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In the ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), natural killer T (NKT) cells act as primary initiators
of immune responses. However, a decrease of circulating NKT cells has been observed in
COVID-19 different stages, of which the underlying mechanism remains to be elucidated.
Here, by performing single-cell RNA sequencing analysis in three large cohorts of COVID-
19 patients, we found that increased expression of Tim-3 promotes depletion of NKT cells
during the progression stage of COVID-19, which is associated with disease severity and
outcome of patients with COVID-19. Tim-3+ NKT cells also expressed high levels of
CD147 and CD26, which are potential SARS-CoV-2 spike binding receptors. In the study,
Tim-3+ NKT cells showed high enrichment of apoptosis, higher expression levels of
mitochondrial genes and caspase genes, with a larger pseudo time value. In addition, Tim-
3+ NKT cells in COVID-19 presented a stronger capacity to secrete IFN-g, IL-4 and IL-10
compared with healthy individuals, they also demonstrated high expression of co-
inhibitory receptors such as PD-1, CTLA-4, and LAG-3. Moreover, we found that IL-12
secreted by dendritic cells (DCs) was positively correlated with up-regulated expression of
Tim-3 in NKT cells in COVID-19 patients. Overall, this study describes a novel mechanism
by which up-regulated Tim-3 expression induced the depletion and dysfunction of NKT
cells in COVID-19 patients. These findings not only have possible implications for the
prediction of severity and prognosis in COVID-19 but also provide a link between NKT
cells and future new therapeutic strategies in SARS-CoV-2 infection.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), poses a serious threat to public health (1). Up to December 10, 2021,
more than 2.6×108 individuals have been infected and more than 5.3×106 patients have died from
the disease worldwide [data from Worldometer COVID-19 Data]. Recently, the new Omicron
variant of SARS-CoV-2 trigger global panic again.
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Dysregulation of the immune system plays a critical role in
the COVID-19 pathogenesis. The immune response of SARS-
CoV-2 infection is characterized by the differentiation and
proliferation of various types of immune cells and the release
of immune mediators (2, 3). Natural killer T (NKT) cells, a
distinct subset of T cells that express both NK cell markers and T
cell markers, are increasingly regarded as cells talented with a
hybrid function between NK cells and T cells (4). NKT cells are
involved in the host’s defense against virus infection, bridging
innate immunity and adaptive immunity (5). NKT cells get
activated via endogenous lipids presented by CD1d on
antigen-presenting cells (APCs), a histocompatibility complex
(MHC) class I-like molecule (6), or by stimulating cytokines such
as IL-12, IL-18, and type I IFNs (bystander activation) (7, 8).
NKT cells exert their antiviral functions by directly lysing target
cells, recruiting, stimulating, and regulating other innate cells
such as NK cells and neutrophils (9). In addition, NKT cells
regulate adaptive cells by promoting B cells to proliferate and
produce antibodies, as well as the responses of T cells against
intracellular viruses (9). Studies have reported that NKT cells
prevent replication of influenza A viruses (IAVs), limit lung
damage, and prevent infection of hepatitis virus, dengue virus,
and human immunodeficiency virus (HIV) (9–11). Recent
studies showed that the number of circulating NKT cells in the
peripheral blood of patients with COVID-19 decreased (1, 12–
15). NKT cells also showed the ability to enhance vaccine-
mediated immune response (16), which may be explained by
the fact that NKT cells play distinct roles in different stages of
COVID-19. To date, the underlying mechanism of NKT cells
depletion and the activity regulation during SARS-CoV-2
infection remain to be further elucidated.

T-cell immunoglobulin and mucin-domain containing-3 (Tim-
3) is a type 1 membrane glycoprotein expressed on immune cells
including T cells, NKT cells,dendritic cells (DCs) and macrophages,
which mediates both innate and adaptive immune responses (17–
19). By binding with its natural ligand Galectin-9 (Gal-9), Tim-3
induces T cell apoptosis and exhaustion, thus reducing T cell-
mediated immunity and inducing peripheral immune tolerance to
viruses including hepatitis B virus (HBV), hepatitis C virus (HCV),
dengue virus, influenza virus, herpes simplex virus (HSV) and HIV
(18, 20, 21). Recent studies reported that the elevated expression of
Tim-3 in skin tissue T cells and peripheral blood mononuclear cells
(PBMCs) is associated with deregulation of T cell immune response
in SARS-CoV-2 infection (22, 23). In addition, our previous study
has shown that Tim-3 plays a pivotal role in the regulation of NKT
cell functions during severe bacterial infection (17, 24). However,
whether NKT cells are involved in the antiviral immune response
against SARS-CoV-2 infection by Tim-3 remains unclear.

In recent study, Zhang et al. performed scRNA-seq analysis of
peripheral blood mononuclear cells (PBMCs) from a large cohort of
COVID-19 patients, including 81 PBMCs samples from patients
with COVID-19 (25). In their study, NKT cells were not classified in
cell clusters results. Here, we reanalyzed the data to evaluate the
number and function changes of circulating NKT cells. The findings
indicated that the number of circulating NKT cells in COVID-19
patients decreased while Tim-3+NKT cells increased, and the
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expression of Tim-3 was associated with the outcomes of
COVID-19 patients. Moreover, the elevated expression level of
Tim-3 may be induced by IL-12 produced by DCs/monocytes in
SARS-CoV-2 infection. In addition, we validated these results in two
other scRNA-seq cohorts and single-cell epitope data. These results
indicated that NKT cells are strongly involved in the development of
dysregulated immune responses in COVID-19 patients. Tim-3+
NKT cell subsets may be a potential indicator for predicting the
outcome of COVID-19, and there is a possibility that the regulation
of NKT cells by Tim-3 signal pathway could be a new strategy for
immunotherapy in patients with COVID-19.
MATERIALS AND METHODS

Acquisition, Processing, and Integration of
Single-Cell RNA Sequencing Datasets
The scRNA-seq datasets in this study were downloaded from Gene
Expression Omnibus (GEO) database (GSE158055, GSE168453,
and GSE175450). The GSE158055 scRNA-seq dataset was recently
published by Zhang et al., including 1462702 cells from 81 advanced
COVID-19 patients, 140 recovered COVID-19 patients, and 28
healthy controls, and will be used as a discovery cohort (25). The
GSE168453 dataset was constructed by multiplexed single-cell
epitope and transcriptome sequencing from PBMCs samples of
54 COVID-19 patients and 11 healthy controls. The GSE175450
scRNA-seq dataset includes PBMCs and T cells samples from 19
advanced COVID-19 patients and 6 healthy controls. The
GSE168453 dataset and GSE175450 dataset will be used as
validation cohorts. The gene expression matrix was analyzed by R
software (v4.0.5) with the Seurat package (v4.0.2) (26). Low-quality
cells were discarded according to the following criteria: (1) the
number of unique molecular identifiers (UMIs) was less than a
quarter of the median of each batch; (2) the number of UMIs
exceeds 3 times the median of each batch. And for the GSE168453
dataset, doublet droplets were removed by using the offered
Freemuxlet results files. After low-quality cells removal, samples
with cells less than 500 were excluded. This study relies entirely on
publicly available datasets and hence does not require institutional
review board review.

After removal of low quality cells and samples, the gene
expression matrix was normalized by the NormalizeData
function, and then 2000 features were calculated by the
FindVariableFeatures function to select genes with a high
intercellular variation. To reduce batch effects between platforms,
labs or sample processing, the FindIntegrationAnchors function was
used to identify anchors between individual batches based on the
previously calculated 2000 features. The selected anchors were input
into the IntegrateData function to obtain an integrated gene
expression matrix corrected for the batch effect, which was used
for subsequent analysis. Then, the ScaleData function and the
RunPCA function were performed with the default parameters to
diminish the dimensionality of the integrated gene expression
matrix. Next, the JackStrawPlot and ElbowPlot functions were
conducted to determine the major dimensionality of the dataset,
February 2022 | Volume 13 | Article 796682
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and 50 components were selected. Finally, the FindNeighbors and
FindClusters function were used to identify cell clusters, and the
RunUMAP function was performed to obtain nonlinear
dimensional reduction results.
Cluster Marker Calculation and Cell
Cluster Annotation
The cells were clustered together, and the cell clusters were visualized
and projected into two-dimensional space by Uniform manifold
approximation and projection (UMAP), resulting in a clear
separation between clusters. The differential expression genes
(DEGs) between the identified clusters were calculated as markers
using the FindAllMarkers function in Seurat. Clusters were annotated
based on expressions of canonical gene markers of particular cell
types, including CD4+ T cells (CD3D+CD4+), CD8+ T cells
(CD3D+CD8A+), gd T cells (TRGV9+TRDV2+), mucosal-
associated invariant T (MAIT) cells (SLC4A10+TRAV1-2+), NK
cells (KLRF1+), B cells (MS4A1+), plasma B cells (MZB1+), CD14+
monocytes (LYZ+CD14+), CD16+ monocytes (LYZ+FCGR3A+),
monocyte-derived dendritic cells (mono DCs; CD1C+),
plasmacytoid dendritic cells (pDCs; LILRA4+) and platelets
(PPBP+) (27). Due to the poor knowledge of NKT mRNA
markers, NKT cell clusters were classified by three different
methods (28). The methods were as follows: The NKT cell test
datasets (GSE128243, GSE124731, GSE128626 and GSE28726) were
analyzed with SingleR R package (v1.4.1) for annotation (29);
Annotation was performed by calculating the expression of NK-
associated genes, including CD16, NKP30, NKP46, 2B4, NKG2D,
CD122, CD56 and CD160 (30); Annotation was performed by
analyzing the similarity to NK cells based on the results of
hierarchical clustering (4). All three classification methods resulted
in common annotation, and NKT cell clusters were identified.
Identification and Functional Enrichment
of Differentially Expressed Genes
The differential expression genes (DEGs) between Tim-3+ NKT
cells and Tim-3- NKT cells were identified by the FindMarkers in
Seurat and Wilcoxon rank-sum test was used to calculate p
values. Gene Set Enrichment Analysis (GSEA) on the biological
process (BP) of the DEGs was performed by using gseGO in
clusterProfiler R package (v.3.18.1) (31).
Single Cell Pseudotime Trajectory
Construction and Analysis
Single cell pseudotime trajectories were constructed by using
monocle R package (v2.18.0) (32). In brief, the estimate
SizeFactors function in monocle was used to calculate cell
specific size factor to normalize the gene expression matrix.
Next, the DDRTree algorithm was used to project gene
expression matrix into a lower dimensional space based on the
2000 features selected before. Finally, single cells were ordered
into a trajectory with branch points by order Cells function
in monocle.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
The statistical analysis was performed by R software (v4.0.5).
Wilcoxon rank-sum test was used by wilcox.test function to
calculate statistical significance and Spearman correlation was
used to evaluate correlation coefficient.
RESULTS

Single-Cell Transcriptional Profiling of
PBMCs in COVID-19
To elucidate the immunological features of COVID-19, the scRNA-
seq dataset of PBMCs recently published by Zhang et al.
(GSE158055) was reanalyzed as a discovery cohort, including 81
PBMCs samples of patients with COVID-19 in progression, 140
PBMCs samples of patients with COVID-19 in convalescence, and
28 PBMCs samples of healthy donors. After data filtering, samples
with cells less than 500 were excluded. Finally, 28 samples of healthy
controls, 73 samples of COVID-19 patients in progression, and 129
samples of COVID-19 patients in convalescence remained. The 73
samples of patients in progression were categorized into three
groups according to their clinical conditions: patients with mild
or moderate COVID-19 (n=24), discharged patients with severe or
critical COVID-19 (n=36), and deceased patients with severe or
critical COVID-19 (n=13) (Table 1). And the 129 samples of
patients in convalescence were categorized into two groups:
patients after mild or moderate COVID-19 (n=79) and patients
after severe or critical COVID-19 (n=50) (Table 1). After the
quality-control process, 1333525 single cells were obtained with
an average of 4581 unique molecular identifiers (UMIs) and 27943
genes represented.

Thirteen clusters of PBMCs were identified by using unsupervised
hierarchical clustering and visualization with uniform manifold
approximation and projection (UMAP) (Figure 1A). Twelve types
of major cell were annotated by expressions of canonical gene
markers, which included CD4+ T cells (CD3D+CD4+), CD8+ T
cells (CD3D+CD8A+), gd T cells (TRGV9+TRDV2+), mucosal-
associated invariant T (MAIT) cells (SLC4A10+TRAV1-2+), NK
cells (KLRF1+), B cells (MS4A1+), plasma B cells (MZB1+), CD14
+ monocytes (LYZ+CD14+), CD16+ monocytes (LYZ+FCGR3A+),
monocyte-derived dendritic cells (mono DCs; CD1C+), plasmacytoid
dendritic cells (pDCs; LILRA4+) and platelets (PPBP+) (Figure 1C)
(27). Various experiments were designed for the classification of NKT
cells, and the three subsets of NKT cells include type I NKT cells, type
II NKT cells, and NKT–like cells (4). NKT cell type was annotated by
analyzing NKT cell test datasets (GSE128243, GSE124731,
GSE128626 and GSE28726) with SingleR R package (29);
Annotation was performed by calculating the expressions of NK-
associated genes, including CD16, NKP30, NKP46, 2B4, NKG2D,
CD122, CD56 and CD160 (30); Annotation was performed by
analyzing the similarity to NK cells based on the results of
hierarchical clustering (4). As expected, highly consistent results of
NKT cells annotation were obtained. Therefore, all 13major cell types
were classified, which could be divided into 55 cell clusters by Seurat
R package at a 1.5 resolution (Figures 1B, D).
February 2022 | Volume 13 | Article 796682
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As shown in Figure 1E, the decrease in the percentage of
lymphocytes in patients is associated with the severity of COVID-
19, consistent with previous reports (1, 12, 33, 34). We further
explored the effect of COVID-19 on the composition of immune
cells in PBMCs according to the scRNA-seq data analysis. Consistent
with previous studies, we found that the percentage of CD8+T cells,
MAIT cells, gd T cells, mono-DCs, and pDCs decreased significantly
as the disease progressed, while the percentage of plasma B cells,
CD14+ monocytes, and platelets increased significantly, however,
there was no significant change in the number of NK cells (Figure S1)
(25, 27, 35).Of note, the percentage of NKT cells in severe COVID-19
patients decreased significantly in both progression and
convalescence (Figure 1F), which is consistent with previous
studies (13, 14).
The Expression Level of Potential SARS-
CoV-2 Spike Binding Receptors in
NKT Cells
ACE2 is one of the most important receptors on the host cells
mediating SARS-CoV-2 infection by binding to the spike protein
(36). In the present study, none of the analyzed NKT cells expressed
ACE2, though the scRNA-seq data showed few ACE2 expressed in
PBMCs (data not shown). Recently, several other receptors have
been reported to involve in mediating SARS-CoV-2 infection for
host cells, including CD147 and CD26 (37, 38). The expression
levels of CD147 and CD26 inNKT cells were observed. The findings
indicated the highest level of CD147 and CD26 expression detected
in NKT cells (Figures 2A–D). The relationship between disease
severity and CD147+ NKT cells or CD26+ NKT cells was examined
during SARS-CoV-2 infection. As shown in Figure 2E, a higher
proportion of CD147+ NKT cells were revealed among COVID-19
patients. Moreover, the proportion of CD26+ NKT cells
significantly increased as the disease progressed and was restored
in convalescence (Figure 2F).
Tim-3 Expression on NKT Cells Is
Associated With Disease Severity and
Outcome of COVID-19 Patients
For further analysis, NKT cells of 202 COVID-19 patients and 28
controls were grouped into 6 cell subtypes, including
Frontiers in Immunology | www.frontiersin.org 4
NKT_CD4_CD40LG, NKT_CD4_TIM3_CD62L, NKT_CD8,
N K T _ C D 8 _ C D 4 0 L G , N K T _ C D 8 _ T I M 3 , a n d
NKT_DN_ITGAX (Figure 3A). Our previous studies have
demonstrated that the Tim-3 signal plays an essential role in
mediating the impaired function of NKT cells in mice model of
polymicrobial intra-abdominal infection (17, 24, 39). In the
current study, the role of NKT cells expressing Tim-3 was
examined in the pathogenesis of COVID-19. The 6 NKT cells
subsets were analyzed, and Tim-3 expression was elevated in 2
NKT subsets—NKT_CD4_TIM3_CD62L and NKT_CD8_TIM3
(Figure 3B). Although the total number of NKT cells decreased
in the COVID-19 progression phase as shown in Figure 1E, the
number of Tim-3+ NKT cells increased significantly
(Figures 3F–H). In addition, this elevation could be detected
in all patients with varying severity (Figure 3E), and the more
severe the COVID-19 was, the greater the number of Tim-3+
NKT cells was detected (Figures 3F–H). It was also true for
COVID-19 patients in convalescence that the number of Tim-3+
NKT cells was elevated compared to controls (Figure 3F). This
elevation was unique in Tim-3+ NKT cells, since the other NKT
cell subsets, including NKT_CD4_CD40LG, NKT_CD8,
NKT_CD8_CD40LG, and NKT_DN_ITGAX, did not show a
similar change (Figure S2). The relationship between CD147,
CD26 and Tim-3 was observed in the 6 isolated NKT cell subsets,
and Tim-3+ NKT cells were accompanied with high expression levels
of CD147 and CD26, especially in the NKT_CD4_TIM3_CD62L
subset (Figures 3C, D). Tim-3+ NKT cells have a trend to express
more CD147 and CD26 in COVID-19 patients, which might suggest
Tim-3+ NKT subset cells are highly susceptible to SARS-CoV-
2 infection.

Tim-3 Expression Is Associated With NKT
Cells Apoptosis in COVID-19 Patients
Our recent study has demonstrated that Tim-3 is a negative
regulator of cell response through promoting NKT cells
apoptosis in mice model of polymicrobial intra-abdominal
infection (39). The relationship between the up-regulated
expression of Tim-3 in NKT cells and depletion of NKT cells
during SARS-CoV-2 infection was firstly observed. Gene Set
Enrichment Analysis (GSEA) was performed to unfold the
potential biological processes related to Tim-3 in COVID-19
patients. GSEA analysis showed that the apoptotic process
TABLE 1 | Information of single-cell datasets.

Dataset GSE158055 GSE168453 GSE175450

Group healthy 82 11 12
mild 24 N/A 12
moderate 23 N/A
severe 36 23 17
critical 23 N/A
died 13 N/A N/A
mild recover 79 N/A 12
severe recover 50 N/A 10

Cell count 1333525 729812 178325
Country China USA Germany
Sample PBMC & T/B cells PBMC PBMC & T cells
Cohort Discovery Validation Validation
February 2022 | Volume 13
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B CA

D

E F

FIGURE 1 | Single-cell transcriptional profiling of PBMCs in COVID-19. (A) Integration analysis results of patients with COVID-19 and controls showing UMAP
visualization, including integration analysis result of 13 major cell clusters annotated (top), the cell clustering results in origin data (middle left), the result of NKT cell
clusters annotated by SingleR (middle right), the result of patients with COVID-19 and healthy controls (bottom left), the result of PBMCs samples with no batch
effect observed (bottom right). (B) Expression of NK-associated genes, including CD16 (FCGR3A), NKP30 (NCR3), NKP46 (NCR1), 2B4 (CD244), NKG2D (KLRK1),
CD122 (IL2RB), CD56 (NCAM1) and CD160 in cell clusters. (C) Known cell markers used to identify PBMCs cell types. (D) The result of cell clusters showing by
dendrogram (E) Percentage of lymphocytes in COVID-19 patients derived by the routine blood test. (F) Percentage of NKT cells in COVID-19 patients and controls
derived by single cell datasets. (Wilcoxon test).
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pathway was significantly enriched, with an adjusted p value
3.48×10-5 (Figure 4A). Releasing of mitochondrial (mt) genes
into the cytoplasm is associated with cell apoptosis (40), and a
large proportion of mt genes are unfavorable to cell
development (41). Mt genes in lymphocytes account for
about 5% of the total mRNA content (42). The expression of
mt genes in Tim-3+ NKT cells was significantly higher than
that of other NKT cells, consistent with the results of GSEA
(Figure 4B). Tim-3+ NKT cells account for the highest
proportion in the high-mt-gene-expressed NKT cells subset,
which is defined as more than twice the average percentage of
mt genes (Figure 4C). Subsequently, to study molecular
characteristics of NKT cells during the disease, all NKT cells
Frontiers in Immunology | www.frontiersin.org 6
were ordered in pseudo time to reconstruct the trajectory of
NKT maturation by using monocle R package. The results of
the pseudo time analysis showed that the Tim-3+ NKT cells
were positioned at the end of the tree, indicating that Tim-3+ NKT
cells were in a late stage of maturation (Figures 4D, E).

To shed light on the process of Tim-3+ NKT cell apoptosis,
we investigated the expression levels of caspase genes in all
COVID-19 patients and healthy controls. Consistent with the
apoptosis trend of Tim-3+ NKT cells, an elevated expression
level of almost all caspase genes in Tim-3+ NKT cells was
observed in controls and patients with mild and severe
COVID-19, especially caspase-2, caspase-3, caspase-6, and
caspase-9 (Figure 4F).
BA

EC

D F

FIGURE 2 | The expression levels of CD147 and CD26 in NKT cells. (A, B) Expression of CD147 and CD26 in PBMCs showing UMAP visualization. (C, D) Expression of
CD147 and CD26 in PBMC subsets. (E, F) Percentage of CD147+ NKT cells and CD26+ NKT cells in COVID-19 patients and controls. (Wilcoxon test).
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Tim-3 Expression and Functional Status of
NKT Cells in COVID-19
The function of co-inhibitory receptors, including Tim-3,
programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-
Frontiers in Immunology | www.frontiersin.org 7
4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3), are
critical for lymphocyte homeostasis prompting it a novel target
for treatment in tumor and infection (43, 44). It is important to
investigate the expression levels of these co-inhibitory receptors in
EA

FB

GC

HD

FIGURE 3 | Tim-3 expression in NKT cells associated with disease severity and outcome in COVID-19 patients. (A) Integration analysis results of NKT cells in
COVID-19 patients and controls with 6 NKT cell clusters. (B) Expression of Tim-3 in 6 NKT cell clusters. (C, D) Expression of CD147 and CD26 in 6 NKT cell
clusters. (E) Integration analysis results of NKT cells in COVID-19 patients and controls with no batch effect between samples. (F–H) Percentage of Tim-3+ NKT
cells, Tim-3+ CD8+ NKT cells and Tim-3+ CD4+ NKT cells in COVID-19 patients and controls. (Wilcoxon test).
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Tim-3+ NKT cells. Our results showed that the expression of these
co-inhibitory receptors in Tim-3+ NKT cells was significantly
higher than that in TIM-3-NKT cells (Figures 5A–C).

Unlike conventional T cells, the most important characteristic
of NKT cells in infection is the rapid activation and substantial
production of cytokines such as IFN-g, IL-10, and IL-4. To find
out the relationship between the up-regulated expression of Tim-3
and cytokine production of NKT cells in COVID-19, the
Frontiers in Immunology | www.frontiersin.org 8
expressions of IFN-g, IL-10, and IL-4 were examined. We found
that the expression of IFN-g in Tim-3+ NKT cells was significantly
compared with Tim-3- NKT cells in deceased severe/critical group
and recovered severe/critical group (Figure 5D). To our surprise,
we found that the expression of IL-10 in Tim-3+ NKT cells was
significantly higher than Tim-3- NKT cells under every condition
(Figure 5E). NKT cells expressed few IL-4 in controls, discharged
groups, and recovered groups, but the production of IL-4 peaked
B

C

A

D

E

F

FIGURE 4 | Tim-3 expression associated with NKT cells apoptosis in COVID-19. (A) Gene set enrichment analysis (GSEA) result of apoptotic process pathway.
(B) Expression of mitochondrial genes on 6 NKT cell clusters. (C) Percentage of mitochondrial genes highly expressed NKT cells on 6 NKT cell clusters. (D, E)
Pseudo-time analysis results. (F) Expressions of caspase genes on Tim-3+ NKT cells and Tim-3- NKT cells in COVID-19 patients and controls. (Wilcoxon test).
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in the deceased group. The expression of IL-4 in Tim-3+ NKT cells
was significantly higher than Tim-3- NKT cells in deceased
COVID-19 patients (Figure 5F).

To find the relationship between the Tim-3 expression and
cytotoxicity of NKT cells, the expressions of NKG2D, PRF1 and
GZMB were assayed. As shown in Figures 5G-I, the expression
levels of NKG2D, PRF1, and GZMB in Tim-3+ NKT cells were
reduced under almost all conditions.
Frontiers in Immunology | www.frontiersin.org 9
Correlation Between IL-12 and Expression
of Tim-3 on NKT Cells
Our previous work on the mice model indicated that IL-12
secreted by stimulated DCs induced Tim-3 over-expression on
NKT cells (39). To ascertain this relationship between IL-12
secretion and Tim-3 over-expression in COVID-19, IL-12
expression on DCs and monocytes were firstly assayed. In line
with the increase expression of Tim-3 in NKT cells in COVID-19
CBA
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FIGURE 5 | Tim-3 expression and functional status of NKT cells in COVID-19. (A–C) Expressions of co-inhibitory receptor genes PD-1, CTLA4, and LAG3 on Tim-3+
NKT cells and Tim-3- NKT cells in COVID-19 patients and controls. (D–F) Expressions of cytokine genes IFN-g, IL-10, and IL-4 on Tim-3+ NKT cells and Tim-3- NKT cells in
COVID-19 patients and controls. (G–I) Expressions of cytotoxicity related genes NKG2D, PRF1, and GZMB on Tim-3+ NKT cells and Tim-3- NKT cells in COVID-19 patients
and controls. (Wilcoxon test).
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patients, the IL-12 expression in DCs/monocytes was significantly
higher in patients than controls (Figure 6A). Additionally, the
proportion of DCs/monocytes with high IL-12 expression was
positively correlated with the proportion of NKT cells with high
expression of Tim-3 in discharged COVID-19 patients. The
Spearman correlation coefficient R=0.588, p=0.00398 in mild/
moderate patients, and R=0.338, p=0.0473 in severe/critical
patients was shown in Figure 6B.

Validation With Other Cohorts and Single-
Cell Epitope Data
Two cohorts were included as validation cohorts to validate the
discovery of Tim-3+ NKT cells in COVID-19 (GSE168453 and
GSE175450). The information of each cohort was shown in
Table 1. Similar data processing, integration, clustering, and
annotation were performed on the validation cohorts.

As expected, the NKT cells proportion was decreased
significantly in severe COVID-19 patients in the GSE168453
cohort (GSE175450 cohort not suitable for calculating NKT cells
proportion) (Figure 7A). Several viruses, such as Kaposi’s sarcoma-
associated herpesvirus, HSV and HIV, can use different
mechanisms to reduce CD1d expression, which may lead to
impairment of NKT cells (6). To check whether the decrease of
circulating NKT cells is related to CD1d deficiency in COVID-19,
Frontiers in Immunology | www.frontiersin.org 10
CD1d protein expression levels on PBMCs and DCs were assayed
through single-cell epitope data of GSE168453. As shown in
Figure 7A, CD1d protein expression levels did not decrease, but
increased as the disease progressed, on both PBMCs and DCs. The
evidence, therefore, did not support the hypothesis that the decrease
of NKT cells in COVID-19 was related to CD1d deficiency.

In addition, the number of Tim-3+ NKT cells increased in both
validation cohorts as the disease progressed, with statistical
significance (Figures 7B, C). And the proportion of Tim-3+ NKT
cells recovered as well in convalescence phase, consistent with the
discovery cohort (Figure 7B). The Tim-3+ NKT cells also showed
more mt gene detected than Tim-3- NKT cells (Figure 7D). GSEA
results were consistent with the discovery cohort, showing that the
apoptotic process pathway was enriched in Tim-3+ NKT cells, with
adjusted p-value 1.34×10-9 in GSE175450 and adjusted p-value
1.48×10-7 in GSE168453 (Figures 7E, F).

Consistent with the discovery cohort, COVID-19 patients
showed a higher proportion of CD147+ NKT cells and CD26+
NKT cells than controls (Figures 7B, C). And Tim-3+ NKT cells
subset had a trend to express more CD147 and CD26 than Tim-
3- NKT cells subset (Figure 7D).

To verify the results of the functional status of Tim-3+ NKT
cells derived from the discovery cohort, single-cell epitope data
from GSE168453 was used. Consistent with the discovery cohort
BA

FIGURE 6 | Correlation between IL-12 and expression of Tim-3 on NKT cells. (A) Expression of IL-12 on DCs/monocytes in COVID-19 patients and controls.
(Wilcoxon test) (B) Correlation between the percentage of IL-12 highly expressed DCs/monocytes and the percentage of Tim-3 highly expressed NKT cells in
COVID-19 patients (Spearman correlation coefficient).
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FIGURE 7 | Validation cohort results. (A) Percentage of NKT cells in COVID-19 patients and controls derived by scRNA-seq data from GSE168453 (left), protein
expression levels of CD1d on PBMCs (middle) and DCs (right) derived by single-cell epitope data from GSE168453. (B, C) Percentage of Tim-3+ NKT cells, CD147+
NKT cells, and CD26+ NKT cells in COVID-19 patients and controls derived by scRNA-seq data from validation cohorts. (D) Expression of mitochondrial genes,
CD147, and CD26 in Tim-3+ NKT cells and Tim-3- NKT cells in validation cohorts. (E, F) Gene set enrichment analysis (GSEA) results of apoptotic process pathway
in validation cohorts. (G) Protein expression levels of PD-1, PD-L1, CTLA4, LAG3, and CD26 on Tim-3+ NKT cells and Tim-3- NKT cells in COVID-19 patients and
controls derived by single-cell epitope data from GSE168453. (Wilcoxon test).
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result, the protein expression levels of PD-1, PD-L1, CLTA4,
LAG3, and CD26 were significantly higher in Tim-3+ NKT cells
than Tim-3- NKT cells under every condition (Figure 7G).
DISCUSSION

NKT cells play an important role in virus infection. After
activation by TCR binding to CD1d directly, or by NKT cell-
stimulating cytokines such as IL-12, IL-18, and type I IFNs, NKT
cells devote to the host’s defense against virus infection by
secreting pro- inflammatory or anti- inflammatory cytokines to
regulate the activation, recruitment, and differentiation of other
immune cells. The effects are critical for the elimination of
pathogens and can be inhibited by apoptosis of NKT cells
caused by immunosuppression during severe virus infection
(45). It was reported that Cd1d-/- mice, which lacked CD1d-
dependent NKT activation, were more susceptible to HSV
infection, with more severe disease, greater spread of the virus
to spinal ganglia, and delayed clearance of virus (46).
Impairment of NKT cells may also lead to uncontrolled virus
infection in humans (6).

COVID-19 is an acute viral disease caused by SARS-CoV-2
infection, and NKT cells have been reported to play an important
role in COVID-19 different stages, including silent SARS-CoV-2
infection stage (47), progressing stage (48), convalescence stage
(15), and vaccination (16). However, little is known about the
regulatory mechanisms of NKT cells in COVID-19. Previous
studies are mostly dependent on flow cytometry or bulk RNA
sequencing (13, 14), but they generally fail to provide sensitivity
to tiny distinctions in cells. As the technology develops, single-
cell RNA sequencing analysis provides a powerful approach to
obtain an unbiased and comprehensive visualization of the
immunological profiles of PBMCs in patients with COVID-19.
Compared with bulk RNA sequencing, it has a single-cell level
resolution, which can estimate the whole changes of cell subsets,
the immune cell function of individual cell, and the correlation
between different cell subsets and cytokines.

In the present study, we reanalyzed the recently published single-
cell RNA sequencing datasets of COVID-19 patients, and we
confirmed decreased NKT cells in PBMCs of COVID-19 patients,
which was associated with the severity and outcomes of the disease.
The number of NKT cells in poor-outcome patients was relatively
low, which is consistent with the results of previous studies (27). The
decrease of circulating NKT cells may be caused by promoted NKT
cell death, down-modulation of TCR in NKT cells, and NKT cells
migration to the lung. Recent findings did not support the
hypothesis of TCR down-modulation (14). Our finding also
obtained no evidence of CD1d deficiency in COVID-19
(Figure 7A). Indeed, NKT cells in airways are undetectable, while
a previous study concerning supernatants of endotracheal aspirates
of COVID-19 patients found that the frequency of MAIT cells in
airways was high (14). In addition, It is reported that the number of
NKT cells in the lungs of patients with chronic obstructive
pulmonary disease (COPD) is also increased (49). Our finding
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indicated that the number of circulating NKT cells in COVID-19
decreased, accompanied by changed functions of NKT cells such as
promoted activation and increased cytokines secretion.

The decrease of circulating NKT cells can be recognized as an
indicator to predict the prognosis of COVID-19 from recent
researches (48). Our finding of single-cell RNA sequencing data
analysis indicated that the proportion of Tim-3+ NKT cells in
COVID-19 patients was higher than that in healthy controls,
which was different from Tim-3- NKT cell subsets. Tim-3+ NKT
cells increased in COVID-19, as the disease progressed. The
increase of Tim-3+ NKT cells may be used as a new indicator for
COVID-19 disease severity and outcome. Moreover, the number
change of Tim-3+ NKT cells may contribute to the functional
changes of NKT cells in COVID-19.

ACE2 is one of the most important receptors on the host cells
mediating SARS-CoV-2 infection by binding to the spike protein
(36). CD147 and CD26 have emerged recently as potential
receptors for SARS-CoV-2. SARS-CoV-2 enter T cells, which
do not express ACE2, by binding to CD147. At the same time,
Meplazumab (an anti-CD147 antibody) can inhibit SARS-CoV-2
replication (37). CD26 is a main cellular entry for MERS-CoV
(50), and recent structural studies predict that CD26 directly
interacts with SARS-CoV-2 spike protein (38), while some
contradictory results also have been reported (51). Our
findings indicated Tim-3+ NKT cells have a trend to express
more CD147 and CD26 in COVID-19 patients, which might
suggest Tim-3+ NKT subset cells are highly susceptible to SARS-
CoV-2 infection.

Our previous studies indicated that up-regulated expression
of Tim-3 is associated with NKT cell apoptosis, NKT cell
activation, and cytokines production in polymicrobial intra-
abdominal infection (39). In the present study, we validate the
notion. Tim-3+ NKT cells present a higher trend to apoptosis,
and the increased proportion of Tim-3+ NKT cells could result
in more apoptotic NKT cells caused to fewer circulating NKT
cells in COVID-19 patients. In addition, increased cytokines
production such as IFN-g, IL-4, and IL-10 were observed in Tim-
3+ NKT cells, which indicated that Tim-3+ NKT cells showed
the capacity of activation and secreting inflammatory cytokines.
The over-activation of Tim-3+ NKT cells may involve in the
early cytokine storm in COVID-19 by producing more IFN-g,
IL-4, and IL-10 (52). And the exhaustion of Tim-3+ NKT cells,
characterized by high expression levels of PD-1, PD-L1, and
IL-10, may lead to the immune paralysis of NKT cells as a long-
term impact of COVID-19 (15). Recent studies also evidence that
Tim-3 is more specific for T cells exhaustion than PD-1 in
COVID-19 (23, 53). Thymosin alpha 1 used for reversion of T
cells exhaustion can reduce the mortality of severe COVID-19,
accomplished with a decrease of PD-1 and Tim-3 expression on
T cells (54). Collectively, the up-regulated Tim-3 expression in
NKT cells may be potentially responsible for functional changes
and depletion of NKT cells in COVID-19.

Our recent work showed that IL-12 produced by stimulated
DCs significantly promoted the expression of Tim-3 in NKT cells
in mice model of severe bacterial infection (39). Previous studies
have also demonstrated that IL-12 produced by DCs induces the
February 2022 | Volume 13 | Article 796682

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Tim-3+ NKT Cells in COVID-19
activation of NKT cells in vivo and promotes the IFN-g secretion
of NKT cells (55–57). In the present study, the production of IL-
12 produced by DCs/monocytes in COVID-19 patients is more
than that in healthy controls, and the level of IL-12 in patients
with mild/moderate COVID-19 is higher than that in patients
with severe/critical COVID-19, which is consistent with the
results of a recent study (58). Moreover, our findings indicated
that the frequency of Tim-3+ NKT cells is positively correlated
with the frequency of DCs/monocytes that secrete IL-12 in
COVID-19 patients.

In summary, by analyzing the published single cell datasets,
we found that circulating NKT cells in COVID-19 patients
decreased. The up-regulated expression of Tim-3 in NKT cells
is associated with potential SARS-CoV-2 spike protein binding
receptors, cell apoptosis, activation and exhaustion, and
cytokines secretion of NKT cells. IL-12-secreting DCs/
monocytes may be responsible for induced up-regulation of
Tim-3 in NKT cells during SARS-CoV-2 infection. Tim-3+
NKT cells subset may be a potential indicator for predicting
the outcome in COVID-19 patients, and there is a possibility that
the regulation of NKT cell by Tim-3 signal pathway could be a
new strategy for elimination of lethal epidemic caused by SARS-
CoV-2 infection. Further studies are needed to validate
the findings.
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