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Nonparametric Analysis of Thermal Proteome
Profiles Reveals Novel Drug-binding Proteins*□S

Dorothee Childs‡�§§, Karsten Bach§¶§§, Holger Franken�§§, Simon Anders**,
Nils Kurzawa‡, Marcus Bantscheff�, Mikhail M. Savitski‡, and Wolfgang Huber‡ ‡‡

Detecting the targets of drugs and other molecules in
intact cellular contexts is a major objective in drug dis-
covery and in biology more broadly. Thermal proteome
profiling (TPP) pursues this aim at proteome-wide scale
by inferring target engagement from its effects on tem-
perature-dependent protein denaturation. However, a
key challenge of TPP is the statistical analysis of the
measured melting curves with controlled false discovery
rates at high proteome coverage and detection power.
We present nonparametric analysis of response curves
(NPARC), a statistical method for TPP based on func-
tional data analysis and nonlinear regression. We eval-
uate NPARC on five independent TPP data sets and
observe that it is able to detect subtle changes in any
region of the melting curves, reliably detects the known
targets, and outperforms a melting point-centric, single-
parameter fitting approach in terms of specificity and
sensitivity. NPARC can be combined with established
analysis of variance (ANOVA) statistics and enables flex-
ible, factorial experimental designs and replication lev-
els. An open source software implementation of NPARC
is provided. Molecular & Cellular Proteomics 18: 2506–
2515, 2019. DOI: 10.1074/mcp.TIR119.001481.

Determining the cellular interaction partners of drugs and
other small molecules remains a key challenge (1, 2, 3, 4). In
drug research, better assays to detect targets (and off-
targets) would provide valuable information on drugs’
mechanisms of action, reveal potential reasons for side
effects, and elucidate avenues for drug repurposing. More
broadly, in cell biology basic research, the dynamical land-
scape of binding partners of metabolites, messengers or
chemical probes contains much uncharted territory. Ther-
mal proteome profiling (TPP)1 addresses these needs by
screening for protein targets of drugs or small molecules in
living cells on a proteome-wide scale (5, 6). TPP combines
multiplexed quantitative mass spectrometry with the cellular

thermal shift assay (CETSA) (7), which identifies binding
events from shifts in protein thermostability (see supple-
mental Fig. S1 for a detailed explanation). A typical TPP
experiment generates temperature dependent abundance
measurements for a large part of the cellular proteome.
Drug binding proteins can then be inferred by comparing the
melting curves of proteins between samples treated with
drug and vehicle (negative control without drug).

Applications of TPP successfully identified previously un-
known protein-ligand interactions (5), protein complexes (8)
and downstream effects of drugs in signaling networks (6, 9,
10, 11) in human cells. Recently it has also been extended to
study drug resistance in bacteria (12) and targets of antima-
larial drugs in plasmodium (13). There is urgent interest in
further advancing its component technologies, including ex-
perimental and computational aspects, in order to maximize
its biological discovery potential (14, 15, 16, 17, 18, 19).

The central computational task in TPP data analysis is
the comparison of the temperature dependent abundance
measurements—which can be visualized as melting curves—
for each protein with and without (or with various concen-
trations of) drug. The aim is to detect changes in thermo-
stability from statistically significant changes in the melting
curves.

A naïve approach is to summarize each curve into a single
parameter, such as the melting point (Tm), which is defined
as the temperature of half-maximum relative abundance
(horizontal line in Fig. 1A). Its value is estimated by fitting a
parametric model separately for the control and treatment
conditions and comparing the estimates. Statistical signifi-
cance is assessed using replicates and hypothesis testing,
such as a t- or z-test. Although the approach has delivered
valid and important results (5, 6, 20, 21), we will see in the
following that it tends to lead to needlessly high rates of
false negatives. There are three main reasons for that: first,
drug-induced effects on thermostability do not always imply
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significant shifts in Tm (Fig. 1B–1C). Second, the true Tm of
a protein can lie outside of the measured temperature
range, which impairs its estimation (Fig. 1D). Both scenarios
can result in important targets being missed in the analysis
(Fig. 1E). The third reason is a more subtle statistical one:
hypothesis tests using only the point estimates of Tm do not
consider goodness-of-fit of the parametric model or the
confidence range of the estimates. Thus, important infor-
mation is ignored, which statistically leads to loss of power.

Here, we propose an alternative approach that compares
whole curves instead of summary parameters and does not
rely on Tm estimation. The method, nonparametric analysis
of response curves (NPARC), is based on a branch of sta-
tistical data analysis that works on continuous functions
rather than individual numbers, termed functional data anal-
ysis (22). It considers the measured melting curves as sam-
ples from an underlying stochastic process with a smooth
mean function—which can be modeled parametrically or
nonparametrically (23)—and constructs its hypothesis tests
directly on these samples. NPARC’s F-statistic uses a more
flexible model that makes fewer assumptions on the data
than Tm-estimation, is computationally more stable, and it
directly uses the information from replicates. Consequently,
reliable estimates of the null distribution of this statistic can
be obtained, it shows higher sensitivity for small but repro-
ducible effects, and failures because of model misspecifi-
cation or outliers are reduced. This increases proteome
coverage, which can make the difference between missing
or detecting an important drug target.

We demonstrate NPARC on the five published data sets
introduced in Table I. We also compare its results to those of
the Tm-based method used by (6). Three of the experiments
used the cancer drugs panobinostat or dasatinib in different
concentrations, one investigated the effects of the high-affin-
ity, ATP-competitive pan-kinase inhibitor staurosporine, one
the cellular metabolite ATP. Although the cancer drugs inter-
act with limited sets of proteins, the two other compounds are
promiscuous binders and affect the thermostability of a large
fraction of the cellular proteome.

EXPERIMENTAL PROCEDURES

Data Sets and Preprocessing—Five TPP data sets (Table I) were
obtained from the supplements of the respective publications. Each
data set contained relative abundance measurements per protein and
temperature which had been scaled to the value measured at 37 °C
(the lowest of the ten temperatures assayed) and subjected to the
global normalization procedure described by Savitski et al. (5). Only
proteins quantified with at least one unique peptide in each of two
replicates of the vehicle and compound treated conditions were

included in the analysis; the resulting proteome coverages are listed
in Table I.

Curation of Lists of Expected Targets—Lists of expected protein
targets for the pan-kinase inhibitor staurosporine and ATP were
obtained from Gene Ontology Consortium annotations via the Bio-
conductor annotation packages AnnotationDbi (version 1.36.2),
org.Hs.eg.db (version 3.4.0) and GO.db (version 3.4.0). Terms and
numbers of annotated proteins are shown in Table II.

Mathematical Model—NPARC is based on fitting two competing
models to the data, a null model and an alternative model. The null
model states that the relative protein abundance at temperature t
(given in °C) is explained by a single smooth function �0(t) irrespective
of the treatment condition (Fig. 2A). The alternative model posits two
condition-specific functions: �T(t) for the treatment condition and �V(t)
for the vehicle condition (Fig. 2B). Deviations between observed data
and fitted model are referred to as residuals, and the sum of squared
residuals (RSS) serves as an indicator of each model’s goodness-of-
fit. We then compute

RSS0 � �
t,i,c

�xt,i,c � �0�t��2, (1)

RSS1 � �
t,i,c

�xt,i,c � �c�t��2, (2)

where xt,i,c is the measured value at temperature t for experimental
replicate i and condition c � �V,T�, and the summations extend over
all temperatures, replicates, and conditions.

Choice of the Mean Function—The mean functions �0(t), �T(t) and
�V(t) are each chosen from the same space of smooth functions
f : �� 3 �0,1� spanned by the three parameters a, b � �, f	 � �0,1�
and the prescription

f�t� �
1 � f	

1 � e
�a
t 
 b�� f	. (3)

The shape of these functions is sigmoid, and the functional form
(Eq. 3) can be motivated by simplifying protein thermodynamics con-
siderations (5). The mean functions and the RSS values are computed
separately from the data for each protein. In order not to overburden
the notation, we omit the protein indices.

Hypothesis Test Statistic—To discriminate between null and alter-
native models, we compute the F-statistic

F �
d2

d1

RSS0 � RSS1

RSS1
, (4)

with d2/d1 � 0 defined as below. F quantifies the relative reduction in
residuals from null to alternative model. Although F is by definition
always positive, it will be small for proteins not affected by the
treatment, whereas a high value of F indicates a reproducible change
in thermostability.

Null Distribution—To compute a p value from a value of the F-sta-
tistic (Eq. 4), we need its null distribution, i.e. its statistical distribution
if the data generating process is described by a common mean
function �0(t). If the residuals were independent and identically normal
distributed, this distribution would be given by an analytical formula,
namely that of the F(d1, d2)-distribution with parameters d1, d2 � 0,
and these parameters—sometimes called degrees of freedom—
would be explicitly given from the number of measurements and
number of model parameters that go into the computation of RSS0

and RSS1. In practice, this is not the case, because the residuals
are heteroscedastic (i.e. have different variances at different

1 The abbreviations used are: TPP, Thermal proteome profiling;
CETSA, Cellular thermal shift assay; FDR, False discovery rate; H0,
Null hypothesis; NPARC, Nonparametric analysis of response
curves; ROC, Receiver operating characteristic; RSS, Residual sum
of squares; Tm, Melting point.
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temperatures) and correlated. However, the family of F(d1, d2)-
distributions is quite flexible, and we can approximate the distribu-
tion of the F-statistic (Eq. 4) on data occurring in practice with an

F(d1, d2)-distribution with different “effective degrees of freedom”
d1, d2. To this end, we separately approximate the numerator and
denominator of F as

FIG. 1. TPP data analysis challenges. A–D, Examples for protein melting curves with and without drug (see color keys). In each case, ten
temperatures were assayed, and two experimental replicates were made per condition, indicated by circle and triangle symbols. Fits of the
sigmoid model (Eq. (3)) to both replicates jointly are shown by smooth lines. A, For serine/threonine protein kinase 4 (STK4), the binding of
staurosporine is reflected by a marked shift between the curves. The fitted values for the melting points (Tm) are shown. B, For Bruton’s tyrosine
kinase (BTK), there is a small but reproducible shift between the curves. C, Protein kinase C beta (PRKCB) is destabilized by staurosporine;
the effect occurs mainly at lower temperatures. D, NAD(P)H quinone dehydrogenase 2 (NQO2) is strongly stabilized by staurosporine. Although
in each case, the effects of drug binding are clearly reproducible between replicates, the Tm-based approach of (6) only detects (A) and misses
(B–D). In the case of (B) and (C), the fitted Tm are too similar, so that the statistical test does not assess the difference as significant. In the case
of (D), no reasonable estimate for Tm in the staurosporine treated condition can be obtained, as it would lie outside the measured temperature
range, and the protein is discarded from the analysis. In contrast, NPARC, the method proposed in this article, detects all four cases. E, The
fraction of proteins in each of the data sets of Table I that is missed by the Tm-based approach because of failure to estimate Tm or to meet
the goodness-of-fit criterion (Table III).
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RSS0 � RSS1

d1

H0
�

�0
2

d1
� 	2�d1�, (5)

RSS1

d2

H0
�

�0
2

d2
� 	2�d2�, (6)

and use the fact that the ratio of two 	2-distributed random variables
	2(d1), 	2(d2) has an F(d1, d2)-distribution (24). The scale parameter �0

2

and the effective degrees of freedom d1 and d2 are estimated from the
empirical distributions—across proteins—of RSS0 and RSS1. Thus,
we assume that �0

2, d1, d2 are the same for all proteins. We estimate
�0

2 from the moments of RSS0 
 RSS1 as

�0
2 �

1
2

var�RSS0 � RSS1�

mean�RSS0 � RSS1�
(7)

where mean and variance are computed across proteins on the
observed values of RSS0 
 RSS1 (see Supplementary Methods for
details). Then, d1 and d2 are obtained by numerical optimization of the
likelihoods for models (Eq. 5) and (Eq. 6) using the fitdistr function of
the R package MASS (25).

p Values—For each protein, a p value is computed from its F-sta-
tistic and the cumulative F-distribution with parameters d1, d2 as
described above. The multiset of p values across all proteins is
corrected for multiple testing with the method of Benjamini and Hoch-
berg (26). The outcome of such an analysis is exemplarily shown in
Fig. 2C.

RESULTS

Application to Panobinostat—We assessed the ability of
NPARC to detect drug targets on a data set on panobinostat
(Table I). Panobinostat is a broad-spectrum histone deacety-
lase (HDAC) inhibitor known to interact with HDAC1, HDAC2,
HDAC6, HDAC8, HDAC10, and tetratricopeptide repeat pro-
tein 38 (TTC38) (6).

Out of 3649 proteins reproducibly quantified across both
biological replicates in both treatment conditions, NPARC
yielded 16 proteins with Benjamini-Hochberg adjusted p val-
ues 
 0.01. They contained the expected HDAC targets (Fig.
3A–3E) as well as TTC38, the histone proteins H2AFV or

H2AFZ (the two variants could not be distinguished by mass
spectrometry), and zinc finger FYVE domain-containing pro-
tein 28 (ZFYVE28) (Fig. 3F–3H). These proteins were previ-
ously identified as direct or indirect targets of panobinostat (6,
11). In addition, eight more proteins were detected for which
no direct or indirect interactions with panobinostat have been
described (supplemental Fig. S3). They reached statistical
significance because they either showed effect sizes compa-
rable to known panobinostat targets, or more subtle but highly
reproducible changes in a similar strength to those already
described for dasatinib target BTK (Fig. 1B). We reanalyzed
the more recent 2D-TPP data set of short-term (15 min) pano-
binostat-treatment of HepG2 cells (11) for these proteins. All
of them were identified and quantified at sufficient peptide
coverage, but none of them showed stabilization. We thus
conclude that the additionally found proteins are likely not
direct binders of panobinostat, but rather indirect effects, like
altered protein-protein interactions or post-translational mod-
ifications. The longer (5 h) incubation time of the assay used to
generate the panobinostat data set in Table I makes it more
sensitive to such effects.

Beyond Two-group Comparisons—Because NPARC is
based on analysis of variance (ANOVA), it admits experimen-
tal designs in which the covariate has multiple levels. An
example is the data set for the BCR-ABL inhibitor dasatinib,
which comprises measurements on cells treated at two dif-
ferent concentrations as well as untreated cells. NPARC suc-
cessfully identified known targets of dasatinib (supplemental
Fig. S4).

Replicate Agreement and Model Fit Diagnostics—Applica-
tion of the Tm -based approach by (6) to the panobinostat data
failed to detect HDAC1 and HDAC2. This was because the
data for these proteins had relatively high variance in the
drug-treated condition, as is visible in Fig. 3A–3B. This led to
their exclusion according to one of the data quality filter
criteria of that method (Table III), namely the criterion that asks
for sufficiently high coefficients of determination (R2). In con-
trast, a better and statistically sound trade-off between vari-
ability and effect size is an integral part of NPARC and does
not require an ad hoc filter criterion.

To further assess the price of the various filter criteria of the
Tm-based approach by (6), we tabulated the numbers of pro-
teins affected by them in each of the five data sets. These
proteins would, in principle, not be detectable by that method,

TABLE I
Datasets and sample sizes

Data set Treatment Concentration Buffer Cell line Intact cells or lysate Proteins Reference

ATP data MgATP 2 �M PBS K562 Lysate 4177 �9�
Dasatinib 0.5 �M data Dasatinib 0.5 �M PBS K562 Intact Cells 4625 �5�
Dasatinib 5 �M data Dasatinib 5 �M PBS K562 Intact Cells 4154 �5�
Panobinostat data Panobinostat 1 �M PBS K562 Intact Cells 3649 �6�
Staurosporine data Staurosporine 20 �M PBS K562 Lysate 4505 �5�

TABLE II
Expected targets per dataset

Data set Gene Ontology term
Number of proteins

in data set with
this term

ATP ATP-binding 558
Staurosporine protein kinase activity 187
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no matter how strong the effect. Their numbers amounted to
14–25% of the total numbers of proteins for which melting
points could be determined in both replicates (Fig. 1E and
Table IV) and to 21–32% of all proteins irrespective of melting
point availability (supplemental Fig. S2). In contrast, the F-test
of NPARC could be applied to all proteins irrespective of
these or similar criteria, a fact which contributed to the in-
creased protein coverage and sensitivity of NPARC.

Effects Beyond Those on the Melting Point—Many of the
proteins detected by NPARC displayed reproducible changes
in curve shape, whereas their Tm-shifts were small, and not
considered significant by the Tm-based approach (Fig. 4). An
example is the effect of staurosporine on protein kinase C
beta (PRKCB), shown in Fig. 1C. PRKCB is part of the PKC

family, whose members were the first reported staurosporine
targets (27, 4) and also exhibit similar characteristics (supple-
mental Fig. S5).

Further examples include the effects of staurosporine on
RanGTP binding tRNA export receptor exportin-T (XPOT) and
two members of the p38 MAPK signaling pathway: Mitogen-
activated protein kinase 14 (MAPK14) and MAP kinase-acti-
vated protein kinase 2 (MAPKAPK2) (Fig. 4); and the effect of
dasatinib on Bruton tyrosine kinase (BTK), an important drug
target in B-cell leukemia (Fig. 1B).

Missing Melting Point Estimates—For highly thermostable
proteins, the Tm in one or more of the treatment conditions
can be outside of the tested temperature range of a TPP
experiment (Fig. 1E). One example is NAD(P)H quinone dehy-

FIG. 2. Principles of NPARC, illustrated for protein STK4 under staurosporine treatment. A, Fit of the null model, i.e. no treatment effect
(black line). The goodness-of-fit is quantified by RSS0, the sum of squared residuals (dashed lines). As in Fig. 1, the triangle and circle symbols
indicate the experimental replicates. B, Fit of the alternative model, with separate curves for the treated (orange) and the vehicle condition
(gray). Because of the higher flexibility of the model, the sum of squared residuals RSS1 is always less than or equal to RSS0. C, The question
whether the improvement in the goodness-of-fit, i.e. the difference RSS0 
 RSS1, is strong enough to reject the null hypothesis can be
addressed with the variant of the F-test described in the main text. Each point in the plot corresponds to a different protein. The highlighted
example STK4 has a large F-statistic and a small p value.
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drogenase 2 (NQO2), a cytosolic flavoprotein and a common
off-target of kinase inhibitors (28, 29, 30). In concordance with
previous CETSA studies that found NQO2 to be highly stable
(31), we observed denaturation only beginning at 67 °C (Fig.
1D). Staurosporine treatment further stabilized NQO2 to an
extent that it showed no sign of melting in the tested temper-
ature range. The Tm -based approach by (6) will discard such
proteins, in order to avoid potential problems from extrapo-

lation of the fit beyond the measured temperature range. In
contrast, the functional data analysis approach of NPARC can
detect changes in any part of the melting curves, without
reference to a single point such as Tm.

Sensitivity and Specificity—So far, we have described in-
creased sensitivity of NPARC, i.e. its ability to detect more
true targets. However, this is only useful if at the same time
specificity is maintained, i.e. if false positive detection remains

FIG. 3. Direct and indirect targets of the HDAC inhibitor panobinostat detected by NPARC (FDR < 0.01 according to the method of
Benjamini and Hochberg (26)). A–E, Data and curve fits for five HDACs that show significant shifts in their thermostability. HDAC1 and HDAC2
are not detected by the Tm-based approach of (6), because the higher variance between the replicates of the panobinostat-treated condition
leads to them being eliminated by the filter heuristics of that method (Table III). In contrast, NPARC naturally takes the variance into account
in the computation of the F-statistic and does not require such filtering steps. F–H, Data and curve fits for known non-HDAC targets.
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under control. To compare these performance characteristics
between NPARC and the Tm-based approach, we computed
pseudo receiver operator characteristic (ROC) curves for each
of these methods on the staurosporine data and the ATP data,
using as pseudo ground truth lists of expected targets from
Gene Ontology annotation (Table II). Here, the term pseudo
refers to the fact that these target lists, and hence the ROC
curves, are only approximations of the truth; however, the
relative ranking of two methods in such a pseudo-ROC com-
parison is likely to be faithful even in the presence of such
approximation error (32).

Fig. 5 shows the results of NPARC on both data sets, as
well as those of the z-test of the Tm-based approach by (6)
applied to the individual replicates (displayed as continuous
lines parameterized by the z-cutoff), and those of the full
procedure of (6) (shown by isolated points, because of its
single, fixed cutoff). On the staurosporine data, the full pro-
cedure of (6) performs close to NPARC. For the individual
z-tests, as well as overall on the ATP data, NPARC shows
superior performance. Given that the decision rule set of (6)
(listed in Table V) and its cutoff parameters were developed
and tuned partly on the staurosporine data, these results
indicate that NPARC has fewer “fudge parameters” and is
likely to be superior in applications to new data sets.

DISCUSSION

Thermal proteome profiling offers the possibility to com-
prehensively characterize ligand-protein interactions on a
proteome-wide scale in living cells. However, the method
poses the analytical challenge of how to identify statistically
significant shifts in thermostability among thousands of
measurements.

To address this challenge, we introduced a functional data
analysis approach to test for treatment effects by comparing
competing models by their goodness-of-fit. This enables de-
tection of treatment effects even if a (de-)stabilization of a
protein is not captured by a single summary parameter like
the Tm. The presented method is based on a sound statistical
foundation and does not rely on hard-to-choose cutoff or
tuning parameters. We showed that our method compares
favorably to previous approaches with respect to sensitivity
and specificity for several exemplary data sets, including ones
with specific and ones with promiscuous binders.

The approach fits into the framework of analysis of variance
(ANOVA) or linear models and can thus be extended to ex-
perimental designs more complex than treatment-control
comparisons, such as multiple levels (e.g. drug concentra-
tions) per covariate, multiple covariates and interactions.

The suggested framework is flexible regarding the mean
function used to represent the melting behavior and can be
adapted to the particular biological process of interest. To
represent nonlinear relationships, approaches include locally
linear regression (33), spline regression (34, 35) and nonlinear
parametric regression. Here, we chose the latter as it incor-
porates a priori knowledge about the data and thus has fa-
vorable estimation efficiency. For example, sigmoid curves
have horizontal asymptotes at both sides of the temperature
range. In contrast, splines and local regression tend to overfit
data near the boundaries of the observation range.

In a cellular environment we occasionally observe nonsig-
moid melting curves for subsets of proteins. One possible
reason is the presence of protein subpopulations each with
distinct melting curves (16). For example, the formation of
protein complexes, the binding to other molecules, or the

TABLE III
A priori filters applied in the original TPP analysis workflow [6] to select proteins for hypothesis testing

Rule number Rule

1 Both fitted curves for the vehicle and compound treated condition have a coefficient of determination R2

� 0.8, where R2: � 1 �
�t�xt � �c�t��

2

�t�xt � x��2 , with �c(t) being the model prediction for condition c at

temperature t, x� being the mean of all measurements for the protein within a particular condition and
replicate, and the summation extending over all temperatures.

2 The two curves fitted to the two replicates of the vehicle conditions have a plateau f	 � 0.3.
3 In each biological replicate, the steepest slope of the melting curve in the vehicle and treatment condition

needs to be � 
0.06 °C
1.

TABLE IV
Coverage of proteins applicable for hypothesis testing by the original TPP analysis workflow [6]

Data set
Tm outside

measured range
Tm available but curves not

passing a priori filters
Tm available and curves
passing a priori filters

ATP data 220 1004 2953
Dasatinib 0.5 �M data 689 768 3168
Dasatinib 5 �M data 667 507 2980
Panobinostat data 320 461 2868
Staurosporine data 621 631 3253
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FIG. 4. NPARC is sensitive to small but reproducible Tm-shifts. The plot compares the effect size measure used by NPARC, namely
RSS0 
 RSS1 (y axis), to the Tm-difference (x axis) for those proteins in the staurosporine data set for which Tm estimates could be obtained.
Proteins with Benjamini-Hochberg adjusted p values 
 0.01 are marked in red if they were exclusively found by NPARC, and in green if they
were also detected by the Tm-based approach of (6). NPARC detects targets with small Tm-differences if the measurements are reproducible
between replicates.

FIG. 5. Sensitivity and specificity. Shown are pseudo-ROC curves, with expected hits (as a proxy for true positives) along the y axis and
unexpected hits (as a proxy for false positives) along the x axis. The curves are obtained by varying the p value cutoff of the F-test of NPARC
(which is computed across replicates), and of the z-test of the Tm-based approach (6) (which is computed separately for each replicate). The
asterisks indicate the result from the decision rules of (6) on the z-test results (Table V). The dots indicate a threshold of 0.01 on the
Benjamini-Hochberg adjusted p values from NPARC (derived on both replicates in parallel) and on the Benjamini-Hochberg adjusted p values
from the Tm-based approach (computed individually for each replicate). NPARC is modestly better than the Tm-based approach on the
staurosporine data (A), and substantially better on the ATP data (B). The proteins found by NPARC at Benjamini-Hochberg adjusted p value 


0.01 are also shown in supplemental Figs. S6 and S7.
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localization in cellular compartments can lead to deviations
from the idealized sigmoid melting curve expected from the
same protein in purified form. Our model currently does not
account for such systematic and reproducible shape devia-
tions. This could be adapted in future work by adding a
low-parametric systematic modification to the sigmoid mean
function.

We have considered CETSA experimental designs, where
the temperature is the major experimental variable and drug
concentration is either zero or a chosen value. It appears
relatively straightforward to extend NPARC to the isothermal
dose response (ITDR) design (6, 7) where temperature is held
constant and the drug concentration is varied across a range
of values. A further extension of interest would be to 2D-TPP
(11) where both factors are changed.

We employ the same “average” null distribution for all pro-
teins, which we obtain by estimating its parameters (d1, d2,
�0) from the distributions of residuals across all proteins. It is
conceivable that determining null distributions in a protein
dependent manner, for instance by stratification, could in-
crease the overall power of the method.

The here presented approach is likely to increase the ac-
curacy of profiling protein-ligand interactions in living cells.
We provide an open source R package NPARC, and all com-
putations reported in the figures and tables of this article can
be reproduced by running the Rmarkdown script provided in
reference (36).

Additional Files—The following Figs. and Tables can be
found in the Supplementary Material

Additional file 1 — Supplementary Methods
Detailed description of the fitting procedures for the scaling

parameter, melting points, and mean functions of the model.
Additional file 2 — Table S1
Spreadsheet containing the results of the NPARC ap-

proach and of the Tm-based approach for all data sets listed
in Table I.

Additional file 3 — Supplemental Figs. S1–S5
PDF containing Supplemental Figs. S1–S5
Additional file 4 — Supplemental Fig. S6

All proteins detected by the NPARC approach with Benja-
mini-Hochberg adjusted F-test p values 
 0.01 in the stauro-
sporine data.

Additional file 5 — Supplemental Fig. S7
All proteins detected by the NPARC approach with Benja-

mini-Hochberg adjusted F-test p values 
 0.01 in the ATP
data.
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