align-
ment of mouse RNA.
Including BC003355, we found 86 regions of high, un-

predictable coverage (hunc) spread across 65 transcripts
(Additional file 6). Therefore, over 6% of the 963 IVT
transcripts contained regions showing wild but reprodu-
cible variations in RNA-seq coverage between samples.
While identifying these hunc regions, we used a two-
stage filter to eliminate variable regions resulting from
mouse reads mapped to highly similar human sequences.
First, we eliminated all hunc regions coming from tran-
scripts with FPKM ≥5 in either mouse-only dataset.
Next, to account for localized misalignment of mouse
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Figure 3 Between-sample variations in RNA-seq coverage. RNA-seq coverage plots across all samples for exons 4 to 11 of the IVT transcript
BC003355. The black rectangles identify exon six, which shows extreme variability in coverage relative to the rest of the transcript when viewed
across all of the samples. The ratio of IVT RNA to mouse RNA is listed to the left of each sample’s coverage plots. Coverage plots (red for first
replicate; blue for second replicate) are displayed according to the gene model (black), as it is mapped to the reference genome. Blocks in the
gene model correspond to exons and lines indicate introns. The chevrons within the intronic lines indicated the direction of transcription.
Numbers on y-axes refer to RNA-seq read-depth at a given nucleotide position.
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reads, we filtered out all hunc regions with an average
coverage ≥10 in either mouse-only dataset. We also re-
moved those hunc regions with mouse-only coverage ≥10
in the flanking 100 base pairs (bp) on either side. Given
the stringent criteria we used to identify these hunc re-
gions (see Materials and methods section for full details),
it is likely that this is an underestimate. To address the
possibility that mouse RNAs may interact with homolo-
gous human RNAs and interfere with them in trans, we
assayed the sequences surrounding these regions using
the MEME Suite [18], but we found no sequence motifs
these regions have in common. Furthermore, the depth of
coverage at these regions did not follow a linear relation-
ship with the increasing mouse RNA, which suggests it is
not simply a direct interaction with the background RNA.
There is no clear cause for these hunc regions, particularly
since we prepared all samples from the same pool of IVT
RNA and the only difference between samples was the
relative ratios of IVT RNA to mouse liver RNA. We also
searched for hunc regions that were divergent between
the two replicates, but found none. If such regions do
exist, they could be identified and overcome by creating li-
braries in duplicate. The hunc regions we identified above
with expression patterns maintained between replicates
present a greater challenge, as they could not be identified
and filtered out by creating duplicate libraries. This is
particularly problematic for using exon-level expression
values to identify alternative splicing events or differential
expression. The within-transcript and between-sample
variation we see in our IVT-seq data suggests that library
generation introduces strong technical biases, which could
confound attempts to study the underlying biology.

Sources of variability in RNA-seq coverage
There are three potential sources for technical bias in library
preparation: RNA-specific molecular biology (RNA fragmen-
tation, reverse-transcription), RNA selection method (rRNA
depletion, polyA selection), and sequencing-specific molecu-
lar biology (adapter ligation, library enrichment, bridge PCR).
To identify biases introduced solely by sequencing-specific
molecular biology, we created a DNA-seq library from the
same MGC plasmids used as templates for the IVT-seq li-
braries (Additional file 7: Figure S5). In doing this, we
skipped the steps specific to the IVT or RNA molecular
biology. We also prepared two additional IVT-seq libraries
using polyA selection or no selection, instead of rRNA
depletion. By comparing our plasmid library data and
the IVT-seq data using various selection methods, we
could identify which coverage patterns were the result
of RNA-specific molecular biology, the RNA selection
method, or of some common aspect of the library-generation
protocol.
We sequenced the plasmid library using an Illumina

MiSeq and aligned the resulting data to the human refer-
ence genome using the same method as the IVT-seq li-
braries. In this plasmid data, we saw 924 of the cDNA
clone sequences with FPKM values ≥5, compared to ap-
proximately 870 in both of the IVT only samples (Table 1).
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This small drop in coverage was likely because the IVT
RNA goes through more pooling steps during library con-
struction than the plasmids. Furthermore, the plasmids
are not affected by transcription and reverse transcription
efficiencies. Additionally, the plasmid data mapped to the
cDNA sequences with an average, normalized coverage of
42.08, which is within the range of coverage values we see
for the IVT-seq samples. We sequenced the no selection
and polyA selection libraries on a HiSeq 2500. These data
also show cDNA clone coverage values similar to the
other IVT-seq libraries.
The plasmid data represents the ‘input’ into the IVT

reaction and the no selection data represents the closest
measure of its direct output. By measuring the 3′/5′ ra-
tio in depth of coverage for each IVT transcript, we
could assess the processivity of the SP6 polymerase. In a
perfectly processive reaction, this 3′/5′ ratio would be 1,
indicating the polymerase did not fall off the cDNA tem-
plate and lead to the formation of truncated products.
The median 3′/5′ ratios for the plasmid and no selection
data were 1 and 0.98, respectively, indicating premature
termination of the IVT reaction was not a factor in our
analyses.

Effect of different RNA selection methods on coverage
patterns
Our analysis is illustrated by an examination of the cover-
age plots for BC003355 across all of our different datasets.
The high degree of variability we noted in this gene’s
coverage plot from our rRNA-depleted data was absent in
the no selection and plasmid data (Figure 4A). While the
polyA data also showed fewer peaks and valleys than the
rRNA-depleted total RNA-seq data, it was marked by the
well-documented 3′ bias. These data suggest that the
rRNA depletion step is likely responsible for a large quan-
tity of the observed coverage biases.
To quantify the variability for each selection method, we

calculated the coefficient of variation at the single base
level in coverage for all IVT transcripts across each of
these datasets (Figure 4B). Using a Wilcoxon rank-sum
test (plasmid n = 924, no selection n = 870, rRNA-depleted
n = 869), we found the rRNA-depleted data had signifi-
cantly higher variability than the no selection and plasmid
data (P <2.2e-16). Furthermore, the rRNA-depleted and
polyA libraries were more than 60% more variable on
average than the plasmid library (Figure 4C). This suggests
that a significant portion of the observed variability in
coverage across transcripts in the IVT-seq data is the re-
sult of RNA-specific molecular biology, specifically the
RNA selection step. Furthermore, after accounting for bias
introduced by the sequences themselves (plasmid data)
and bias introduced by the IVT reaction (no selection
data), we found that 50% of transcripts had two-fold and
10% had 10-fold variation in within-transcript expression
(Table 2 and Additional file 5: Figure S4). While it is well-
appreciated that polyA selection introduces bias, we found
that rRNA-depleted data introduced just as much if not
more. Neither simulated dataset showed transcripts with a
two-fold or higher change in within-transcript expression.
Again, this suggests that the observed within-transcript
variations are not the result of alignment artifacts or sam-
pling due to low or high expression. One commonly ac-
knowledged source of bias arises from random priming
during library preparation [10]. When we examined the
different libraries, we saw that fragments from all of the
RNA-seq data showed nucleotide frequencies characteris-
tic of random priming bias (Additional file 8: Figure S6).
As expected, the plasmid data showed no such bias, since
it was derived directly from DNA and did not require a
cDNA-generation step. However, the significant differ-
ences between all RNA libraries suggest that bias from
random priming is not the only factor. The plasmid and
no selection data still contain a fair amount of variability
when viewed alongside the simulated data (Figure 4A;
black). When we examined the entire dataset, both the
plasmid and no selection data had significantly higher
variation than either simulated dataset (Wilcoxon rank-
sum test; simulated data n = 963, QM-simulated data n =
869, plasmid n = 924, no selection n = 870; P <2.2e-16).
These data suggest that sequencing-specific molecular
biology common to all libraries we prepared (adapter
ligation, library amplification via PCR) is also responsible
for a portion of the observed coverage variability and
sequencing bias.

Biases associated with sequence features are dependent
on RNA selection method
Given these significant differences in coverage variability,
we sought to identify sequence features that might con-
tribute to this bias. We considered three quantifiable se-
quence characteristics: hexamer entropy, GC-content, and
sequence similarity to rRNA (see Materials and methods
for a detailed description of these metrics). For each se-
quencing strategy (plasmid, no selection, rRNA-depleted,
polyA), we tested if any of the three sequence characteris-
tics had a significant effect on variability in sequencing
coverage, as measured by the coefficient of variation.
While we are primarily focused on coverage variability as
an indicator of sequencing bias, we also looked at depth of
coverage, as measured by FPKM.
For each sequencing strategy, we sorted the transcripts

by coverage variability or depth. Next, we selected the
100 most and 100 least extreme transcripts from each
list. We compared the values of the sequence charac-
teristics between the 100 most and 100 least extreme
transcripts using a Wilcoxon rank-sum test. Significant
P-values indicate a significant association of the sequence
characteristic with coverage variability and/or depth. The
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results of our analysis are displayed as box-plots (Figure 5
and Additional file 9: Figure S7).
To check for any confounding effects between cover-

age depth and variability, we tested the least and most
expressed transcripts for any correlations with variabil-
ity in coverage (Additional file 10: Figure S8). The polyA
library showed a significant correlation (P <2.2e-16) be-
tween coverage variability and depth, which indicates
sequence features could be affecting coverage through
variability (or vice versa). The rRNA-depleted data
showed a slight, significant correlation (P = 0.04933). It
is possible some feature of RNA selection affects both
variability and coverage, given that we saw no significant
correlations for the two remaining samples. This indicates
that coverage variability and depth are independent for
the plasmid and no selection data.
All three sequence characteristics had a significant asso-

ciation with variability and depth-of-coverage in at least
one of the sequencing strategies. In particular, lower hex-
amer entropy, a measure of sequence complexity [19-21],
was strongly associated with higher variance in all of the
RNA libraries (no selection P = 4.712e-05; rRNA depletion
P = 3.956e-11; polyA P = 0.003921; Figure 5A). This sug-
gests that bias associated with hexamer entropy is due
partially to RNA-specific procedures in library prepar-
ation. Furthermore, an association with lower hexamer
entropy indicates there are more repeat sequences in the
transcripts with higher variability. This could be indicative



Figure 5 Effects of sequence characteristics on coverage variability. Distributions of (A) hexamer entropy, (B) GC-content, and (C) rRNA
sequence similarity for the 100 transcripts with the highest and lowest coefficients of variation for transcript coverage from the plasmid, no
selection, rRNA-depleted, and polyA libraries. Asterisks indicate the significance of a Wilcoxon signed-rank test comparing values for the listed
sequence characteristics between each pair of groups from the same sample. *P <0.05; **P <0.01; ***P <0.001.
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of complex RNA secondary structures, as repeated motifs
could facilitate hairpin formation. Furthermore, the ab-
sence of this association from the plasmid data suggests
that this observation was not due to mapping artifacts.
The plasmid data contained the same sequences as the
RNA-seq data, and would be subject to the same biases
introduced by our exclusion of multi-mapped reads.
Higher GC-content was strongly associated with lower

coverage variability in the no selection and polyA data
(P = 5.627e-13; P = 4.914e-05; Figure 5B), suggesting that
the effects of GC-bias on within-transcript variability
could arise, in part, due to some RNA-specific aspects of
library preparation. Also, it appears that GC-bias was not
a significant contributing factor to either depth of cover-
age or the extreme variability in the rRNA-depleted data.
Meanwhile, lower GC-content was associated with higher
coverage in the plasmid data (P = 3.776e-05), and lower
coverage depth in the no selection and polyA libraries (no
selection P = 8.531e-05; polyA P = 0.0009675; Additional
file 9: Figure S7B). Given that this trend switched direc-
tions between the plasmid library and the RNA libraries,
this also suggests that some RNA-specific aspect of library
preparation is introducing GC-bias distinct from the high
GC-bias associated with Illumina sequencing [22].
Interestingly, higher rRNA sequence similarity was asso-

ciated with higher coverage variability in the rRNA-
depleted library (P = 9.006e-05) and lower variability in the
no selection library (P = 0.0367; Figure 5C). It is unsurpris-
ing that similarity to rRNA sequences contributed to vari-
ability in the rRNA-depleted data, given that rRNA
depletion is based upon pair-binding between probes and
rRNA sequences. While it is unclear why this trend was
reversed in the no selection library, it is striking given the
significant increase in within-transcript variability between
the no selection and rRNA-depleted libraries (Figure 4B).
Furthermore, we saw a slight but highly significant correl-
ation (Pearson R2 = 0.308452; P <2.2e-16) between a tran-
script sequence’s similarity to rRNA and the magnitude of
the difference in coverage between the no selection and
rRNA-depleted libraries (Additional file 11: Figure S9 and
Additional file 12). While the majority of the factors con-
tributing to the extreme bias in sequence coverage we saw
in the rRNA-depleted data remain unclear, our data sug-
gest this could be partially due to depletion of sequences
homologous to rRNA.
Taken together, our data demonstrate the utility and

potential of the IVT-seq method to identify sources of
technical bias introduced by sequencing platforms and
library preparation protocols.

Conclusions
In this study, we present IVT-seq as a method for asses-
sing the technical variability of RNA-seq technologies and
platforms. We created a pool of IVT RNAs from a collec-
tion of full-length human cDNAs, followed by high-
throughput sequencing (Figure 1). Because we know the
identities and sequences of these IVT transcripts, and
because they were created under conditions not affected
by splicing and post-transcriptional modification, they are
ideal for identifying technical biases introduced during
RNA-seq library generation and sequencing. We used this
method to demonstrate that library generation introduces
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significant biases in RNA-seq data, adding extreme vari-
ability to coverage and read-depth along the length of
sequenced transcripts (Figure 2). Our most striking
finding was that over 50% of the IVT transcripts showed
more than two-fold differences in this within-transcript
coverage attributable to library preparation and sequen-
cing in the polyA and rRNA-depleted data (Table 2).
We prepared all RNA-seq libraries from the same pool
of IVT RNA, so these differences were due to library
construction and sequencing methods. Furthermore, 6%
of the IVT transcripts contained hunc regions with vari-
able coverage across different dilutions of IVT and
mouse liver RNA (Figure 3). We found it particularly
concerning that these huncs were consistent between
replicates, as this means these regions cannot be identi-
fied and avoided by making replicate libraries. While the
exact cause of this effect is unclear, it could be due to
some trans interaction between different RNA (human
IVT RNA and the background mouse liver RNA). If this
is the case, it could prove difficult to account for, given
the challenges we have already encountered making
predictions for miRNA targets and RNA secondary
structure. Based on these results, we strongly recom-
mend caution in interpreting exon-level quantification
data, particularly for identifying and quantifying alter-
native splicing events, without further understanding of
these biases.
Using simulated data and by sequencing at various

stages of the process (plasmids, unselected IVT RNAs,
rRNA-depleted, and polyA selected), we found each step
introduced bias. Regions of certain IVT transcripts were
under-represented in both DNA and RNA, suggesting
something inherent in their structure may resist cloning
and sequencing properly. The IVT reaction had its own
biases; however, by and large, it worked extremely effi-
ciently with 90% of the input templates producing tran-
scripts at detectable levels. PolyA sequencing revealed
the well-described 3′ bias. Finally, we saw extreme bias
introduced by the rRNA depletion step. Though we
have yet to find the majority of the sources for this ex-
treme bias, knowing that it occurs and that it is at least
partially due to rRNA sequence similarity is an import-
ant first step. By making this data available to the com-
munity, we hope that new experimental and analysis
methods can be developed to account for the biases in-
herent in various aspects of RNA-seq.
Moreover, IVT-seq could be more broadly employed.

By itself, the MGC collection has cDNAs derived from
more than 16,000 mouse and human genes, including
hundreds of genes for which there are more than one
form. Therefore, in principle, it is possible to generate
sequence profiles for representatives for nearly two
thirds of the mammalian transcriptome, or spike in
datasets to develop new and better methods for splice
form detection and quantification. Similar profiling ap-
proaches could do the same for other organisms. In
addition, IVT-seq is also immediately relevant to RNA-
seq method development, for example, developing new
protocols or refining existing ones. Finally, the method
is not specific to Illumina sequencing and could be
used to account for bias in other sequencing chemis-
tries and methods (for example, SOLiD, Ion Torrent,
PacBio).
Importantly, we are not suggesting that current gener-

ation RNA-seq is not a fantastic new technology or that
quantification data is incorrect, particularly given the
validated, reproducible results researchers have been
able to gain through its use. Rather, we wish to provide
a cautionary note that our understanding of this tech-
nology is still relatively new and incomplete. It is our
hope that through the use of this data and IVT-seq, we
will develop the means to minimize or account for bias
in RNA-seq and truly realize the vision of digital gene
expression.
Materials and methods
Amplification of plasmid library
Glycerol stocks containing individual cDNAs (cloned into
pCMV-Sport 6 plasmid) from the MGC [17] were pro-
duced. Plasmid DNA was extracted from these glycerol
stocks and plated at 50 ng per well in 384-well plates. The
contents of three 384-well plates (total of 1,062 human
transcripts; Additional file 1) were collected as follows:
10 μl sterile dH2O was added to each well and incubated
at 37°C for 10 min to resuspend plasmid DNA in water.
Plasmid DNAs were collected and combined in 1.5 mL
tubes with the aid of a multichannel pipette and concen-
trated by ethanol precipitation. To amplify the library,
10 ng of plasmid library was transferred into E. coli DH5α
cells (Invitrogen, Life Technologies, Carlsbad, CA, USA,
catalog no. 18258–012). The heat shock method was used
to transform E. coli. Briefly, cells were incubated with plas-
mid library for 5 min on ice and were subjected to 42°C
for 30 s. Cells were transferred back to ice and incubated
for 2 min. Next, 0.95 mL S.O.C. medium (Invitrogen, cata-
log no. 15544-034) was added to the cells before incuba-
tion at 37°C for 1 h with shaking at 225 rpm. Cells were
plated on LB-agar (Thermo Fisher Scientific, Waltham,
MA, USA, catalog no. BP9724-500) plates containing
100 μg/ml ampicillin. Plates were incubated for 16 h at 37°C
to grow the colonies and 3,500 (approximately three times
the library size) colonies were collected with liquid LB
(Thermo Fisher Scientific, catalog no. BP9723-500). Cells
were transferred into 100 mL liquid LB and incubated at
37°C for 2 h. Plasmids were purified using Qiagen (Hilden,
Germany) maxiprep kit (catalog no. 12163), according to
the manufacturer’s protocol.
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In vitro transcription from plasmid library
Plasmids were linearized by NotI enzyme so that the
SP6 polymerase promoter site was upstream of the se-
quences to be transcribed. Reactions consisted of 5 U NotI
(New England Biolabs, Ipswich, MA, USA, catalog no.
R3189L), 5 μg library plasmid DNA, 1 X NEBuffer 4
(supplied with enzyme), and 90 μl of dH2O. The reaction
was incubated at 37°C for 2 h to achieve complete diges-
tion. We assessed the complete digestion of plasmid DNA
using DNA gel electrophoresis. To eliminate NotI and
possible RNase in reaction mixture, the sample was
subjected to Proteinase K treatment. SDS and Proteinase
K were added to the reaction mixture to a final concentra-
tion of 0.5% and 100 μg/mL, respectively. The sample was
incubated at 37°C for 30 min. After Proteinase K treat-
ment, the sample was subjected to phenol/chloroform
extraction, followed by ethanol precipitation. The pellet
was dissolved in 50 μl of RNase-free water. Next, in vitro
transcription was carried out using MAXIscript® SP6 Kit
(Ambion, Life Technologies, catalog no: AM1308). The
reaction was composed of 1 μg of library plasmid, 1X
transcription buffer, 0.5 mM of nucleoside triphosphates
(GTP, ATP, CTP, and UTP), 40 U of SP6 RNA polymerase,
and 10 μl of RNase-free water. The reaction was incubated
at 37°C for 30 min. Next, the sample was treated with
TURBO DNase to remove the plasmid templates. Briefly,
10 U of TURBO DNase (included with the MAXIscript
SP6 Kit) were added to the reaction mixture and incu-
bated at 37°C for 15 min. To stop the reaction, 1 μL of
0.5 M EDTA was added. To remove unincorporated nu-
cleoside triphosphates and other impurities, the sample
was precipitated with ammonium acetate/ethanol. The
following reagents were added to the DNase -treated
reaction mixture: 30 μL RNase-free water to bring the vol-
ume to 50 μL, 5 μL of 5 M ammonium acetate, and three
volumes of 100% ethanol. The sample was chilled at -20°C
for 30 min and then centrifuged at maximum speed in a
4°C table-top microcentrifuge. The supernatant was dis-
carded and the pellet washed with ice-cold 70% ethanol.
The pellet was dissolved in 50 μL of RNase-free water and
the quality of RNA was assessed by agarose gel electro-
phoresis. In addition, PCR was carried out with IVT RNA
to confirm total depletion of plasmid DNA.

Mouse liver collection and RNA extraction
Wild-type, six-week old male C57/BL6 mice were ac-
quired from Jackson Laboratories (Bar Harbor, Maine,
USA). Mice were sacrificed and liver samples were
quickly dissected and snap-frozen in liquid nitrogen.
RNA was isolated from frozen mouse liver samples by
TRIzol reagent according to the manufacturer’s protocol
(Invitrogen, catalog no. 15596–026). All animal experiments
were performed in accordance with the approval of the
Institutional Animal Care and Use Committee.
Construction and sequencing of RNA-seq library from IVT
RNA
IVT RNA (2,500 ng, 150 ng, 75 ng, 15 ng, and 0 ng) was
pooled with mouse liver RNA (0 ng, 2,350 ng, 2,425 ng,
2,485 ng, and 2,500 ng respectively) to a final quantity of
2.5 μg. Each pool was split into two replicate samples of
1 μg each. RNA pools were treated with Ribo-Zero Gold
Kit (Epicentre, Illumina, San Diego, CA, USA, catalog
no. RZHM11106) and converted into Illumina RNA-seq
libraries with the TruSeq RNA Sample Preparation Kit
(Ilumina, catalog no. FC-122-1001). Briefly, rRNA was
removed from 1 ug of pooled RNA using Ribo-Zero
Gold Kit and purified via ethanol/sodium acetate pre-
cipitation according to the manufacturer’s protocol.
After drying, the RNA pellet was dissolved in 18 μL of
Elute, Prime, Fragment mix (provided with the TruSeq
RNA Sample Preparation Kit). RNA was fragmented for
8 minutes and 17 uL of this fragmented RNA was used
to make the RNA-seq library according to Illumina Tru-
Seq RNA Sample Preparation Kit protocol. After fragmen-
tation and priming, first strand cDNA synthesis with
SuperScript II (Invitrogen, catalog no. 18064014), second-
strand synthesis, end-repair, a-tailing, and adapter ligation,
the library fragments were enriched with 15 cycles of
PCR. The quality and size of the library was assessed using
Agilent (Santa Clara, CA, USA) 2100 BioAnalyzer. The
five libraries from each replicate were pooled together and
sequenced using a single lane from an Illumina HiSeq
2000 (paired 100 bp reads).

Construction and sequencing of plasmid library
MGC plasmids were linearized by NotI-HF enzyme as
before. These linearized plasmids were then fragmented
using a Covaris (Woburn, MA, USA) S220 Focused-
ultrasonicator. Briefly, 1.2 μg of linearized plasmid in a
final volume of 60 uL of H2O was loaded into a micro-
TUBE (Covaris, catalog no. 520045). The ultrasonicator
was de-gassed and prepared according to the manufac-
turer’s protocol. Linearized plasmids were sonicated using
the following conditions: intensity 5, duty factor 10%, cy-
cles per burst 200, time 120 s, and water bath temperature
7°C. Fragmented plasmids were gel-purified using a 1%
agarose gel (BioRad, Hercules, CA, USA, catalog no. 161–
3107) and TAE running buffer (BioRad, catalog no. 161–
0743). A slice between 100 bp and 700 bp was excised
from this gel. DNA was purified from this gel slice using
the MinElute Gel Extraction Kit (Qiagen, catalog no.
28606) according to the manufacturer’s protocol. Frag-
mented DNA was converted into a sequencing library
using the TruSeq DNA Sample Preparation Kit (Illumina,
catalog no. FC-121-2001). End repair, adenylation, adapter
ligation, gel size-selection, and PCR enrichment were per-
formed according to the manufacturer’s protocol. During
the gel size-selection, a band between 300 bp and 500 bp
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was excised. The quality and size of the library was assessed
using Agilent 2100 BioAnalyzer. This library was sequenced
using an Illumina MiSeq (paired 100 bp reads).

Construction and sequencing of no selection and polyA
libraries
As with the other RNA-seq libraries, these libraries were
prepared using the TruSeq RNA Sample Preparation Kit
(Illumina, catalog no. FC-122-1001). For the polyA sam-
ple, 1 μg of IVT RNA was treated with polyA selection
reagents included with the TruSeq RNA Sample Prepar-
ation Kit according to the manufacturer’s protocol. The
remainder of the library preparation was carried out using
the same conditions as for the other IVT RNA samples.
For the no selection sample, 100 ng of IVT RNA at a con-
centration of 100 ng/μL was diluted with 17 μL of Elute,
Prime, Fragment mix (provided with the TruSeq RNA
Sample Preparation Kit). Again, the remainder of the li-
brary preparation was carried out as with the other sam-
ples. These samples were sequenced in a single Illumina
HiSeq 2500 lane (paired 100 bp reads).

Aligning, quantifying, and visualizing sequencing data
Raw reads from all sequencing samples were aligned to
the human genome (GRCh37/hg19) using the RNA-seq
Unified Mapper [14] (RUM; v2.0.4) with default parame-
ters. Mapping statistics for all libraries are included in
Additional file 13. RUM also generated RNA-seq coverage
plots in bedgraph format, and calculated transcript- and
exon-level FPKM values for each IVT transcript (acces-
sion numbers listed in Additional file 1). All analyses were
performed using uniquely aligned reads (no multi-
mappers) from the RUM_Unique and RUM_Unique.cov
output files. Quantification was performed using annota-
tions for the IVT transcripts that we downloaded from the
MGC Genes track [17] on the UCSC Genome Browser
[23]. Those IVT transcripts mapping to multiple loci or
overlapping other IVT transcripts were removed from fur-
ther analysis (marked with an asterisk in Additional file 1).
All coverage plots in this paper were visualized in and
captured from the UCSC Genome Browser. All statistical
tests and correlation plots were performed in R.

Generating simulated data
Simulated data was generated using the BEERS software
package [24] from gene models for IVT transcripts, with
an average coverage depth of 1,000 reads (10,000,000
reads total). All error, intronic read, and polymorphism
parameters were set to zero. The remaining parameters
used default values. For the QM-simulated data, FPKM
values from replicate one of the IVT-only data were
used as seeds for generating expression levels (40,000,000
reads total). This generated simulated data with FPKM values
closely matching those from the real data (Additional file 3:
Figure S2B). All other parameters were the same as for
the other simulated data.

Processivity analysis
Coverage data for each IVT transcript was extracted
from coverage files for the plasmid and no selection sam-
ples. For each transcript, base pair-level coverage data was
extracted from the regions spanning 5% to 15% and 85%
to 95% of the transcript, by length. For example, given a
1,000 bp transcript, the first region spanned base pairs 50
to 150, and the second region spanned base pairs 850 to
950. These two coverage regions represent the 5′ end and
3′ end of the transcript, respectively. The first and last 5%
of the transcript was excluded to avoid artifacts from the
fragmentation process. Processivity of each transcript was
assessed by the ratio of the mean depth of coverage from
both of these regions (3′ region mean/5′ region mean).
These processivity ratios were calculated for all transcripts
in the plasmid and no selection data, with expression >5
FPKM.

Calculating fold-change difference in within-transcript
coverage
Coverage data for each of the IVT transcripts was ex-
tracted from the coverage files for the IVT-only, polyA,
and no selection samples. The first and last 200 bp were
trimmed from each transcript to prevent edge effects
from interfering with the calculations. Due to this trim-
ming, all IVT transcripts with less than 500 bp were dis-
carded. All IVT transcripts expressed with FPKM <5 in
any of the samples were discarded from further analysis.
Nucleotide-level coverage data was grouped into percen-
tiles based on depth of coverage. Average coverage
was calculated across the 10th percentile and the 90th
percentile. Fold-change differences in within-transcript
coverage were calculated by dividing the 90th percentile
average by the 10th percentile average. The list of tran-
scripts with associated fold-change values is included in
Additional file 14.

Identifying hunc regions
Coverage data for each of the IVT transcripts was extracted
from the coverage files from each of the rRNA-depleted
datasets (replicate dilution series: IVT-only, 1 IVT:1 mouse,
1 IVT:2 mouse, 1 IVT:10 mouse, and mouse-only). These
coverage plots were normalized between zero and one to
allow comparison between different dilutions. For each
nucleotide position in a transcript, the deviation in cover-
age between each of the samples was calculated using the
median absolute deviation (MAD), due to its resistance to
outliers. MAD scores were calculated across the different
dilutions using R’s mad function with constant = 1. Next,
a sliding window was used to calculate the average MAD
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in the 100 bp windows centered on each nucleotide in the
transcript. The first 300 and last 250 windows were
trimmed from each transcript to avoid confounding vari-
ability due to edge effects or fragmentation artifacts. All
analysis up until this point was carried out separately on
the two replicate datasets. The 95th percentile of MAD
scores was calculated for each of the replicates using R’s
quantile function (replicate 1: 0.08810424; replicate 2:
0.07183765). Only those regions with at least 20 contigu-
ous windows having MAD scores above the appropriate
95th percentile values were retained for further analysis.
Next, the BEDTools [25] intersect function was used to
remove any regions with high MAD scores not present in
both replicates. Finally, these remaining regions of high
coverage variability were filtered for mouse reads misa-
ligned to the human reference. Any regions coming from
transcripts with FPKM ≥5 in the mouse-only samples
were discarded. To account for localized misalignment of
mouse reads, any regions with an average coverage >10 in
the mouse-only samples or in the 100 bp on either side of
the region were discarded. These remaining regions com-
prise the final list of regions with high coverage variability.
To search for hunc regions not maintained between repli-
cates, windowed MAD scores from replicate two were
subtracted from those of replicate one. The 2.5th and
97.5th percentiles of these difference values were used as
cutoffs (2.5th percentile: −0.07053690; 97.5th percentile:
0.09134876) to pull out the most extreme positive and
negative difference values. Regions corresponding to these
extreme difference values were filtered as above. Addition-
ally, those difference regions within 200 bp of a previously
identified hunc region were filtered out. This last filtering
step accounted for cases where a difference region with
high MAD scores was just an extension of an existing
hunc region. Hunc regions and difference regions were
manually checked to determine whether they represented
regions where expression patterns deviated from the re-
mainder of the transcript.
Generating sequence characteristics
Sequences for each transcript were collected in R using
the BSgenome, GenomicRanges, and GenomicFeatures
packages. Hexamer entropy for each transcript was calcu-
lated as follows: occurrences of all possible hexamers in a
given transcript were counted. These counts were con-
verted into frequency space, and these frequency values
were used to calculate the Shannon entropy. Shannon en-
tropy is commonly used to represent complexity in nucleo-
tide sequences or multiple alignments [19-21]. Similarity of
transcripts to rRNA sequences was calculated as follows:
each transcript was aligned to 45S (NR_046235.1) and 5S
(X71804.1) rRNA using NCBI BLAST [26] and the e-score
for the best alignment was saved.
Sequence characteristic analysis
The list of IVT transcripts was sorted by transcript-level
coefficients of variation for each library method (plasmid,
no selection, polyA, replicate one of rRNA-depleted IVT-
only). All transcripts with transcript-level FPKM ≤5 were
excluded from further analysis. From this sorted list, the
transcripts with the 100 least and 100 most extreme coef-
ficients of variation were collected for each of the above
sequencing samples. The values for hexamer entropy, GC-
content, and rRNA sequence similarity were compared
between every pair of 100 least and 100 most extreme co-
efficients of variation using a Wilcoxon signed-rank test
(implemented in R as the wilcox.test function). This entire
analysis was repeated using transcript-level FPKM values
instead of the coefficients of variation. All boxplots were
prepared using R.

Data access
We deposited all sequencing data in the NCBI Gene
Expression Omnibus under accession number [GEO:
GSE50445]. We also loaded the coverage tracks on the
UCSC Genome Browser, making them available to the
community (comparison between different selection
methods [27]; comparison between replicates [28]).

Additional files

Additional file 1: Accession numbers for IVT transcripts.

Additional file 2: Figure S1. Expression comparison between
replicates. (A) Correlation plots for log10 transcript-level FPKM values
between replicate IVT-seq samples. Pearson R2 values for the correlations
are included as inserts in each plot. (B) Distribution of FPKM values in
both replicates of the IVT-only sample. FPKM values are plotted on the
x-axis in log10 space. The y-axis is plotted in arbitrary density units.

Additional file 3: Figure S2. Expression comparison between
simulated and IVT data. Correlation plots for log10 transcript-level FPKM
values between (A) simulated data or (B) QM-simulated data, and
replicate one of the IVT-only data. Pearson R2 values for the correlations
are included as inserts in each plot.

Additional file 4: Figure S3. Coverage patterns are reproducible across
replicates. Coverage patterns from both replicates for all transcripts in
Figure 2. RNA-seq coverage plots from replicate IVT only samples
(red – replicate one; blue – replicate two) for (A) BC015891, (B) BC009037,
and (C) BC016283 are displayed according to the gene model (green), as it
is mapped to the human reference genome. Blocks correspond to exons
and lines indicate introns. The chevrons within the intronic lines indicate
the direction of transcription. Numbers on y-axis refer to RNA-seq
read-depth at a given nucleotide position. All transcripts are displayed
in the 5ʹ to 3ʹ direction.

Additional file 5: Figure S4. Fold-change in within-transcript coverage
across libraries. The cumulative distribution functions for fold-change in
within transcript coverage are displayed for the rRNA-depleted (red),
polyA (orange), no selection (green), plasmid (blue), QM-simulated (gray),
and simulated (black) datasets. Curves toward the left side of the plot
indicate fewer genes contain high fold-change differences in coverage.
Curves toward the right side of the plot indicate many genes contain
high fold-change differences in coverage. The dotted lines indicate the
y-axis values for none of the data (0.0) and all of the data (1.0). This plot
is focused on the fold-change values between 1 and 10. See the Materials
and methods section for full details on the fold-change calculations.

http://www.biomedcentral.com/content/supplementary/gb-2014-15-6-r86-S1.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2014-15-6-r86-S2.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-6-r86-S3.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-6-r86-S4.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-6-r86-S5.pdf
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Additional file 6: List of regions with high coverage variability
(hunc regions).

Additional file 7: Figure S5. Plasmid sequencing protocol compared
to IVT-seq. The protocol for preparing MGC plasmids for DNA-sequencing
library generation is displayed alongside the protocol for preparing IVT
transcripts for RNA-seq library generation. Both protocols start by linearizing
the plasmids. For DNA-sequencing, linearized plasmids are fragmented via
Covaris sonication, and the resulting fragments are taken through the
TruSeq protocol. For RNA-sequencing, the linearized plasmids are used as
templates for an in vitro transcription reaction. IVT RNA is then pooled with
mouse RNA, rRNA is removed from pool via Ribo-Zero Gold kit, rRNA-depleted
pool is fragmented via metal-ion hydrolysis, and fragmented RNA is converted
to cDNA via reverse transcription with random-hexamer priming. The resulting
cDNA fragments are then taken through the TruSeq protocol.

Additional file 8: Figure S6. Nucleotide frequency as a function of
read position for sequencing reads at the 5ʹ ends of cDNA fragments.
Frequencies are plotted for plasmid, no selection, rRNA-depleted, and
polyA datasets.

Additional file 9: Figure S7. Effects of sequence characteristics on
coverage depth. Distributions of (A) hexamer entropy, (B) GC-content,
and (C) rRNA sequence similarity for the 100 transcripts with the highest
and lowest transcript-level FPKMs from the plasmid, no selection,
rRNA-depleted, and polyA libraries. Asterisks indicate the significance of a
Wilcoxon signed-rank test comparing values for the listed sequence
characteristics between each pair of groups from the same sample.
**P <0.01; ***P <0.001.

Additional file 10: Figure S8. Confounding effects between coverage
depth and variability. Distributions of transcript-level coefficients of variation
for the 100 transcripts with the highest and lowest transcript-level FPKMs
from the plasmid, no selection, rRNA-depleted, and polyA libraries. Asterisks
indicate the significance of a Wilcoxon signed-rank test comparing values
for the listed sequence characteristics between each pair of groups from
the same sample. *P <0.05; ***P <0.001.

Additional file 11: Figure S9. rRNA sequence similarity and coverage
bias in rRNA-depleted data. Correlation plot between Smith-Waterman
alignment score to rRNA sequences and the magnitude of the decrease
in coverage depth between no selection and rRNA-depleted samples. A
coverage drop of 1.0 indicates a large decrease in coverage between the
no selection and rRNA-depleted samples. A coverage drop of 0 indicates
no difference between the two samples. For full details on this analysis,
see Additional file 12.

Additional file 12: Description of window analysis of rRNA
sequence similarity.

Additional file 13: Alignment statistics for all sequencing datasets.

Additional file 14: List of transcripts with associated fold-change
values in within-transcript coverage.
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