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1. Introduction
Silk is one of the oldest and most useful animal fibers known by people [1,2]. Silk is an animal fiber produced by certain 
insects that create a net around themselves and form their cocoons. The silk fibers are mainly composed of two proteins 
structure as fibroin in inner layer and sericin in outer layer [1]. Fibroin is the protein that forms the filaments of silkworm 
silk and provides unique physical and chemical properties to silk fiber. Sericins are the group of gummy proteins that bind 
the fibroin filaments [3]. The chemical compound of silk includes usually 72%–83% fibroin, 17%–28% sericin, 0.8%–1.0% 
oil and wax, 1.0%–1.4% dyestuff and ash and 11% water [1,4,5]. The amino acid structure of silk fibroin mainly consists 
of two nonpolar amino acids glycine (43%) and alanine (30%) [6,7]. It then consists of 12% serine and low amounts of 
cystine, acidic and essential amino acids [3,6]. The amino acid structure of the silk series is the opposite [7]. Primarily, 
polar amino acids serine (30%), aspartic acid, and the nonpolar amino acids glycine and alanine are present together at 
only about 22% [3,7]. Silk has a molecular weight (200–350 kDa or more) with bulky repeating modular hydrophobic 
domains blocked by small hydrophilic groups [2]. Silk fibers have a smooth surface.  It is seen as a fibroin triangular 
structure with corners covered with sericin in its cross-section [8]. The fineness of the raw silk coming out of the silkworm 
as two filaments is 1.8–3 denier, and the fineness of a single silk filament with the sericin removed is 1–1.5 denier [4,9]. 
Silk filaments are the longest of natural fibers. The filament is between 1000 and 3000 m in a cocoon [4]. The filament can 
be drawn between 500 and 1200 m from the cocoon [9]. The diameter of raw silk fibers is between 12 µm and 30 µm. The 
fibers drawn from the outside of the cocoon are much thicker inside fibers. These are the ones secreted later, and they are 
thinner and uniform [4].

Natural silk fibers are dissolved only in a limited number of solvents, compared to globular proteins, because of the 
presence in fibroin of a great amount of intramolecular and intermolecular hydrogen bonds and its high crystallinity and 
specific physicochemical properties as wetting angle of 69° ± 3° [3]. Fibroin can be dissolved in concentrated aqueous 
solutions of acids (phosphoric, formic, sulphuric and hydrochloric) and high ionic strength aqueous salt solutions such as 
calcium chloride (CaCl2), zinc chloride (ZnCl2), lithium bromide (LiBr) and magnesium chloride (MgCl2) [10].
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Silk fibroin (SF) is a natural biopolymer that has biocompatible, biodegradable, low inflammation reaction, flexibility, 
good antithrombogenic and spectacular mechanical properties [11,12]. SF porous materials have been widely investigated 
in controlled drug delivery system, anticoagulant blood materials, biosensors, artificial ligaments, artificial tendon, 
artificial skin, nerve repair and grafting, cornea repair and wound dress, etc. [13].

Many studies have been reported that the SF scaffolds provide excellent support for cell proliferation and can also use 
for various tissue engineering, including bone, cartilage, and blood vessel [14].

The world of nanomaterials includes a wide variety of interesting materials with exceptional physical and chemical 
properties and qualifications. These materials include zero-dimensional nanoparticles or quantum dots, one-dimensional 
nanowires, nanorods, nanofibers, and nanotubes, and two-dimensional nanosheets. Considered as nanomaterials with 
perfect latent applications, nanofibers distinguish oneself among the rest of the nanomaterials. One of the flashiest features of 
nanofibers is their extraordinarily high surface-area-to-volume ratio and high porosity, making them a solid and appealing 
candidate for many forward applications. The true proof of the importance of nanofibers can be witnessed from the many 
building blocks from which they can be synthesized to the range of applications in which they have been established to have 
a remarkable effect. Up to today, nanofibers have been prepared from an admixture of materials, such as natural polymers, 
synthetic polymers, carbon-based nanomaterials, semiconducting nanomaterials, and composite nanomaterials. Along 
with the quick develop in the synthesis and characterization of nanofibers over the past few years, tremendous efforts 
have been focused on exploring the potential functional applications of nanofibers, water, and environmental treatment, 
including energy generation and storage, biomedical engineering, and healthcare [15].

The electrospinning method is described as the method of forming the material by making smaller material under 
electrical and hydrodynamics forces [16]. The late 1500s, first example was William Gilbert’s magnetics and electrostatics 
event [17]. In 1745 Bose, spraying with glass capillary tip [18,19], J. F. Cooley, the first definition of electrospinning in 
1902 [17], in 1934 Anton Formhals received the first patent for fiber production [20]. In 1978, Sim obtained fibers and 
these fibers were used in the air filter [20]. In 1986, Hayati, effects of environmental factor, in 1996, Reneker demonstrated 
that many polymeric types of nanofibers could be obtained [21]. In 2003, Fridrikh developed a mathematical equation to 
predict the diameter fineness of fibers [22, 23]. 

Synthetic materials that can support the proliferation, differentiation, and improvement of living mammalian cells 
into the desired tissue in vitro are of significant interest. Such materials, scaffolds, must supply structural promote and 
coactions that direct cell growth. Favourably, the scaffold material would be biocompatible, fully biodegradable, or 
absorbable, porous with high surface area, similar in mechanical properties to the target tissue, and sterilizable. Nanofibers 
are acknowledged particularly promising for tissue scaffolds because their size scale mimics the extracellular matrix [24].

Due to the biocompatible and mechanical properties of SF, it has been used by the fact that many investigators either 
alone or as a multicomponent mixture. At the beginning of these production methods, there is an electrospinning method 
[25–38]. The researchers used 12%–28% concentration and 2–4 kV applied voltage in their studies. At the end of produced, 
the researchers reached the fiber diameter quality of 12–1500 nm. As understood from the literature review, there have 
been many studies on making a silk fibroin cell viability test. According to the cell proliferation tests performed on silk 
fibroin structures, they found that cell proliferation was achieved up to 3–7 days and 3 weeks (endothelial cell silk fibroin). 
In this way, silk fibroin is a biopolymer suitable for development in terms of wound healing, blood vessels, bionanotextiles, 
and tissue engineering [39–42].

As a result of this study, the effects of concentration, distance, and applied stress parameters on tensile strength, mat 
thickness, mat surface, and fiber diameter changes were investigated. A cell proliferation test has been performed on the 
produced silk fibroin nanofiber structure. The highest strength, mat thickness, mat surface, and fiber diameter of silk 
fibroin nanofiber structures have been evaluated, and the effect of silk fibroin on cell proliferation has been observed.

2. Experimental
2.1. Material selection
Cocoons of Bombyx mori silkworm were kindly from Kozabirlik (Bursa, Turkey). Sodium carbonate (Na2CO3), ethanol 
(CH3CH2OH), formic acid (HCOOH, 98%) and calcium chloride unhydrate (CaCl2) were purchased from Merck 
(Darmstadt, Germany). Cellulose dialysis membranes (molecular weight cut off, MCWO: 12,000–14,000) were purchased 
from Sigma-Aldrich (St. Louis, MO, USA).
2.2. Method
2.2.1. Dissolution process of silk fibroin
Silk cocoons were opened by cutting and cleared inside. Then the cocoons were cut pieces. The cocoons were degummed 
with 0.02 M Na2CO3 solution at 100 °C for 40 min and then washed three times with destilled water. Fibroin fibers were 
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dried at 80 °C for 6 h and put in the desiccator for moisture absorption. Fibroin fibers were waited during 24 h. Fibroin 
fibers were dissolved in a ternary solvent system of CaCl2/H2O/CH3CH2OH solution (1:8:2 in mol ratio) for 1 h at 78 °C.
2.2.2. Dialysis and centrifuge process
The fibroin solution was dialyzed against distilled water for 3 days by exchanging dialysis water at every 12 h to remove 
CaCl2/H2O/CH3CH2OH solution. The solution was centrifuged at 9000 rpm, 5 °C for 20 min. 
2.2.3. Preparation of silk fibroin solid mass
The fibroin solution was put the beaker and stirred at 45–55 °C. After the water was completely removed, remaining solid 
mass was fibroin. The solid mass fibroin was waited 3 h in the incubator. 
2.2.4. Preparation of the spinning solution
Fibroin was dissolved in formic acid (98%). The concentrations of solutions were 10–12.5–15% wt. The viscosity of the 
polymer solutions was determined by using viscometer (Brookfield DV-E Viscometer, Brookfield, WI, USA). The viscosity 
measurement was performed with S21 spindle at 100 rpm. The conductivity of the polymer solutions was measured by 
conductivity meter (WTW Cond 3110, Germany). All experimental study was carried out at room temperature. The 
viscosity and conductivity values of polymer solution are shown in Table.
2.2.5. Electrospinning process
A 10-mL plastic syringe was filled with fibroin solution for electrospinning. The electrospinning device (NE300 
Nanospinner, Inovenso, İstanbul, Turkey) was used to produce nanofibers. Cylindrical collector surface was covered with 
grease-proof paper. The set parameters of electrospinning process such as applied voltage, distance between cylindrical 
rotating collector and the nozzle, feeding rate of the polymer solution were 35, 37, 40 kV; 15, 20, 25 cm and 0.3 mL/h, 
respectively. The velocity of cylindrical rotating collector was adjusted at 500 rpm. The experiments were performed at 
26–28 °C.
2.2.6. Morphology of nanofiber structure
The morphology of the electrospinning nanofibers was analysed with scanning electron microscope (SEM) images (FEI 
Sirion XL-30 SEM and Inspect S50 SEM, FEI/Thermo Fisher Scientific Inc., Waltham, MA, USA). Samples of 10 × 10 
mm were taken for measurement. The samples were covered with gold. ImageJ software for measuring fiber diameters of 
images was used.
2.2.7. Fouirer transform infrared spectroscopy (FTIR)
In the FTIR (Fourier transform infrared spectra) examination, the silk fibroin mats were obtained on Perkin Elmer-120 
(Waltham, MA, USA). Samples of 10 × 10 mm were taken for measurement.
2.2.8. Mechanical test
All nanofiber structures were cut to 50 × 10 mm (length × width) for the mechanical test. Instron 4411 universal test 
(Instron, Norwood, MA, USA) device was used to examine the mechanical properties of nanofiber structures. The piston 
speed was set 3 mm/min.

The thickness of nanofiber structures was measured with a Mitutoyo Digital Thickness Comparator (Mitutoyo, 
Kawasaki, Japan). Thickness measurements were made at 30 different points in both vertical and horizontal directions. 
2.2.9. In vitro cell viability analysis
The experiments were used normal human/healthy human keratinocyte skin cell line (ATCC CRL-2404). The nutrient 
media was used 10% fetal bovine serum (FBS) and formula of ATCC containing 1% penicillin-streptomycin Dulbecco’s 
modified essential medium-F12 (DMEM F12). The cells were incubated in humidified incubator at 37 °C. The incubator 
had 5% carbondioxyde (CO2). The essences of nanofiber mats were prepared ISO 10993-12 standard, according to the 
described  protocol. Samples were prepared as 0.1 g sample per 1 mL–1 nutrient media. Nanofiber mats were extracted by 
stirring in DMEM nutrient media at 24 h. The extracts were incubated in 100% concentration culture media, which were 

Table. The viscosity and conductivity values of polymer solution.

Concentration of solution
(% wt)

Viscosity value
(cP)

Conductivity value
(μS/cm)

10 46
 
+̄ 2 1447

 
+̄ 15

12.5 130
 
+̄ 27 1575

 
+̄ 20

15 239
 
+̄ 40 1764

 
+̄ 30
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37 °C, 5% CO2. The samples were observed at 24, 48 and 72 h. Tetrazolium [MTT- (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide)] was used to determine cell viability. The absorbances were measured with Boyn DR200B 
microplate reader at 590 nm (Boyn Industrial, Hangzhou, China). The materials of tested were expressed as  cell viability 
percentage compared to the negative control.

3. Results
3.1. Mechanical test
The silk fibroin nanofiber mats obtained were done mechanical test at 6 repetitive. The graphics were obtained by average. 
Concentration, distance and applied voltage different impacts of mats were compared at the graphics obtained. 

Silk fibroin nanofiber mats were produced three different values of concentration, distance and applied voltage.  
Strength value results of mats were indicated at Figure 1. 

At 10% concentration (Figure 1a), the highest tensile strength value was found at 35 kV applied voltage. The highest 
strength value among mats was observed at 15 cm distance and 35 kV applied voltage.

At 12.5% concentration (Figure 1b), the highest tensile strength value was one another close at 35 kV and 40 kV applied 
voltage. However, it has been seen the highest tensile strength value at 15 cm distance and 40 kV applied voltage. 

At 15% concentration (Figure 1c), the tensile strength value of mats had resulted one another close. At 35kV applied 
voltage was displayed the most superior strength value at all the distances. The highest tensile strength value mat was 
obtained at 35 kV applied voltage and 20 cm distance.
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Figure 1. Strength value results of silk fibroin nanofiber mats, 10% (a), 12.5% (b) and 15% (c) concentration.
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When all the results were examined (Figure 1), it was found that the concentration of 12.5% was the appropriate 
concentration to obtain the most strength mat. The tensile strength affected by applied voltage increase was inverse 
proportion to distance. When the literature was reviewed, it has been revealed that it should be evaluated by considering 
the differences in concentration, applied voltage, feeding rate, distance, test sample sizes, electrospinning device. It was 
observed that the strengths of silk fibroin nanofiber structures reached values between 10.3–12.5–18.9 MPa [43–45]. As 
mentioned before, the one-to-one comparison is not possible due to the high number of active parameters.
3.2. Thickness results of mats 
Nanofiber mats were produced three different values of concentration, distance and applied voltage.  The thickness value 
results of mats were indicated in Figure 2.

When the literature was examined, a comparison with the thickness values of the silk fibroin nanofiber structure has 
not been found. The mat thickness is necessary information for the tensile strength test results. Since the tensile strength 
is shown as MPa in the literature, thickness of mat can be calculated here. It is provided as additional information in our 
research. Therefore, a comparison has been made to the obtained silk fibroin nanofiber mats. In Figure 2, when thickness 
test results of all mats were investigated, the thickest mats were obtained at 12.5% concentration. At 10% concentration, 
the obtained mats had usually the lowest thickness value. 
3.3. FTIR analysis
FTIR spectrums of degummed silk fibroin and electrospinning produced silk fibroin nanofibers mat were indicated in 
Figures 3 and 4.

Due to the existence of amide groups in silk protein, the self-givenness pulse strips around 1620 cm–1 were allocated to 
the absorption peak of the peptide backbone of amide I (C=O stretching), the strips around 1230 and 1444 cm–1 to amide 
III (C-N stretching), strips around 1513 cm–1 to amide II (N-H bending) and 694 cm–1 to amide IV. Overall, these self-
givenness absorbance peaks prognosticate the creature of a hydrogen-bonded NH group. The molecular structure of silk 
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Figure 2. Thickness value results of silk fibroin nanofiber mats,  10% (a), 12.5% (b) and 15% (c) concentration.
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fibroin is characterized by β-sheet absorption peaks around 1630, 1530, and 1240 cm–1, superficial coil quality absorption 
peaks at 1650 or 1645, 1550, and 1230 cm–1, and an α-helix absorption peak around 1655 cm–1. The intensity of peaks 
around 3300 cm–1 undulates in reply to hydrogen bonds [46].

Figure 3. FTIR transmittance spectra of degummed silk fibroin.

Figure 4. FTIR transmittance spectra of electrospinning produced silk fibroin nanofibers mat.
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According to the FTIR results (Figures 3 and 4), degummed silk fibroin was characterized by β-sheet absorption peaks 
1623 cm–1 (amid I), 1509 cm–1 (amid II), 1228–1444 cm–1 (amid III). Electrospinning produced silk fibroin nanofibers mat 
was characterized by random coil conformation absorption peaks at 1650 or 1645, 1550 and 1230 cm–1, and an α-helix 
absorption peak around 1655 cm–1. In the literature review, approximate and same value peaks were found with FTIR 
spectra. It has been proved in FTIR results that the obtained nanofiber structures consist only of silk fibroin [46–47].

These band shifts occurred because of the distinct hydrogen bonding states produced by the different conformations 
adopted by protein chains [47]. 
3.4. SEM results
As shown in Figures 5–7, the thinnest measured diameters value of silk fibroin nanofibers was 33 ± 2 nm (40 kV, 25 cm), 
the thickest measured diameter value of silk fibroin nanofibers was 62 ± 6 nm (37 kV, 15 cm). These produced silk fibroin 
nanofibers were continuous fiber, but some mats had staple fiber. 

As shown in Figures 8–10, the thinnest measured diameter value of silk fibroin nanofibers was 55 ± 8 nm (40 kV, 25 
cm), the thickest measured diameter value of silk fibroin nanofibers was 111 ± 14 nm (37 kV, 15 cm). These produced mats 
had intense fiber structure and continuous fiber. 

As shown in Figures 11–13, the thinnest measured diameter value of silk fibroin nanofibers was 147 ± 22 nm (40 kV, 
25 cm), the thickest measured diameter value of silk fibroin nanofibers was 215 ± 26 nm (37 kV, 15 cm). These produced 
mats had intense than previous fiber structure. These nanofibers were continuous fiber. 

All produced silk fibroin nanofiber mats had the thinnest diameter value at 40 kV and 25 cm, and the thickest diameter 
value at 37 kV and 15 cm. High voltage and long distance are used for the thinnest diameter fiber. As mentioned before, 
due to the parameters that are effective in nanofiber mat production, a comparison with the values found in the literature 
was made considering the difference between these parameters. It was observed that they obtained nanofiber diameter in 
the range of 12–700–1500 nm at concentrations of 12–15–17% wt (2–4 kV, 12 cm) [25, 26]. 
3.5. The fiber diameter effect of applied voltage
The values given in Figure 14 were reached by grouping all the mats according to concentration differences. 

According to Figure 14, the thickest fiber diameters of silk fibroin nanofiber mats were occurred at 15% concentration, 
and the thinnest silk fibroin fiber diameters of were obtained at 10% concentration. Therefore, the concentration changes 
were affected in parallel with fiber diameter values. When the distances were investigated, fiber diameter values decreased 
in all concentration depending on the increase in distance. As mentioned in the evaluation of SEM images, although one-
to-one comparison cannot be made due to different parameters, they obtained nanofiber diameters between 12 and 1500 
nm at similar concentrations [25,26].
3.6. In vitro cell viability analysis
The extracts were incubated in 100% concentration culture media, which were 37 °C, 5% CO2. The samples were observed 
at 24, 48 and 72 h. The tested silk fibroin mat was indicated by comparison negative control as cell viability percentage. The 
cell viability percentage of silk fibroin mat was indicated in Figure 15. 

According to the results in Figure 15, at cell viability of silk fibroin mat was occurred high cell viability after 24 h, but 
it was obtained low cell viability at the 48th h. When the 48th h and 72th h were reached, there was a slight increase in cell 
viability. It was observed that silk fibroin provided cell viability up to 3–7 days and 3 weeks (silk fibroin with endothelial 
cells) according to different test hours [39–42]. As a result of the test, it has been observed that silk fibroin was suitable for 
cell proliferation after 72 h, and it has been identified with the literature.

4. Conclusion
In accordance with the test results obtained in this study, silk fibroin fiber diameters decreased with distance increase, and 
thinner fibers were produced. The reason for this is that the applied voltage to which the nanofibers are exposed until they 
reach the collector is continuous and the silk fibroin fibers are got over by thinning. This condition was observed similarly 
at three concentrations. Also, silk fibroin fiber diameter increased in direct proportion to depending on concentration 
rise. Therefore, the necessity has been determined low concentration for fine silk fibroin fiber production and high 
concentration for thick fiber production.

Thickness of produced silk fibroin mats was decrease depending on distance rise in 10% and 12.5% concentration 
production sets. The silk fibroin mat thickness was increased with solution concentration rise. It has been determined that 
close-range was affected by mat thickness. If the mat thickness was intended to be higher, optimal thickness was observed 
at a concentration of 12.5%, 37 kV applied voltage and 25 cm distance. The silk fibroin mat thickness increased with 
distance rise due to environmental parameters at 15% concentration production. 
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20 

15 cm 

25 cm 

20 cm 

(a) (b) 

(c) 

Figure 5. SEM images of silk fibroin nanofiber mats with 10% by weight and applied voltage 40 kV [15 cm (a), 20 cm (b) and 25 cm (c), 
respectively] (×50000).
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25 cm 

(c) 

15 cm 20 cm 

(a) (b) 

Figure 6. SEM images of silk fibroin nanofiber mats with 10% by weight and applied voltage 37 kV [15 cm (a), 20 cm (b) and 25 cm (c), 
respectively] (×50000).
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15 cm 20 cm 

25 cm 

(a) (b) 

(c)

Figure 7. SEM images of silk fibroin nanofiber mats with 10% by weight and applied voltage 35 kV [15 cm (a), 20 cm (b) and 25 cm (c), 
respectively] (×50000).
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15 cm 20 cm 

25 cm 

(a) (b) 
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Figure 8. SEM images of silk fibroin nanofiber mats with 12.5% by weight and applied voltage 40 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×20000).
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25 cm 

(c) 

20 cm 15 cm 

(a) (b) 

Figure 9. SEM images of silk fibroin nanofiber mats with 12.5% by weight and applied voltage 37 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×20000).
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25 cm 

20 cm 15 cm 

(a) (b) 

(c)

Figure 10. SEM images of silk fibroin nanofiber mats with 12.5% by weight and applied voltage 35 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×20000).
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Figure 11. SEM images of silk fibroin nanofiber mats with 15% by weight and applied voltage 40 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×10000).
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25 cm 

(c) 

15 cm 20 cm 

(a) (b) 

Figure 12. SEM images of silk fibroin nanofiber mats with 15% by weight and applied voltage 37 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×10000).
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25 cm 

15 cm 20 cm 

(a) (b) 

(c)

Figure 13. SEM images of silk fibroin nanofiber mats with 15% by weight and applied voltage 35 kV [15 cm (a), 20 cm (b) and 25 cm 
(c), respectively] (×10000).
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When all the results were examined, it was found that 12.5% concentration was a suitable concentration in order to 
obtain the most strength silk fibroin nanofiber mats. The strength was affected inversely proportional the applied voltage 
rises and distance. The best result was obtained at 40 kV applied voltage and 15 cm distance. 

When SEM figures were analysed, at 10% concentration, the ratio of staple fiber increased with applied voltage 
decreasing. The most uniform silk fibroin fibers were obtained 37 kV applied voltage and 25 cm distance. At 12.5% 
concentration, silk fibroin fibers of mat were regular and a little beaded depending on applied voltage decreasing. The best 
silk fibroin fibers were obtained 35 kV applied voltage and 25 cm distance. At 15% concentration, it was found that there 
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was more fiber density than the fiber density formed at other concentrations. In this concentration, silk fibroin fibers of all 
mats obtained were uninterrupted and uniform. It was determined that pilling and fiber breaks decreased with increasing 
solution concentration and viscosity. 

As a result of data obtained, it was found that the parameters of strength, mat thickness, surface of mats and fiber 
diameter were influenced by concentration, distance and applied voltage. When the test results of products made under 
the working conditions were examined, it was found that 10% concentration, 40 kV applied voltage and 25 cm distance 
were used to produce the finest fibers in terms of fiber fineness. From this point of view, if the production of fine fibers 
is aimed, high applied voltage and distance in addition to low concentration are very effective. If the thickness of mat is 
aimed to be more than, 12.5% concentration, 37 kV applied voltage and 15–20 cm distance are used to produce the most 
optimum thick mat. When the results were examined in terms of strength, it was determined that 12.5% concentration, 
40 kV applied voltage and 15 cm distance were found for the most strength mat. At cell viability of silk fibroin mat was 
occurred high cell viability after 24 h, but it was obtained low cell viability at the 48th hours. When the 48th h and 72th h 
were reached, there was a slight increase in cell viability.
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