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Abstract
Krüppel-like factor 12 (KLF12) is a transcription factor that plays a role in normal kidney

development and repression of decidualization. KLF12 is frequently elevated in esophageal

adenocarcinoma and has been reported to promote gastric cancer progression. Here, we

examined the role of KLF12 in colorectal cancer (CRC). Indeed, KLF12 promotes tumor

growth by directly activating early growth response protein 1 (EGR1). The levels of KLF12

and EGR1 correlate synergistically with a poor prognosis. These results indicate that

KLF12 likely plays an important role in CRC and could serve as a potential prognostic

marker and therapeutic target.

Introduction
Colorectal cancer (CRC) is the third-leading cause of cancer deaths and the third most com-
mon cancer in the US [1]. The development of CRC depends on a series of genetic mutations
and epigenetic alterations that result in progressive changes in gene expression. These changes
control tumor initiation and progression. Transcription factors that regulate gene expression
and certain signaling pathways during carcinogenesis are potential therapeutic targets [2],
although technical difficulties usually preclude targeting them directly [3,4].

The Krüppel-like factor (KLF) family represents transcription factors that play diverse bio-
logical roles in cell differentiation, proliferation, and apoptosis by regulating specific target
genes [5–7]. To date, 17 members of the KLF family have been identified in mammalian cells
[8,9]. Several members of KLF family have been implicated to act as either tumor-suppressors
or oncogenes in various human cancers, including CRC [8,10,11]. For example, KLF12
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expression was elevated in around 40% of poorly differentiated gastric cancers (GCs) and its
levels correlated with tumor size [12]. In addition, KLF12 promoted gastric cancer (GC) cell
proliferation and invasion in vitro [12]. Recently, genome-wide analysis showed that KLF12
amplification was found in about 40% of esophageal adenocarcinoma (EAC) cases [13] and in
45% of salivary tumors [14]. However, the role of KLF12 in CRC has not been carefully
addressed.

EGR1 is a key transcription factor that is involved in carcinogenesis. EGR1 has been shown
to accelerate tumor growth and progression by mainly inducing cell proliferation, angiogenesis,
and invasion in gastric, ovarian, prostate, and liver cancers [15–20]. On the other hand, EGR1
also exhibits a tumor suppressor function by mainly inducing tumor cell apoptosis in other
types of cancers [21–25]. In CRC, EGR1 is elevated in tumors when compared to matched nor-
mal tissues [26,27] and enhances tumor cell proliferation [27–29]. However, other studies
showed that activation of EGR1 induced tumor cell apoptosis [30–32]. Therefore, all of the
roles of EGR1 in CRC are still not clear and may be context specific.

In this study, we show for the first time that KLF12 promotes CRC cell growth, at least in
part by directly activating EGR1. Importantly, we show that KLF12 and EGR1 levels synergisti-
cally correlate with poor prognosis in CRC.

Materials and Methods

Cells, antibodies, and reagents
LS174T, HCT116, HT-29, SW620, LOVO and SW480 cells were purchased from the American
Type Culture Collection (ATCC). Cells were maintained in McCoy 5A medium containing
10% fetal bovine serum (FBS) in a 5% CO2 atmosphere. Antibody to KLF12 was purchased
from Santa Cruz Biotechnology (Santa Cruz, CA). Antibody to EGR1 was purchased from Cell
Signaling Technology (Danvers, MA). Antibody to ACTB (β-actin) used to examine control
protein levels were obtained from Sigma-Aldrich (St. Louis, MO). siGENOME SMARTpool
siRNAs targeting EGR1 was purchased from Dharmacon, Inc. (Chicago, IL). shRNA vectors
targeting KLF12 and control non-silencing vector (shCon); and KLF12 cDNA (KLF12/pLOC)
and pLOC empty vector were purchased from Open Biosystems (Huntsville, AL). Lentivirus
packaging vectors pMD2.G and psPAX2 were purchased from Addgene (Cambridge, MA).

Microarray
Total RNA was extracted from cells by using a mirVana RNA isolation labeling kit (Ambion).
We used 500ng of total RNA for labeling and hybridization, according to the manufacturer’s
protocols (Illumina). After the bead chips were scanned with a BeadArray Reader (Illumina),
the microarray data were normalized using the quantile normalization method in the Linear
Models for Microarray Data (LIMMA) package in the R language environment. The expression
level of each gene was log2-transformed before further analysis.

Gene expression data of colon cancer patients
Microarray data fromMoffit Cancer Center (Moffit cohort, n = 177) and Vanderbilt Medical
Center (VMC) cohort (n = 55) were downloaded from GEO. Kaplan-Meier plots and log-rank
test were used to estimate patient prognosis.

Establishment of stable cell lines
pGIPZ-shKLF12, pGIPZ-shCon, KLF12/pLOC, and pLOC along with package vectors psPAX2
and pMD2.G were transfected into 293T cells in 60-mm dishes using Lipofectamine reagent
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(Invitrogen) according to the manufacturer's protocol. Culture medium containing virus parti-
cles was collected 48 h later and was added to target cells. Cells infected were sorted by green
fluorescent protein (GFP) positivity to eliminate uninfected cells.

DNA constructs
The EGR1 promoter (-1260 to +35) linked to the luciferase gene reporter construct was
graciously provided by Dr. Eling [33]. The EGR1 promoter mutant was prepared with the
QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies). The following
primers were designed to generate the EGR1 promoter mutant: forward 5’- tggcacggtgtctttcc
ttttttcgctgggaaattgaggataggaagtca-3’ and reverse 5’- tgacttcctatcctcaatttcccagcgaaaaaaggaaagac
accgtgcca -3’

Luciferase assay
For dual luciferase reporter assays, cells were transfected with the firefly luciferase reporter
constructs and the control renilla luciferase reporter pRL-CMV using Lipofectamine™ (Invitro-
gen). After treatment, cells were lysed with cell lysis buffer provided by the dual-luciferase
reporter assay kit (Promega, Madison, WI). Luciferase activity was then measured according to
the manufacture’s instruction.

Cell viability assay
Ninety-six-well plates were seeded with 5,000 cells/well and cells were incubated in serum-free
medium for 4 d. Cell viability was determined using PrestoBlue Cell Viability Reagent
(Invitrogen).

Western blotting
Western blot analysis was performed as previously described [34]. Total proteins were sepa-
rated by loading 20μg of total cell lysate on a denaturing 10% SDS-polyacrylamide gel and
transferred to a nitrocellulose membrane. Membranes were blocked with 5% non-fat dry milk
and incubated with primary antibodies that recognize KLF12, EGR1, and Actin. Secondary
antibody conjugated to horseradish peroxidase (Vector Laboratories Inc, Burlingame, CA) was
used at 1:2,000 to detect primary antibodies and enzymatic signals were visualized by chemilu-
minescence. Three independent experiments were performed for all Western blotting assays.

Real time-quantitative PCR (RT-qPCR)
Total RNA was isolated by using TRIzol (Invitrogen). cDNA was synthesized from 2 μg of total
RNA by using High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Foster
City, CA) and mixed with TaqMan1 Gene Expression Assay Mix for KLF12 and EGR1, sterile
water and TaqMan1 Fast Universal PCR Master Mix (Applied Biosystems). Real-time PCR
was carried out using 7900 HT Fast system (Applied Biosystems) and expression of target
genes mRNA relative to mRNA of beta-actin was calculated.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed using SimpleChIP Plus Enzymatic
Chromatin IP Kit (Cell Signaling Technology). Briefly, cells were treated with 1% formalde-
hyde for 10 min at room temperature to crosslink proteins to DNA, which was then quenched
by adding glycine to 0.125 M for 5 min at room temperature. Crosslinked chromatins were
digested with 250 units of Micrococcal Nuclease per IP to reduce the DNA length to 150–900
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base pairs. One μg of antibody was used to immunoprecipitate the crosslinked DNA per IP.
After being reverse crosslinked, the DNA was purified and eluted into 50 μl of elution buffer.
The amount of immunoprecipitated DNA residing in the EGR1 promoter region was measured
by Q-PCR with primers targeting EGR1 promoter. The primers used for Q-PCR were forward
50- cgtgacttcctatcctcaat-30 and reverse 50-gggcctcgatctatggcacg-30 (site1) and forward 50- agacc
tgcgggaatcgttct-30 and reverse 50-caaggcgagggggagaagga-30 (site2).

Immunohistochemistry
Human colorectal carcinoma specimens were obtained from Tissue Procurement and Banking
Facility (TPBF) at The University of Texas MD Anderson Cancer Center. Paraffin-embedded
specimens were treated with xylene and ethanol to remove the paraffin. The slides were
immersed in Borg decloaker solution (Biocare Medical, Inc.) and boiled in a pressure cooker at
125°C for 5 min for antigen retrieval. Endogenous peroxidase activity was blocked by incubat-
ing in 3% H2O2 containing PBS solution for 10 min. The slides were blocked with 5% normal
goat serum and incubated with anti-KLF12 and EGR1 antibodies at 4°C overnight. After wash-
ing with PBS, the slides were incubated with Goat anti-Rabbit HRP (Vector Laboratories).
After washing, the slides were developed with DAB reagent (Vector Laboratories) followed by
counterstaining with Hematoxylin.

Animal experiments
All mice were housed and treated in accordance with protocols approved by the Institutional
Animal Care and Use Committee at The University of Texas M.D. Anderson Cancer Center
(IACUC Protocol No: 050706632). KLF12/LS-174T, EGR1/LS174T, GFP/LS-174T, shCTL/
HCT116, shKLF12-1/HCT116, or shKLF12-2/HCT116 cells were injected into the cecal wall of
athymic nu/numice. After 5 weeks post-injection mice were euthanized using CO2 asphyxia-
tion. Cecal tumor weight was measured.

Statistical analysis
Statistical significance was determined using Student's t test, or two-way ANOVA, where appli-
cable. P< 0.05 was considered statistically significant.

Results

KLF12 promotes CRC growth in vitro and in vivo
We first examined the levels of KLF12 in 7 human CRC cell lines and found that KLF12 was
expressed in 6 of the 7 lines but not in LS-174T cells (Fig 1A). To examine the role of KLF12 in
CRC cells, KLF12 was overexpressed in LS174T cells and knocked down in HCT116 and HT-
29 cells. Overexpression of KLF12 led to increased cell number, whereas, knockdown of KLF12
reduced cell numbers (Fig 1B and 1C and S1A Fig). These results suggest that KLF12 enhances
CRC cell proliferation and/or survival. Moreover, knockdown of KLF12 in HCT-116 cells
resulted in induction of pro-apoptotic proteins such as BAX, BAK, and cleaved caspase-3 (S1B
Fig), suggesting that KLF12 promotes cell survival. Furthermore, KLF12 overexpressing
LS174T cells developed larger cecal tumors than vector control cells (Fig 1D), whereas KLF12
knockdown HCT116 cells formed smaller cecal tumors when compared to vector control cells
(Fig 1E) in an orthotopic mouse model of CRC. Taken together, these results indicate that
KLF12 promotes CRC growth.
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Fig 1. KLF12 promotes tumor growth in vitro and in vivo. (A) KLF12 protein levels in CRC cell lines. Actin
served as a loading control. (B) KLF12 expression (top) and cell viability (bottom) of LS174T cells stably
transfected with either GFP or KLF12. Actin served as a loading control. C. KLF12 expression (top) and cell
viability (bottom) of HCT116 cells stably transfected with either a vector containing nonsilencing control
shRNA (shCon) or one of two KLF12 shRNAs (shKLF12-1 and shKLF12-2). Actin served as a loading
control. D. Tumor weight in mice orthotopically injected with either LS174T/GFP or LS174T/KLF12 cells
(n = 8 for each group). E. Tumor weight in mice orthotopically injected with either HCT116/shCon, HCT116/
shKLF12-1, or HCT116/shKLF12-2 cells (n = 9 for each group).

doi:10.1371/journal.pone.0159899.g001
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EGR1 is a direct target of KLF12
Little is known about which KLF12 target genes are involved in the regulation of CRC growth.
To identify the target genes of KLF12, we performed microarray assays and found that KLF12
overexpression resulted in alteration of multiple genes, including EGR1 (S1 Table). Microarray
data has been uploaded to GEO (see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
ezktkiygpdcbfqb&acc=GSE78051). KLF12 has been reported to bind to the CACCC motif of
target genes to regulate their expression [35]. Therefore, we first examined which above candi-
dates have CACCC motif in their promoter regions. Interestingly, the EGR1 promoter contains
two putative KLF12 DNA-binding motifs (CACCC) located at -1488bp (motif 1) and -808bp
(motif 2) relative to the transcription start site [8,35]. To test whether KLF12 binds to the
EGR1 promoter, we performed ChIP assay. Indeed, KLF12 strongly binds to motif 2 of the
EGR1 promoter, but not to motif 1 (Fig 2A). Moreover, a mutation in the motif 2 of EGR1 pro-
moter resulted in reduction of EGR1 promoter activity in the EGR1 promoter assays (Fig 2B).
Knockdown of KLF12 reduced transcriptional activity in WT EGR1 promoter, whereas silenc-
ing of KLF-12 did not affect transcriptional activity in the mutant EGR1 promoter with a muta-
tion in the motif 2 (Fig 2B). In addition, LS174T cells with undetectable levels of KLF12
expressed the lowest level of EGR1 protein compared with CRC cells expressing high levels of
KLF12 (Figs 1A and 2C). Furthermore, overexpression of KLF12 in LS174T cells up-regulated
of EGR1 expression at both the mRNA and protein levels (Fig 2D), whereas knockdown of
KLF12 in HCT116 cells resulted in reduction of EGR1 expression (Fig 2E). In our animal
model, EGR1 protein expression was higher in tumors isolated from mice orthotopically
implanted with LS174 cells overexpressing KLF12, as compared with mice implanted with the
vector control cells (Fig 3A). In human CRC specimens, KLF12 and EGR1 staining showed a
similar expression pattern (Fig 3B). Finally, KLF12 mRNA levels correlated with those of
EGR1 in a cohort of 232 CRC patients (Fig 3C). Taken together, these results indicate that
EGR1 is directly transactivated by KLF12 in CRC.

KLF12 enhances tumor cell growth by activating EGR1
To test whether EGR1 mediates the effect of KLF12 on induction of tumor cell growth, EGR1
was knocked down in KLF12-overexpressing LS174T cells. Indeed, EGR1 knockdown attenu-
ated the KLF12-induced growth of tumor cell populations (Fig 4A). In addition, EGR1 knock-
down in KLF12-overexpressing LS174T cells does not affect KLF12 expression (Fig 4A),
indicating that EGR1 does not regulate KLF12. Furthermore, overexpression of EGR1 in
LS174T cells promoted cell growth in vitro (Fig 4B) and tumor growth in our animal model
(Fig 4C). Collectively, these results indicate that KLF12 enhances cell growth through activa-
tion of EGR1.

The levels of KLF12 and EGR1 correlate synergistically with a worse
prognosis in CRC patients
To further validate the clinical relevance of KLF12 and EGR1 in CRC, we evaluated whether
the levels of KLF12 and EGR1 are correlated with prognosis in CRC patients. We used publicly
available microarray databases to retrieve gene expression data of CRC patients. Patients in the
Moffitt cohort (n = 177) and Vanderbilt Medical Center (VMC) cohort (n = 55) were dichoto-
mized according to expression levels of KLF12 and/or EGR1. Indeed, patients with high levels
of either KLF12 or EGR1 had worse outcome compared to patients with low levels of these
genes (Fig 5). Importantly, patients with high levels of both KLF12 and EGR1 had the poorest
survival (Fig 5C).
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Fig 2. EGR1 is a direct target of KLF12mediating cell viability. (A) Chromatin immunoprecipitation (ChIP) assay showed binding
of KLF12 to motif 2 of the EGR1 promoter, but not to motif 1 in LS-174T cells. Immunoprecipitation with IgG antibody was used as a
control. (B) Transient co-transfection of cells was performed with EGR1 promoter wild type (WT), or mutant luciferase reporter
plasmids with renilla luciferase control plasmids and non-targeting or KLF12 siRNA. The luciferase activity was determined. (C)
EGR1 protein levels in CRC cell lines. Actin served as a loading control. (D) EGR1mRNA (left) and protein (right) levels in LS174T
cells stably transfected with either GFP or KLF12. Actin served as a loading control. E. EGR1mRNA (left) and protein (right) levels in
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HCT116 cells stably transfected with either a vector containing nonsilencing control shRNA (shCon) or one of two KLF12 shRNAs
(shKLF12-1 and shKLF12-2). Actin served as a loading control.

doi:10.1371/journal.pone.0159899.g002

Fig 3. KLF12 and EGR1 is co-expressed in vivo. (A) Immunohistochemistry of EGR1 in nude mice injected
with either LS174/GFP cells as control, or with LS174 cells stably transfected with KLF12 (LS174/KLF12). (B)
Immunohistochemistry of KLF12 and EGR1 in matching sections taken from two CRC patients (Patient #1
and #2). Magnification x10. (C) Pearson correlation of KLF12 and EGR1mRNA expression in a cohort of 232
CRC patients (Moffitt cohort, n = 177 and Vanderbilt Medical Center cohort, n = 55).

doi:10.1371/journal.pone.0159899.g003
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Discussion
KLF12 was initially identified as a transcriptional repressor of the AP-2α gene and was sug-
gested to mediate normal development of the kidney [35,36]. AP-2α expression is reduced in
advanced CRC tumor tissues as compared to matched normal tissues [37] and loss of AP-2α
promotes invasion of CRC through down-regulation of E-cadherin and up-regulation of
matrix metalloproteinase 9 (MMP9) [38], indicating that KLF12 may be involved in CRC. Our
results demonstrate that KLF12 promotes tumor growth in CRC. Further studies are needed to
determine whether KLF12 enhances tumor cell proliferation and/or survival. In addition, our
preliminary data showed that overexpression of KLF12 in LS174T cells promoted CRC cell
migration and liver metastasis (data not shown). Further investigation of KLF12’s role in
migration and invasion could provide better understanding of the contribution of KLF12 to
CRC.

EGR1 is an early response transcription factor and its expression is very rapidly and strongly
induced by growth factors, mitogens, cytokines, environmental and mechanical stresses, and
DNA damage. EGR1 activates the transcription of its target genes that are involved in

Fig 4. KLF12 enhances cell viability by activating EGR1. (A) Protein levels of KLF12 and EGR1 (left) and cell viability
(right) of LS174T/GFP and LS174T/KLF12 cells transfected with either non-targeting siRNA as control (con) or EGR1 siRNA.
Actin served as a loading control. (B) EGR1 protein levels (left) and cell viability (right) of LS174T cells transfected with either
GFP (LS174T/GFP) or EGR1 (LS174T/EGR1). (C) Tumor weight in mice orthotopically injected with either LS174T/GFP or
LS174T/EGR1 cells (n = 8 for each group).

doi:10.1371/journal.pone.0159899.g004
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apoptosis, growth arrest, and stress responses [39,40]. EGR1 has been shown to provide a posi-
tive feedback loop with pro-inflammatory mediator prostaglandin E2 (PGE2) [41–48]. PGE2
has been demonstrated to play a major role in CRC progression [49]. In this study, we show
that EGR1 is upregulated by KLF12 and mediates the effect of KLF12 on CRC cell growth, fur-
ther demonstrating the role of EGR1 as an oncogene in CRC. However, there is no published
data demonstrating the relationship between KLF12 and PGE2. Indeed, we examined whether
PGE2 induced KLF12 expression and found that PGE2 did not affect the expression of KLF12
in colorectal carcinoma cells (data not shown). Moreover, we did not observe an effect of
KLF12 knockdown on the COX-2 pathway (data not shown).

Fig 5. KLF12 and EGR1 expression levels are synergistically correlated with worse prognosis in CRC. Kaplan-Meier
Disease free survival (DFS) curves of a cohort of 232 CRC patients (Moffitt cohort, n = 177; Vanderbilt Medical Center cohort,
n = 55) with either high or low mRNA levels of KLF12 (A), EGR1 (B), or both (C). Vertical bars denote censored patients.

doi:10.1371/journal.pone.0159899.g005
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In summary, we provide first direct evidence that KLF12 enhances CRC cell growth, at least
in part, through upregulating EGR1. Most importantly, the expression of both KLF12 and
EGR1 is synergistically correlated with worse prognosis of CRC patients. Future studies are
needed to not only delineate the role of KLF12 in CRC initiation, growth, and progression, but
also evaluate whether KLF12 can serve as a novel prognostic marker and potential therapeutic
target of CRC patients.

Supporting Information
S1 Fig. KLF12 regulates cell death in CRC cells. A. Cell viability was determined in HT-29
transfected with non-targeting or KLF12 siRNAs. B. HCT116 cells were transfected with non-
targeting or KLF12 siRNAs and western blotting for BAX, BAK, and cleaved caspase 3 were
conducted after 3 days.
(PDF)

S1 Table. Overexpression of KLF12 alters multiple gene expression. Differences in gene
expression between GFP (Control) and KLF12 overexpression (KLF12) were considered statis-
tically significant if P< 0.001.
(XLSX)
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