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Abstract

Current olfactometers can insert a target odor into the flow of odorless air as a pulse

(i.e., replace odorless air with target odor for a very short time), but no previously

designed olfactometer can insert a pulse of target odor into a flow of background

odor (i.e., replace background odor with target odor for a very short time). To

measure reaction time to a target odor during presentation of a background odor,

we developed an expanded olfactometer by adding an attachment to an existing

olfactometer. We conducted three experiments to evaluate the performance of the

expanded olfactometer. Additionally, four volunteers participated in trial

measurement of reaction time for detection of the target odor under background

odor and odorless air conditions using the expanded olfactometer. We did not

observe a significant difference in gas onset time or rise time of the target odor

between background and odorless air conditions. Additionally, the gas onset time

and rise time of the target odor were on the order of milliseconds, whereas the

gas onset time and rise time of the background odor were on the order of

seconds. The reaction time was marginally significantly longer under the

background odor condition than the odorless air condition. We did not observe a
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significant difference in gas onset time or rise time of the target odor between the

existing olfactometer and our expanded olfactometer. We succeeded in developing

an attachment capable of inserting a target odor into a flow of background odor. Our

results revealed that performance related to the presentation of the target odor was

comparable between the existing and expanded olfactometers. To more rigorously

examine the effect of background odor on detection speed of target odor, we intend

to increase the number of participants in the near future.

Keywords: Neuroscience, Psychology

1. Introduction

When measuring reaction time to a target odor, gaseous odor must be strictly

controlled on the timescale of milliseconds. Additionally, olfaction must be stimu-

lated without causing other stimuli such as tactile, pain, cold, or warm sensations.

Evans et al. (1993) proposed requirements for measuring olfactory evoked potential

with high accuracy. The first requirement is the ability to insert an odor into a flow of

odorless air as a pulse. If an olfactory stimulus is blown into the nasal cavity, a tactile

sensation is also induced as the pressure changes. Second, the olfactory stimulus

must be presented in a rectangular wave-form. More specifically, the time to reach

70% of maximum concentration must be within 50 ms from stimulus onset. Third,

odorless air must be presented in the nasal cavity throughout the measurement. How-

ever, in order to prevent drying of the nasal cavity, the humidity of odorless air must

be greater more than 50%, and its temperature must be similar to body temperature

(35e37 �C). Kobal and colleagues (Kobal, 1985; Kobal and Hummel, 1988) suc-

ceeded in developing an olfactometer that satisfies all these criteria.

In conventional measurements of reaction time (Boesveldt et al., 2010; Jacob and

Wang, 2006; La Buissonni�ere-Ariza et al., 2013; Olofsson et al., 2013) to a target

odor, the odor is inserted as a pulse into a flow of odorless air. However, in everyday

life, we often unexpectedly notice another odor during exposure to an odor of inter-

est, e.g., city gas odor appears when we are cooking, or cigarette odor appears when

we are sitting at the dinner table. Thus, humans are constantly exposed to chemically

complex stimuli (Sinding et al., 2013). There are few opportunities to smell mono-

molecular odors in everyday life, and olfactory function is primarily used to process

complex mixtures of odorants present in the environment (Thomas-Danguin et al.,

2014). The olfactory system may recognize complex mixtures of odorants as single

entities (configural perception) or discriminate a specific odor from complex mix-

tures (elemental perception) (Barkat et al., 2012; Coureaud et al., 2008). When a

given odor (target odor) is discriminated from another aroma (background odor),

the olfactory system needs not only to detect the individual features of each odor,

but also to decide whether the source of each feature is the target or background
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odors (Wilson and Stevenson, 2003). Accordingly, it is possible that the time

required for olfactory information processing of the same target odor could differ be-

tween conditions in which a background odor is present or absent.

The time required for information processing is commonly evaluated using the reac-

tion time paradigm (Burke et al., 2017). In this study, we developed an olfactometer

for measuring reaction time to a target odor during presentation of a background

odor. More specifically, we added an attachment capable of inserting a pulse of

target odor into a flow of background odor (i.e., replacing odorless air with the target

odor for a very short time) to the olfactometer developed by Kobal and colleagues

(Kobal, 1985; Kobal and Hummel, 1988). To evaluate the performance of the olfac-

tometer with the attachment (hereafter, referred to as the expanded olfactometer), we

conducted three experiments using a high-speed ultrasonic gas sensor (Toda and

Kobayakawa, 2008; Toda et al., 2005). In Experiment 1, we compared the gas onset

time and rise time of the target odor between a condition in which the background

odor was present (background odor condition) and one in which it was absent (odor-

less air condition). In Experiment 2, we compared the gas onset time and rise time of

the target odor between the existing olfactometer and our expanded olfactometer. In

Experiment 3, we measured the gas onset time and rise time of the background odor.

Gas onset time and rise time were calculated based on the output from the high-speed

ultrasonic gas sensor, converted into voltage. Additionally, as an example of a psy-

chophysical experiment using the expanded olfactometer, we compared the reaction

time for detection of the target odor under the background odor and odorless air

conditions.
2. Instrumentation

2.1. Existing olfactometer

A schematic of the olfactometer (Olfactometer OM4; Burghart Instruments, Wedel,

Germany) developed by Kobal and colleagues (Kobal, 1985; Kobal and Hummel,

1988) is shown in Fig. 1(a). This olfactometer consists of a line through which odor-

less air flows, a line through which odor (odorized nitrogen) flows, and a line for ex-

hausting unpresented gases. The odor consists of nitrogen gas odorized by passing

through an absorbent cotton bearing the odorant. By switching between odorless air

and odor lines using a three-way solenoid valve, the odor was exhausted via a suc-

tion pump during the presentation of odorless air; likewise, odorless air was ex-

hausted during the presentation of the odor.

A gas wash bottle (model number PFA 100; As One Corporation, Osaka) made of

fluorine resin was placed at the inlet as a heating module for gaseous odor. This mod-

ule was a component originally incorporated in the existing olfactometer (“Olfac-

tometer OM4”) developed by Kobal and colleagues (Kobal, 1985; Kobal and
on.2019.e01254
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Fig. 1. Outlines of existing and expanded olfactometers. The existing olfactometer (a) consisted of an

odorless air line, an odor line, and an exhaust line. In the expanded olfactometer (b), two units (odorless

air and background odor) were arranged in parallel in the middle of the odorless air line of the existing

olfactometer. Additionally, two units (odorless nitrogen and target odor) were arranged in parallel in the

middle of the odor line of the existing olfactometer. The part surrounded by the dotted line was heated by

circulating warm water around the lines.
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Hummel, 1988). In many cases (e.g., Kettenmann et al., 1997), the inlet of the heat-

ing module for gaseous odor is connected to a high-pressure gas cylinder containing

an odorized gas. However, the type of gaseous odors supplied in high-pressure cyl-

inder format is limited. Therefore, we connected a gas wash bottle containing an

absorbent cotton bearing the odorant (i.e., odor module) instead of a high-pressure

gas cylinder. The pressurized odorless nitrogen passed through the gas wash bottle,

thereby generating an odor. The odor module was not heated, but warm water circu-

lated around the odor line from heating module for gaseous odor to near the outlet of

olfactometer.
on.2019.e01254
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At the outlet of the olfactometer, we attached a high-speed ultrasonic gas sensor

(Toda and Kobayakawa, 2008; Toda et al., 2005) and a forked thin tube made of

polypropylene and Teflon. The participant inserted this tube approximately 1 cm

into both nasal cavities. To avoid pressure changes and temperature changes in

the nasal cavity, odorless air was always presented through the tube into the nasal

cavity, and odorized nitrogen was inserted into the flow of odorless air as a pulse.

More specifically, by controlling the three-way solenoid valve with output from a

digital input/output board on a personal computer (PC), gas presented to the partic-

ipant was switched from odorless air to odor, and then back to odorless air. To

perform real-time monitoring of gas presented to the participant, a high-speed ultra-

sonic gas sensor (Toda and Kobayakawa, 2008; Toda et al., 2005) was placed at the

outlet of the olfactometer. The high-speed ultrasonic gas sensor converts the molec-

ular weight of gas into a voltage value. This sensor can successfully detect gas ex-

change between air (average molecular weight 28.8) and nitrogen (molecular weight

28) with a signal-to-noise ratio that is larger than 42 dB, and a temporal resolution of

detection is less than 1 ms (Toda et al., 2005). Additionally, humidified air can be

discriminated from non-humidified air based on the output from the high-speed ul-

trasonic gas sensor. However, the possibility of discrimination between humidified

odorless air and humidified odorized air depends on the saturated vapor pressure of a

given odorant. Changes in voltage values, based on the outputs from the PC that

controlled the three-way solenoid valve and the high-speed ultrasonic gas sensor,

were processed by an analog-to-digital conversion circuit (PowerLab; ADInstru-

ments, Bella Vista, Australia), and the digitized value was recorded.

The flow rates of odorless air and odorless nitrogen were controlled by mass flow

controllers. To supply odorless air and odorless nitrogen to the olfactometer, atmo-

sphere was taken into the olfactometer by a compressor, and then the odorants con-

tained in the atmosphere were removed by passing the air through a deodorizing

device, which was a gas wash bottle made of stainless steel (diameter 73 mm

�height 170 mm) with 250 g of granular activated carbon (model number 4GG

for vapor phase, pellet 4mm; As One Corporation, Osaka). To humidify the odorless

air, it was passed through a gas wash bottle containing deionized water. To keep the

odorless air and odor warm, water of approximately 40 �C was circulated around the

Teflon tube, which was the path for both the odorless air and odor.
2.2. Expanded olfactometer

2.2.1. Outline

To present the background odor, an attachment was added to the existing olfactom-

eter, as shown in Fig. 1(b). Two units (odorless air unit and background odor unit)

were arranged in parallel in the middle of the odorless air line of the existing olfac-

tometer. Similarly, two units (odorless nitrogen unit and target odor unit) were
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arranged in parallel in the middle of the odor line of the existing olfactometer. Teflon

tubes (model number F-8011, inner diameter 4.35 mm � outer diameter 6.35 mm;

Flon Industry, Tokyo) and three types of Teflon connectors were used to connect the

parts. An elbow Teflon connector (model number 30-6MCT 4-C; Flowell Corpora-

tion, Yokohama, Japan) or a T Teflon connector (model number 30-6MBT 4-C;

Flowell Corporation, Yokohama, Japan) was attached to the two-way solenoid valve

(model number MYB2-6-DC24V; CKD Corporation, Aichi) of each unit. To con-

nect two Teflon tubes, an elbow Teflon connector (model number 30-6UE-C; Flow-

ell Corporation, Yokohama, Japan) was used.
2.2.2. Electronic circuit for driving the two-way solenoid valve

A diagram of the electronic circuit for driving the two-way solenoid valve of each

unit is shown in Fig. 2. The two-way solenoid valves of each unit were controlled

by output from the PC via a microprocessor (model number Arduino Uno Rev3; Ar-

duino Srl, Ivrea, Italy) and semiconductor relays (“PhotoMOS� relay”, model num-

ber AQW 212; Panasonic Corporation, Kadoma, Japan). The microprocessor was
Fig. 2. Electronic circuit diagram for driving two-way solenoid valves of each unit. The device attached

to the existing olfactometer consisted of four units. An electronic circuit diagram for driving eight two-

way solenoid valves (the upstream and downstream solenoid valves per unit) is shown.
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connected to the PC via a universal serial bus (USB) cable. The three-way solenoid

valve of existing olfactometer was also controlled by output from the same PC. A

semiconductor relay was connected to each channel (D2eD9) of the micropro-

cessor. A voltage signal of 5 V, which was outputted from the microprocessor,

controlled application of voltage of 24 V to the two-way solenoid valve via the semi-

conductor relay.

The two-way solenoid valves of the odorless air and background odor units were

open and closed at steady state, respectively. Similarly, the two-way solenoid valves

of the odorless nitrogen and target odor units were open and closed at steady state,

respectively.
2.2.3. Background odor and odorless air conditions

Under the background odor and odorless air conditions, odorless air was presented

constantly in the nasal cavity of the participant by switching the three-way solenoid

valve. Odorless nitrogen was exhausted via a suction pump, without being presented

in the nasal cavity of the participant, by switching the three-way solenoid valve.

When target odor was presented, odorless nitrogen and target odor were switched

using the two-way solenoid valves of each unit.

Under the background odor condition, odorless air and background odor were

switched using the two-way solenoid valve of each unit. To insert a target odor

into the flow of background odor as a pulse, the background and target odors

were switched using the three-way solenoid valve. On the other hand, under the

odorless air condition, odorless air and background odor were not switched. To

insert a target odor into the flow of odorless air as a pulse, odorless air and target

odor were switched using the three-way solenoid valve. Incidentally, results of

Experiment 3 (described below) showed that the expanded olfactometer required

approximately 4 s for the background odor, which was exchanged with odorless

air by switching the two-way solenoid valves of each unit, to reach equilibrium in

the line of odorless air and background odor. The time required for odorless air,

odorless nitrogen, and the target odor to reach equilibrium in each line was also com-

parable to the time required for the background odor.
3. Experimental

3.1. Experiment 1: Comparison of gas onset time and rise time of
target odor between background odor and odorless air conditions

3.1.1. Timing of solenoid valve control

The timeline of the solenoid valve control in each trial is shown in Fig. 3.
on.2019.e01254
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Fig. 3. Timeline of solenoid valve control in each trial. Timeline The timeline of the three-way valve

represents the gases presented from the outlet of the olfactometer under each condition. The presentation

time of target odor was 0.3 s (300 ms). The presentation time of background odor was 10 s (actual time

was 9.7 s; 0.3 s out of 10 s was spent to present the target odor) from 3 s before the green light was turned

on to 7 s after the green light was turned on. The electrical onsets of the target odor were randomized

among trials.
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a. Background odor condition

During the measurement, odorless air flowed constantly into the participant’s nasal

cavity. Switching from odorless air to background odor was performed 3 s before the

green light was turned on, and background odor began to flow into the participant’s

nasal cavity. At the same time, switching from odorless nitrogen to target odor was

performed. Switching from background odor to target odor was conducted within

3e4 s after the green light was turned on (i.e., corresponding to electrical onset),

and the target odor was presented in the participant’s nasal cavity. Electrical onsets

were randomized among trials. After the target odor was presented for 300 ms,

switching from target odor to background odor was performed. Switching from

background odor to odorless air occurred 7 s after the green light was turned on

(i.e., when the green light was turned off), and odorless air began to flow again

into the participant’s nasal cavity. At the same time, switching from target odor to

odorless nitrogen was performed.
on.2019.e01254
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b. Odorless air condition

The procedure was the same as for the background odor condition, except that

switching between odorless air and background odor was not performed.
3.1.2. Procedure

We poured 50 mL of deionized water into the gas wash bottle of the background

odor unit. The tip of the Teflon tube inserted into the gas wash bottle of the target

odor unit was wrapped with a 2.5 cm � 2.5 cm absorbent cotton, which was fixed

to the tube with a thin wire. We dropped 1 mL of propylene glycol (special grade

reagent; Wako Pure Chemical Industries, Osaka, Japan) onto the absorbent cotton

using a microsyringe.

The flow rate of odorless air and background odor was 7.2 L per minute, the flow rate

of odorless nitrogen and target odor was 5.0 L per minute, the flow rate of exhaust

was 5.8 L per minute, the presentation time of background odor was 10 s (actual time

was 9.7 s; 0.3 s out of 10 s was spent to present the target odor), the presentation time

of target odor was 0.3 s (300 ms), and the presentation interval between target odors

was approximately 20 s. The green light was turned on for 7 s per trial. Measure-

ments under background odor and odorless air conditions were performed alter-

nately for 20 trials each. The aforementioned flow rates of gases and exhaust were

the values displayed on the control unit of olfactometer. Before starting the experi-

ment, we adjusted the flow rates of gases and exhaust by placing a U-tube manom-

eter at the outlet of the olfactometer. More specifically, the flow rate of odorless air

and background odor displayed on the control unit was set to 7.2 L per minute. Sub-

sequently, the line of odorless nitrogen and target odor was closed by shutting off the

power of mass flow controller, but the exhaust line was opened. The pressure applied

to the exhaust line was adjusted to 20 cmH2O (¼ 1.96 kPa) higher than the pressure

applied to the line of odorless air and background odor, by operating the control unit.

Finally, the line of odorless air and background odor was closed by shutting off the

power to the mass flow controller, whereas the line of odorless nitrogen and target

odor was opened. The exhaust line remained open. The pressure applied to the

exhaust line was adjusted to 20 cmH2O (¼ 1.96 kPa) higher than the pressure

applied to the line of odorless nitrogen and target odor, by operating the control

unit. When we adjusted the flow rates of gases and exhaust using the U-tube manom-

eter, the flow rate of odorless air and background odor was almost equivalent to the

flow rate of odorless nitrogen and target odor. Additionally, by smelling the gases at

the outlet of olfactometer every time the flow rates were adjusted, two experimenters

confirmed that there was no perceptual difference in the flow rates among the gases.

For the measurement of reaction time (described below), the green light was used as

a fixation point and warning light for odor presentation. Power to the green light was
on.2019.e01254
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controlled by a voltage of 5 V outputted from the PC. In order to control the three-

way solenoid valve, another voltage of 5 V was outputted from the PC correspond-

ing to illuminating the green light. Changes in the illuminating and extinguishing the

green light, the voltage value based on the output from the PC to the three-way so-

lenoid valve, and the output from the high-speed ultrasonic gas sensor were recorded

at a sampling rate of 1,000 Hz. In the performance evaluation, it was possible to

discriminate between odorless air and the target odor (nitrogen containing molecules

of propylene glycol), and between the background odor (non-odorized air) and target

odor on the basis of the output from the high-speed ultrasonic sensor. On the other

hand, in Experiment 1, because the odorless air and background odor were humid-

ified, it was impossible to discriminate between these gases on this basis.
3.1.3. Analysis

We defined the gas onset time as the latency from electrical onset (the time point at

which the signal controlling the solenoid valve, which was used to switch between

gases, was output by the PC) to gas change onset (Toda et al., 2005). To calculate the

gas onset time for each trial, we used 20,000 points of voltage value data (20 s �
sampling rate 1,000 Hz) recorded over 20 s, starting with the illumination of the

green light. After we identified the minimum and maximum values of these data,

we divided the interval between the minimum and maximum values into 20 bins

(i.e., every 5%). Nineteen voltage ranges were arranged by moving the voltage range

of 10% from the minimum value to the maximum value in increments of 5% (i.e.,

0e10%, 5e15%, 10e20%, ..., and 90e100%). Because we identified a voltage

range including more than 95% (i.e., 19,000 out of 20,000 points) of voltage data

in all trials, we considered that the data included in the identified voltage range cor-

responded to the baseline voltage value; accordingly, the average and standard de-

viation (SD) of these data were calculated. We defined the time point at which the

voltage value was above the average þ5 SD as ‘gas exchange onset’. The gas onset

time was calculated by subtracting the electrical onset from the gas exchange onset.

We defined the rise time as the latency from gas exchange onset to arrival at 70% of

the maximum concentration. To calculate the rise time of each trial, we regarded the

average value of the baseline as 0% and the minimum voltage (i.e., maximum con-

centration) as 100%, and then identified the time point at which the voltage value was

over 70% of the minimum voltage. The rise time was calculated by subtracting the

gas exchange onset from the time of arrival at 70% of the minimum voltage.

To determine whether gas onset time and rise time of the target odor differed be-

tween the background odor and odorless air conditions, we performed the unpaired

t-test for each parameter. Throughout this study, we used IBM SPSS Statistics 23

(IBM Japan, Tokyo) for statistical analysis, and p values less than 0.05 were
on.2019.e01254
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considered statistically significant. No correction was performed to adjust the signif-

icance level.
3.1.4. Results

An example of real-time monitoring of a target odor with a high-speed ultrasonic

gas sensor under the background odor and odorless air conditions is shown in

Fig. 4. In this experiment, both the odorless air and background odor (non-odor-

ized air) were humidified; thus, it was impossible to discriminate between them

based on the output from the high-speed ultrasonic sensor. Therefore, the output

from the high-speed ultrasonic gas sensor recorded during real-time monitoring of

the target odor did not differ between the background odor and odorless air

conditions.

The gas onset times (means�SD) of the target odor were 60.65� 0.67 ms under the

background odor condition and 60.30 � 0.73 ms under the odorless air condition.

The rise times (means�SD) of the target odor were 51.70� 3.79 ms under the back-

ground odor condition and 52.25� 3.67 ms under the odorless air condition. For gas

onset time as well as rise time, there were no significant differences between condi-

tions (unpaired t-test). These results demonstrate that performance related to the pre-

sentation of the target odor was equivalent between the background odor and

odorless air conditions.
Fig. 4. Real-time monitoring of target odor under background odor and odorless air conditions. Changes

in the voltage values on the basis of illuminating or extinguishing the green light (the upper row of [a]),

output from the PC to the three-way solenoid valve (middle row of [a] and upper row of [b]), and output

from the high-speed ultrasonic gas sensor (lower row of [a] and lower row of [b]) are shown. We defined

gas onset time (GOT) as latency from electrical onset to gas exchange onset, and rise time (RT) as la-

tency from gas exchange onset to arrival at 70% of maximum concentration (i.e., minimum voltage).
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3.2. Comparison of gas onset time and rise time of the target odor
between the existing and expanded olfactometers

3.2.1. Procedure

The procedure for measurement using the expanded olfactometer was the same as

that for measurement under the odorless air condition in Experiment 1. Measurement

was conducted in 20 consecutive trials. In the measurement using the existing olfac-

tometer, we used the gas wash bottle of the target odor unit in the expanded olfac-

tometer. The rest of the procedure was the same as for the measurement using the

expanded olfactometer.
3.2.2. Analysis

Gas onset time and rise time of the target odor in the existing and expanded olfac-

tometers were calculated using the same procedure as in Experiment 1. To determine

whether gas onset time and rise time of the target odor differed between both olfac-

tometers, we conducted the unpaired t-test for each parameter.
3.2.3. Results

The gas onset times (means �SD) of the target odor were 59.75 � 0.91 ms for the

existing olfactometer and 60.20 � 1.11 ms for the expanded olfactometer. The rise

times (means �SD) of the target odor were 51.15 � 3.95 ms for the existing olfac-

tometer and 51.40 � 2.96 ms for the expanded olfactometer. For gas onset time as

well as rise time, there were no significant differences between the two olfactometers

(unpaired t-test). These results demonstrate that performance related to the presenta-

tion of the target odor was equivalent between the existing and expanded

olfactometers.
3.3. Experiment 3: Gas onset time and rise time of background
odor

3.3.1. Procedure

Both odorless air and background odor (non-odorized air) were moistened when the

gases pass through a humidifying module with deionized water. Consequently, it is

impossible to discriminate between odorless air and background odor on the basis of

the output from the high-speed ultrasonic gas sensor. Therefore, we removed the de-

ionized water from the humidifying module, but poured 50 mL of deionized water

into the gas wash bottle of the background unit, as in Experiment 1 and 2. These pro-

cedures produced a difference in the molecular weights of gases between odorless air

(which did not contain water vapor) and background odor (which contained water
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vapor); thus, it was possible to discriminate between odorless air and background

odor on the basis of the output from the high-speed ultrasonic gas sensor.

The flow rates of odorless air and background odor were both 7.2 L per minute, and

the flow rate of exhaust was 5.8 L per minute. The U-tube manometer was used for

adjustment of the flow rates, as in Experiment 1. Measurements of 20 trials for each

gas were conducted by alternately repeating 10 s of odorless air presentation and 10 s

of background scent presentation. Changes in voltage value based on output from the

PC to the two-way solenoid valve of background odor unit, as well as the output

from the high-speed ultrasonic gas sensor, were recorded at a sampling rate of

1,000 Hz. Electrical onset in this performance evaluation was defined as the time

point at which the signal for switching from odorless air to background odor was

output from the PC to the two-way solenoid valve of each unit.

In Experiment 1, because both odorless air and background odor (non-odorized air)

were humidified, it was impossible to discriminate between these gases on the basis

of the output from the high-speed ultrasonic gas sensor. Accordingly, the output

from the high-speed ultrasonic sensor recorded during real-time monitoring of the

target odor did not differ between the odorless air and background odor conditions

(see Fig. 4). However, when non-humidified odorless air and humidified background

odor (non-odorized air) were used, it was possible to discriminate between these

gases on the basis of the output from the high-speed ultrasonic gas sensor. Therefore,

in order to visualize a sequential exchange of gases switching from odorless air to

background odor, target odor, background odor, and then to odorless air, changes

in voltage value based on illuminating and extinguishing the green light, output

from the PC to the three-way solenoid valve, and the output from the high-speed ul-

trasonic gas sensor were recorded at a sampling rate of 1,000 Hz.
3.3.2. Analysis

To calculate the gas onset time for each trial, we used 20,000 points of voltage value

data (20 s � sampling rate 1,000 Hz) recorded over 20 s following electrical onset.

Other procedures related to calculation of gas onset time and rise time were the same

as in Experiment 1.
3.3.3. Results

An example of real-time monitoring of background odor with a high-speed ultra-

sonic gas sensor is shown in Fig. 5. The gas onset time and rise time (means

�SD) of the background odor were 2041.00 � 72.98 ms and 1668.75 � 160.13

ms, respectively.

The gas onset time and rise time of background odor were on the order of seconds.

On the other hand, the results of Experiment 1 and Experiment 2 demonstrated that
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Fig. 5. Real-time monitoring of background odor. Changes of voltage values on the basis of output from

the PC to the two-way solenoid valve of the background odor unit (upper row) and output from the high-

speed ultrasonic gas sensor (lower row) are shown. GOT and RT represent gas onset time and rise time,

respectively.
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the gas onset time and rise time of target odor were on the order of milliseconds. We

speculated that this large difference might depend on the distance between the parts

involved in physically switching the gas flow paths and the high-speed ultrasonic gas

sensor. Switching between odorless air and background odor was handled by the

two-way solenoid valves of each unit. One gas flowed through the solenoid valve,

whereas the other gas was stopped by the valve. The distance between the high-

speed ultrasonic gas sensor and two-way solenoid valve was approximately 4.7

m. Switching between the background odor and target odor, or between odorless

air and the target odor, was handled by a three-way solenoid valve. The three-way

solenoid valve was responsible for determining which gas was presented in the nasal

cavity of the participant and which gas was exhausted via the suction pump. How-

ever, the flow paths of the two gases were determined not by solenoid valves, but by

a part shaped like a four-pronged fork close to the outlet of the olfactometer. The

distance between the high-speed ultrasonic gas sensor and the fork-shaped part

was approximately 3 cm. Based on the above, we expected that the gas onset time

and rise time decreased when physical switching of gas flow paths was performed

closer to the outlet of olfactometer. Incidentally, the expanded olfactometer required

approximately 3.7 s (gas onset timeþ rise time) for the background odor, which was

exchanged with the odorless air by switching the two-way solenoid valves of each

unit, to reach equilibrium in the line of odorless air and background odor. The

time required for odorless air, odorless nitrogen, or target odor to reach equilibrium

in each line was also almost equivalent to the time required for the background odor.

An example of real-time monitoring of target odor under the background odor con-

dition with a high-speed ultrasonic gas sensor is shown in Fig. 6. Because we used

non-humidified odorless air and humidified background odor (non-odorized air), it
on.2019.e01254
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Fig. 6. Real-time monitoring of target odor under background odor condition. Changes in the voltage

values on the basis of illuminating or extinguishing the green light (the upper row), output from the

PC to the three-way solenoid valve (middle row), and output from the high-speed ultrasonic gas sensor

(lower row) are shown.
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was possible to visualize a sequential exchange of gases switching from odorless air

to background odor, target odor, background odor, and then to odorless air. Howev-

er, because the odorless air and background odor were humidified in the trial mea-

surement of response time for detection of the target odor (described below), it was

impossible to record the output from the high-speed ultrasonic gas sensor, as shown

in Fig. 6.
4. Example

4.1. Participants

This study was conducted in accordance with the revised version of the Helsinki

Declaration. All procedures in this study were approved by the ethical committee

for ergonomic experiments of the National Institute of Advanced Industrial Science

and Technology, Japan. We explained the experiments to each participant in advance
on.2019.e01254
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of the study, and informed them of their right to cease participation even after their

initial agreement to participate. Written informed consent was acquired from all par-

ticipants. Four volunteers (one woman and three men) between the ages of 20 and 22

years old (mean age �SD ¼ 21.0 � 1.2 years old) participated in the experiment.
4.2. Odors

Commercial black tea beverage (Gogo-no-Kocha Oishii Muto [Afternoon Tea Deli-

cious Sugar-free]; Kirin Beverage, Tokyo) was used without dilution in order to

generate the background odor. We poured 50 mL of black tea beverage into the

gas wash bottle of the background odor unit. To confirm the perceived intensity

of black tea odor, two experimenters smelled the outlet of olfactometer. In order

to avoid changes in perceived intensity due to respiration, they smelled black tea

odor presented for 7 s while holding their breath. Under these conditions, the

perceived intensity of black tea odor was 1.5e2 on a six-point magnitude scale

(‘not detectable’ [0], ‘barely detectable’ [1], ‘weak’ [2], ‘moderate’ [3], ‘strong’

[4], and ‘very strong’ [5]; see Saito, 1994).

To generate the target odor, we used lemon odorant (Lemon flavor 109; T&M,

Chiba, Japan) diluted three-fold (v:v) with propylene glycol (special grade reagent;

Wako Pure Chemical Industries, Osaka, Japan). We wrapped the tip of the Teflon

tube inserted into the gas wash bottle of the target odor unit with a 2.5 cm � 2.5

cm absorbent cotton, which was fixed with a thin wire. We dropped 1 mL of diluted

lemon odorant onto the absorbent cotton using a microsyringe. To confirm the

perceived intensity of lemon odor, two experimenters smelled the outlet of the olfac-

tometer. In order to avoid changes in perceived intensity due to respiration, they

smelled lemon odor presented for 300 ms while holding their breath. Under these

conditions, the perceived intensity of lemon odor was approximately 3 on a six-

point magnitude scale (Saito, 1994).
4.3. Procedure

Measurement of reaction time was performed in a small room where external sound

could be blocked. Although the door of the small room was closed during the mea-

surement, experimenters could observe the inside of the room from the outside and

interact with the participant via a camera and interphone. Additionally, to prevent the

participant from predicting the presentation of the target odor depending on the

sound of opening and closing of the solenoid valve, white noise was presented

constantly throughout the measurement.

A green light was used as a warning for target odor presentation and fixation point.

Specifically, a green LED light was emitted from a point approximately 150 cm from

the face of the participant. In addition, in order to obtain responses related to
on.2019.e01254
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detection of the target odor, a wooden cylinder (diameter 40 mm � height 84 mm)

with a spring-type push button (diameter 85 mm) was used. The participant grasped

the cylinder with the dominant hand, and was then asked to keep their thumb on the

button during the measurement. When the button was pushed in by approximately

0.3 mm, a current flowed through the circuit due to conduction between the contacts,

and a voltage of 5 V was generated at both ends of the resistor. The change in voltage

value based on the pushing of the button was also processed at a sampling rate of

1,000 Hz, as were the changes in voltage value based on illuminating and extinguish-

ing the green light, the output from the PC to the three-way solenoid valve, and the

output from the high-speed ultrasonic gas sensor.

The flow rates of odorless air and background odor were 7.2 L per minute, the flow

rates of odorless nitrogen and target odor were 5.0 L per minute, the flow rate of

exhaust was 5.8 L per minute, the presentation time of the background odor was

10 s (actual time was 9.7 s; 0.3 s out of 10 s was spent to present the target odor),

the presentation time of the target odor was 0.3 s (300 ms), and the presentation in-

terval between target odors was approximately 20 s. The U-tube manometer was

used for adjustment of the flow rates, as in Experiment 1. The green light was illu-

minated for 7 s per trial.

The timeline of the solenoid valve control in each trial under both the background odor

and odorless air conditionswas the same as the procedure in Experiment 1 (see Fig. 3).

Background odor and odorless air conditions were presented in random order, and

each participant underwent 40 trials (20 trials � 2 conditions). The participant was

asked to stop breathing while the green light was turned on because the perceived in-

tensity of the target odor might differ depending on whether it was presented in expi-

ratory vs. inspiratory phases. Because the gases were presented at reasonable flow

rates (7.2 L per minute for the background odor, and 5.0 L per minute for the target

odor), participants could perceive the odor even if they stopped breathing. The target

odor was presented while the green light was turned on, and the participant was asked

to push the button as soon as they sensed a change in the olfactory environment.
4.4. Analysis

Using the same procedure for performance evaluation as in Experiment 1, we iden-

tified the gas exchange onset of the target odor. Next, the time for an odor to reach

the participant’s nasal mucosa from the high-speed ultrasonic gas sensor was calcu-

lated with reference to the distance between the center of the gas sensor and the tip of

the Teflon tube attached to the gas sensor, the estimated distance between the tip of

Teflon tube and the participant’s nasal mucosa, the cross-sectional area of the Teflon

tube, and the flow rate of the background odor. We added the time required for an

odor to reach the participant’s nasal mucosa from the high-speed ultrasonic gas

sensor (i.e., 22 ms) to the gas onset of each trial, and thereby obtained the exact
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time at which the target odor arrived at the participant’s nasal mucosa. Finally, we

calculated the reaction time for detection of a target odor by subtracting the time

at which it arrived at the participant’s nasal mucosa from the time at which the partic-

ipant began pressing the button.

To improve the accuracy of the analysis, data that deviated extremely from the

average reaction time was excluded. More specifically, we calculated the average

of reaction time and SD for each condition and each participant, and used only

data corresponding to the average�3� SD� t� the averageþ3� SD (t represents

reaction time) for analysis. These data was used to recalculate the average reaction

time for each condition and each participant. Average reaction time was substituted

for a trial in which data were missing (i.e., a trial in which there was no response

because the participant did not push the button or that was regarded as an outlier).

The number of non-response or outlier trials with for each participant under the

background odor and odorless air conditions is shown in Table 1.

To determine whether reaction time for detection of the target odor differed between

background odor and odorless air conditions, we performed two types of statistical an-

alyses. First, we performed two-way repeatedmeasure analysis of variance (ANOVA)

for reaction time, with condition and trial number as within-subject factors. Simple ef-

fect tests were conducted on the basis of the significance of results obtained with AN-

OVA. Second, we performed Wilcoxon’s signed-rank test using the average reaction

time calculated for each condition and each participant. Because the number of partic-

ipants was small (n ¼ 4), a nonparametric test was adopted in the second analysis.
4.5. Results

The reaction times for each trial under the background odor and odorless air condi-

tions are shown in Table 2. ANOVA revealed that neither the main effect nor the

interaction was significant.

The average reaction time of each participant under the background odor and odor-

less air conditions is shown in Fig. 7. Wilcoxon’s signed-rank test revealed a
Table 1. Number of trials with missing values for each participant under the

background odor and odorless air conditions.

Participant Background odor condition Odorless air condition

Non-response Outlier Non-response Outlier

A 1 0 4 0

B 0 1 1 1

C 2 0 0 1

D 0 0 0 0

Twenty trials were performed for each participant and each condition.
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Table 2. Reaction time for each trial under the background odor and odorless air

conditions (means �SD [ms]).

Trial Background odor condition Odorless air condition

1 717.78 � 91.18 590.67 � 113.49

2 678.25 � 146.71 596.96 � 158.65

3 682.75 � 148.54 668.75 � 78.99

4 664.00 � 113.78 725.00 � 132.24

5 792.00 � 236.25 640.50 � 80.67

6 616.25 � 65.39 602.25 � 136.97

7 742.75 � 222.84 654.25 � 62.02

8 720.00 � 120.66 667.92 � 127.87

9 723.00 � 152.33 659.25 � 101.97

10 621.50 � 99.46 701.00 � 134.32

11 734.75 � 118.44 606.50 � 62.51

12 834.75 � 232.13 579.29 � 109.12

13 733.75 � 195.80 656.75 � 109.65

14 640.50 � 189.57 659.84 � 68.84

15 677.78 � 140.39 646.75 � 67.84

16 671.50 � 123.09 656.00 � 38.50

17 654.42 � 140.11 664.50 � 195.85

18 750.58 � 275.68 634.25 � 55.16

19 581.25 � 298.13 637.42 � 127.95

20 555.25 � 187.25 575.00 � 136.92
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marginally significant difference (defined as when 0.05 � p < 0.1) between both

conditions (z ¼ 1.83, p ¼ 0.068). This result indicated that the reaction time for

detection of the target odor was marginally significantly longer under the back-

ground odor condition than under the odorless air condition. In other words, the

background odor might affect detection speed of the target odor.

Because this study was a trial measurement of reaction time for detection of the

target odor under background odor and odorless air conditions, the number of par-

ticipants was small. If the number of participant increases could be increased, it is

possible that the difference in reaction time between conditions could reach statisti-

cal significance.
5. Discussion

5.1. Current limitation and future issues

In daily life, it would be rare to encounter a situation in which a certain odor (target

odor) was generated as a pulse while another odor (background odor) hangs in the
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Fig. 7. Average reaction time of each participant under background odor and odorless air conditions.

Average reaction time obtained from four participants under background odor and odorless air conditions

are shown. Wilcoxon signed-rank test revealed that reaction time differed marginally significantly be-

tween both conditions (z ¼ 1.83, p ¼ 0.068). y 0.05 < p < 0.1.
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air. However, detection of target odors occurs not only in experimental situation but

also in environmental context. Furthermore, the speed of detection of a target odor

may depend on the olfactory environment such as the presence or absence of a back-

ground odor or the combination of background and target odors. When the olfactom-

eter developed by Kobal and colleagues (Kobal, 1985; Kobal and Hummel, 1988) is

used, target odor presentation can be temporally controlled with high accuracy (i.e.,

the rise time of approximately 50 ms). Accordingly, we conclude that when reaction

time for detection of a target odor is measured in the presence or absence of a back-

ground odor using our expanded olfactometer, it will provide valuable insight into

everyday perception of odor mixture.

In the expanded olfactometer, two units (odorless air and background odor units)

were arranged in the middle of the odorless air line of the existing olfactometer.

In other words, odorless air and background odor partially shared a flow path (see
on.2019.e01254
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Fig. 1 (b)). Therefore, we cannot exclude the possibility that molecules of back-

ground odor were adsorbed inside the Teflon tube (i.e., flow path shared between

both gases). However, in trial measurement of reaction time for detection of the

target odor performed in this study, the presentation order between background

odor and odorless air conditions were randomized. Under the background odor con-

dition, to minimize the time that background odor passed through the flow path

shared by background odor and odorless air, the two-way solenoid valve of back-

ground odor unit was opened only for 10 s. Under the odorless air condition, back-

ground odor did not pass through the flow path shared by both gases. Odorless air

passing through the flow path shared by both gases contributed to flushing of the in-

side of the Teflon tube under the background odor and odorless air conditions. When

the background odor condition was continuously presented for more than two trials,

odorless air presentation for 10 s and background odor presentation for 10 s were

repeated; i.e., the minimum flushing time of the line of odorless air and background

odor in this study was 10 s. Before starting the trial measurement of reaction time,

two experimenters smelled the gases presented at the outlet of the olfactometer and

confirmed that background odor was not perceived when the two-way solenoid valve

of background odor unit was closed. Additionally, after the end of measurement,

none of participants reported that a background odor (black tea odor) was presented

in all trials. However, depending on the type of background odor, it may be neces-

sary to lengthen the time that odorless air passes through the flow path shared by

background odor and odorless air, i.e., the flushing time.
5.2. Technical perspective

5.2.1. Extension of background odor and target odor units

The expanded olfactometer included one background odor unit and one target odor

unit. In other words, one type of background odor and one type of target odor could

be presented in each experimental session. By connecting multiple background odor

units or multiple target odor units in parallel, it would be possible to present multiple

odors (corresponding to the number of odor units) in each session.

In this study, we poured a liquid containing the odorant into the gas wash bottle of

the background odor unit; alternatively, an absorbent cotton containing the odorant

could be attached to the tip of the Teflon tube inserted into the gas wash bottle. For

the target odor unit, as with the background odor unit, either an absorbent cotton or

liquid containing the odorant could be used.
5.2.2. Humidifying module

Due to the structure of the expanded olfactometer, it is possible that molecules of a

background odor could be mixed in deionized water to humidify the odorless air and
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background odor. We predict that increasing the number of background odor units

would increase the probability that odorous molecules would contaminate deionized

water. In order to address this issue, odorless air should be humidified before it rea-

ches the upstream two-way solenoid valve of each unit, as shown in Fig. 8. More

specifically, we propose that the humidifying module (see Fig. 1) common to the ex-

isting and expanded olfactometers is not used; instead, a humidifying module (i.e.,

gas wash bottle containing deionized water) could be placed between the mass flow

controller and upstream two-way solenoid valve of each unit. When the position of

the humidifying module is changed, both hydrophobic and hydrophilic odorants

could be used because odorized air (background odor) never passes through the de-

ionized water.
5.2.3. Simultaneous presentation of background odor and target
odor

The expanded olfactometer had a mechanism for inserting the target odor into flow

of the background odor. Strictly speaking, when this mechanism was employed, the
Fig. 8. Plan for improvement of expanded olfactometer. The humidifying module (a) common to exist-

ing and expanded olfactometer is not used. Instead, a humidifying module (b) is placed between the mass

flow controller for the line of odorless air and background odor and the upstream two-way solenoid

valves of each unit. Additionally, a background odor module (c) is placed between the upstream two-

way solenoid valve of the target odor module for the background odor condition and its target odor mod-

ule. When a solution with odorant is used to generate a background odor, a humidifying module (d) is

placed between the upstream two-way solenoid valve of the target odor unit of the odorless air condition

and its target odor module.
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background odor was replaced with the target odor for a very short time (several

hundred milliseconds). Because we switched from the background odor to target

odor, and then back to the background odor, the background odor was not presented

while the target odor was presented to the participant’s nasal cavity. In other words,

the mechanism of the expanded olfactometer cannot achieve simultaneous presenta-

tion of background and target odors. Therefore, we propose a future improvement of

target odor unit, as shown in Fig. 8. By placing a background odor module between

the upstream two-way solenoid valve of target odor unit and its target odor module, a

mixture of the background and target odor can be generated. When a solution with

odorant is used to generate a background odor, a humidification module should be

placed between the upstream two-way solenoid valve of the target odor unit of

the odorless air condition and its target odor module, in order to achieve the same

degree of humidity in the target odor under the odorless air condition as in the target

odor under the background odor condition.
6. Conclusion

In this study, we developed an olfactometer for measuring reaction time to target

odors during the presentation of background odors. Accuracy related to the presen-

tation of the target odor was equivalent between the background odor and odorless

air conditions, as well as between the existing and expanded olfactometers. In other

words, even when an attachment was added to the existing olfactometer, perfor-

mance related to the presentation of the target odor did not deteriorate. Four volun-

teers participated in a trial measurement of reaction time for detection of the target

odor under the background odor and odorless air conditions using the expanded

olfactometer. Reaction time was marginally significantly longer under the back-

ground odor condition than under the odorless air condition. In order to more rigor-

ously examine effect of a background odor on detection speed of the target odor, we

intend to increase the number of participants in the near future.

To insert a target odor into aflowof background odor as a pulse, it is important not only

to carefully design the structure of the olfactometer, but also to control the solenoid

valves with appropriate timing. Given the gas onset time and rise time of the back-

ground odor, it is necessary to determine the electrical onset of the background odor.
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