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ABSTRACT
While research on T cell exhaustion in context of cancer particularly focuses on CD8C cytotoxic T cells, the
role of inhibitory receptors on CD4C T-helper cells have remained largely unexplored. TIGIT is a recently
identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT
expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression
in CD8C T cells of healthy controls and CLL cells, we found an enrichment of TIGITC T cells in the CD4C T
cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated
numbers of CD4C TIGITC T cells compared to low risk patients. Autologous CLL-T cell co-culture assays
revealed that depleting CD4C TIGITC expressing T cells from co-cultures significantly decreased CLL viability.
Accordingly, a supportive effect of TIGITCCD4C T cells on CLL cells in vitro could be recapitulated by
blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell
specific production of CLL-prosurvival cytokines. Our data reveal that TIGITCCD4CT cells provide a
supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment.
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Introduction

Chronic lymphocytic leukemia (CLL) is a B cell malignancy,
which is associated with substantial T subset skewing and T cell
defects.1 In particular, we and others have previously shown that
T cells from CLL patients show typical signs of T cell exhaustion,
as they exhibit increased expression of inhibitory receptors and
defects in proliferation, cytokine expression and synapse forma-
tion.2-5 In general, T cell exhaustion is the functional silencing of
antigen experienced T cells, contributing to peripheral T cell toler-
ance to avoid excessive immune pathology during T cell
responses,6 a process initially described during chronic viral infec-
tions7. However, T cell exhaustion was also found to occur in can-
cer and is supposed to significantly contribute to immune evasion
of cancer cells by rendering cancer specific T cells non-functional.8

A key molecule in T cell exhaustion was found to be programmed
death-1 (PD-1), which functionally impedes T cell receptor (TCR)
mediated signaling on exhausted T cells.9 In addition to PD-1, a
number of different inhibitory receptors were recently found to be
associated with T cell exhaustion. The concept that the exhausted
phenotype could be reversed by simply blocking these inhibitory
receptors by monoclonal antibodies led to a renaissance of cancer

immune therapy with specific immune checkpoint blockade using
PD-1 antibodies being considered as a major breakthrough in can-
cer treatment.10 Considering the strength of checkpoint blockade,
it is important to investigate further inhibitory receptors aside of
PD-1 to increase efficacy and minimize side effects of this treat-
ment approach, especially in light of the fact that not all cancer
entities respond to PD-1 blockade. For CLL, no clear effects were
noticed for single agent anti-PD-1 therapy (pembrolizumab)
except for patients with Richter’s syndrome, whereas at least par-
tial responses were reported for CLL patients receiving anti-PD-1
therapy (nivolumab) combined with ibrutinib.11,12

TIGIT (T cell immunoreceptor with Ig and ITIM domains)
is a recently identified inhibitory receptor which is expressed
on T cells, natural killer (NK) and NKT cells.13,14 TIGIT has a
cytoplasmic tail containing an immunoglobulin tail tyrosine
(ITT)- like phosphorylation motif and an immunoreceptor
tyrosine-based inhibitory motif (ITIM)(15). The natural ligands
for TIGIT are the poliovirus receptors (PVR) CD155 and
CD112. TIGIT signaling involves the recruitment of the phos-
phatase SHIP1 to the ITIM and downstream inhibition of
NF-kB, PI3 K and MAPK pathways.16,17 PVRs are widely
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expressed on different cell types and were also found to be
expressed on a number of cancer cells.18-21 In parallel, TIGITC
tumor infiltrating CD8C T cells could be detected in small-cell
lung cancers, colorectal cancers and melanoma.22-24 Similar to
the situation of CTLA-4 and CD28, which are sharing the same
ligands25, TIGIT competes with CD226, a costimulatory T cell
molecule for PVR binding and can directly prevent CD226 sig-
naling by impeding its homodimerization.22 Hence, agonistic
TIGIT antibodies could decrease T cell function similar to
CD226 knockdown26,27 and TIGIT inhibition was recently
shown to increase T cell functions of melanoma specific
CD8CT cells.28

In this study, we investigated expression and function of
TIGIT expressing T cells in CLL patients. We observed an
increase in TIGIT expressing CD4CT cells in CLL compared to
healthy controls and we provide evidence that TIGITCCD4CT
cells display a microenvironment important for CLL survival.
Our data propose TIGIT to be a potential target for immune
therapy in CLL.

Results

TIGIT expressing CD4C T cells are elevated in patients
with CLL

To evaluate TIGIT expression in comparison to other inhibi-
tory receptors (PD-1 and 2B4/CD244) which we previously
examined in CLL,2 we performed phenotypic characterization
of T cells from peripheral blood samples of CLL patients and
age-matched healthy controls using flow cytometry (Fig 1a and
b). In line with our previous results,2 we found that the percen-
tages of CD4C or CD8C T cells expressing 2B4 or PD-1 were
not significantly different between patients and healthy controls
(Fig 1b). However, within the CD4C but not the CD8C T cell
subset, we observed a significant increase in the percentage of
TIGITC cells in CLL patients compared to healthy controls
(Fig 1b). Most of the TIGITCCD4CT cells were also positive
for PD-1 (Fig 1c), reflected in a high correlation of PD-1 and
TIGIT expression in this T cell subset (Fig 1d). The percentage
of TIGITCCD4C T, PD-1CCD4C and PD-1CCD8CT cells
was higher in bone marrow compared to peripheral blood of
the same patient and we observed a high correlation of TIGIT,
PD-1 and 2B4 expression in peripheral blood and bone marrow
(supplementary figure S1). Notably, the inhibitory receptor
TIM-3 was not detectable on T cells from peripheral blood of
CLL patients (supplementary figure S2). Moreover, while
TIGIT expression on CD8CT cells did not correlate with
advanced disease stage or prior treatment, we found signifi-
cantly increased TIGITCCD4CT cells in patients with unmu-
tated IgVH status, with RAI stage �1/� Binet B and in treated
patients. No correlation with other prognostic factors (Zap70,
CD38, CD49 d expression or chromosomal aberrations) was
observed (Fig 1e and supplementary figure S3).

TIGIT is preferentially expressed on antigen experienced
and Th1 polarized cells in CLL

To more thoroughly evaluate TIGIT expression on T cells,
we analysed expression of TIGIT in combination with T cell

subset defining markers. In line with previous reports, we
observed a general shift towards effector memory T cell pop-
ulations as defined by CD62 L/CD45RA expression in CLL
(Fig 2a). By analyzing na€ıve (CD62 LCCD45RAC), central
memory (TCM:CD62 LCCD45RA-), effector memory (TEM:
CD62 L-CD45RA-), and terminally differentiated effector
memory (TEMRA:CD62 L-CD45RAC) CD4C and CD8CT
cells with respect to their expression of TIGIT, we found
that within the TIGITCCD4CT cells, TEMRA and na€ıve cells
were significantly enriched whereas the percentage of TCM

cells was decreased in CLL (Fig 2b). In TIGITCCD8CT cells,

Figure 1. T cells from CLL patients display elevated TIGIT expression. (a-b) Periph-
eral blood samples from CLL patients (CLL) and age-matched healthy controls (HC)
were analyzed by flow cytometry (FACS) with regard to TIGIT, 2B4 and PD-1
expression on CD4 or CD8 T cells. (c) Distribution of inhibitory receptors on TIGIT-
or TIGITC T cells. (d) Correlation of TIGIT and PD-1 expression on CD4C or CD8C T
cells. (e) Distribution of CD4CTIGITC cells in patients divided according to clinical
markers of disease burden (Rai/ Binet stage or treatment status).
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TEMRA subsets were expanded (Fig 2b). Counting the abso-
lute number of cells within the respective T cell subsets
revealed that TIGITCCD4CT cells were enriched within the
na€ıve, TEM and TEMRA subsets and CD8CTIGITCT cells
within the TEM subset in CLL (Fig 2c). We further character-
ized Th1 (CD45RA-CXCR3CCCR4-), Th2 (CD45RA-CCR3-
CCR4C), regulatory T (Treg; CD127-CD25C) and follicular

helper T (Tfh; CXCR5CPD-1C) cells and found a general
skewing towards Th1, Treg and Tfh subsets in CLL com-
pared to healthy controls (Fig 3a). While we observed a sig-
nificant increase in the percentage of TIGITCTh1 cells in
peripheral blood from CLL patients compared to healthy
controls, the absolute cell numbers of TIGITCTh1, TIGITC-
Treg as well as of TIGITCTfh cells were all significantly

Figure 2. TIGIT is particularly expressed on antigen experienced T cells. (a) T cell subsets in peripheral blood samples from CLL patients and age-matched healthy controls
(HC) were measured by FACS analysis defined by CD62 L and CD45RA. Plots represent na€ıve (Tnaive: CD62 LCCD45RAC), central memory (TCM: CD62 LCCD45RA-), effector
memory (TEM: CD62 L-CD45RA-) and terminally differentiated effector memory (TEMRA: CD62 L-CD45RAC). (b) T cell subset distribution in the TIGIT- and TIGITC T cell com-
partment. (c) Absolute cell counts (cells/mL blood) of CD4C and CD8C subsets expressing TIGIT.
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increased in peripheral blood from CLL patients compared
to healthy controls (Fig 3b and c), with no apparent correla-
tion with tumor load or treatment status (supplementary
figure S4).In addition, we found that in CLL, a significantly

smaller percentage of TIGITCCD4CT cells expressed
CD226, a costimulatory molecule competing with TIGIT for
the same ligands (Fig 3d). Further analysis of the CD8 com-
partment revealed decreased percentage of CD226 expressing

Figure 3. Absolute cell counts of TIGITCTh1, TIGITCTreg and TIGITCTfh cells are significantly increased in CLL. (a) Plot of percentages of Th1, Th2, Treg and Tfh among
CD4C T cells from controls and CLL patients. (b) Percentage of TIGIT expressing Th1, Th2, Treg and Tfh cells. (c) Absolute cell counts (cells/mL). (d) Percentage of CD226C
cells among TIGIT- versus TIGITC CD4C or CD8C cells in HCs or CLL patients.(e) Correlation of TIGIT and CD226 expression on CD4C or CD8C T cells.
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cells among TIGITCT cells compared to TIGIT- CD8CT
cells (Fig 3d) and a negative correlation of CD226 with
TIGIT expression (Fig 3e).

TIGITCCD4C but not TIGITCCD8C T cells affect in vitro
survival of autologous CLL cells

Next, we wanted to assess CLL prosurvival or proapoptotic
capacities of TIGITC CD4C and CD8C T cells. To this end,
we performed autologous CLL/T cell co-culture assays using
CD3/CD28 activated T cells which were either depleted of
TIGIT or PD-1 expressing T cells using flow cytometric cell
sorting (as outlined in the methods section; Fig 4a). Thereby
we found that absence of TIGITC cells from all T cells in
our co-culture setting resulted in significant decrease in the
percentage of viable CLL cells (Fig 4b). While absence of
PD-1C T cells had no significant effect on CLL cells, absence
of both PD-1C and TIGITC T cells again resulted in
decreased CLL viability (Fig 4b). To elucidate whether the
prosurvival impact of TIGITC T cells depends on CD4C or
CD8C T cells, we further depleted T cells from
CD4CTIGITC or CD8CTIGITC cells prior to co-culture
with CLL cells (Fig 4a). Thereby we observed that only
absence of TIGITCCD4C but not TIGITCCD8CT cells
decreased CLL cell survival (Fig 4b). In these assays, also
absence of PD-1CCD4C T cells resulted in decreased CLL
cell survival (Fig 4b). Of note, this effect on CLL survival in
these co-culture assays was not based on reduced overall

numbers of T cells, as the T/CLL cell ratio was not signifi-
cantly different in the respective assays (Fig 4c).

Blocking TIGIT interactions decreases CLL viability
and interferes with production of prosurvival cytokines

To further examine the CLL-supportive function of
TIGITCCD4CT cells, we analyzed the cytokine expression
profile of TIGITC and TIGIT- CD4CT cells using intracellular
cytokine staining (Fig 5a). We observed a significantly higher
percentage of IFNg and IL-10 producing CD4CT cells within
the TIGITC population while the percentage of IL-21 and IL-4
producing cells was comparable in TIGITC and TIGIT- subpo-
pulations (Fig 5b). In addition, low but measurable expression
levels of the ligands for TIGIT (CD112 and CD155) could be
detected on the surface of primary CLL samples as well as on
T cells (Fig 5c).

We next analyzed whether cytokine production could be
modulated by blocking TIGIT/ligand interactions using recom-
binant TIGIT-Fc molecules. As shown in Fig 6a, presence of
TIGIT-Fc resulted in impaired IFNg and IL-10 production in
T cells (Fig 6a). Notably, this effect was dependent on the pres-
ence of CLL cells, as in T cell solo cultures, cytokine production
was not significantly affected by addition of TIGIT-Fc (Fig 6b).

Finally, we tested whether the CLL-supportive function of
TIGITCT cells could also be recapitulated by blocking TIGIT/
ligand interactions using recombinant TIGIT-Fc molecules.
Therefore, we assessed CLL viability in co-culture assays in

Figure 4. CD4C TIGITC cells provide a supportive microenvironment for CLL cells. (a) Representative dot plots showing gating strategy for flow cytometric cell sorting.
(b) PBMCs have been depleted of TIGITC, PD-1C or TIGITCPD-1C CD4C or CD8C cells followed by incubation with CD3/CD28 activating beads. After 5 days in culture,
CLL viability was measured and corresponding T/ CLL ratios were analysed (nD 6) (c).
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response to 5 day anti-CD3/CD28 stimulation in presence or
absence of recombinant TIGIT-Fc. In experiments on 12 CLL
samples, we did not observe a significant impact on CLL sur-
vival, however, dividing samples in high and low expressing
TIGITCCD4CT cells based on ROC curve analysis using a cut-
off of 52.6% TIGITCcells within the CD4CT cell subset
(Fig 6c), we found a significant impact on CLL viability in the
TIGIThigh sample group (Fig 6c).

Discussion

In CLL, many alterations within the T cell compartment, such
as skewing towards effector and Treg subsets,31 abnormal CD4/
CD8 ratios,32 increased sensitivity of CD4C T cells towards
Fas-mediated apoptosis33 and the occurrence of expanded
monoclonal CD4C T cell populations have been observed.34,35

Also, an aberrant expression profile of inhibitory receptors
associated with T cell exhaustion has been noticed in CD4C
and CD8C T cells from CLL patients2 and within the CD8C T
cells, the expansion of PD-1 expressing cells featuring defects
in proliferation and cytotoxicity have been described.2,3 Fur-
thermore, in contrast to many aggressive tumors, CLL cells are
strongly depending on the microenvironment for proliferation

and survival1. In this regard, T cells were previously shown to
execute a substantial CLL-supportive function.29,36 Hence, a
more precise characterization of the CLL supportive T cell sub-
set would allow to specifically target this CLL/T cell interaction,
which would not only directly affect CLL viability but likely
also render CLL cells more vulnerable to conventional treat-
ment options. In this study, we found that particularly CD4C
T cells expressing the inhibitory receptor TIGIT were not only
increased in patients with an advanced disease stage but also
potent in increasing viability of autologous CLL cells in in vitro
co-culture assays. Moreover, we could show that this support-
ive impact on CLL viability of TIGIT expressing T cells is
dependent on TIGIT/ligand interactions, as this effect was tar-
getable by recombinant TIGIT-Fc molecules. In line with this,
we observed low but measurable levels of CD112 and CD155
on the surface of CLL cells, the ligands for TIGIT. Moreover,
we demonstrated that IFNg and IL-10 producing T cells were
enriched in the TIGITC compartment and blocking TIGIT/
ligand interactions suppressed the production of both IL-10
and IFNg. This effect was dependent on the presence of CLL
cells, further supporting a direct TIGIT mediated CLL/T cell
crosstalk, consistent with recent observations that expression of
these cytokines in T cells was increased upon TIGIT dependent

Figure 5. TIGITC cells display a distinct cytokine profile. (a) Representative dot plots showing intracellular cytokine production after cultivating CLL PBMCs for 24 h with
CD3/CD28 activating beads. (b) Cytokine production of TIGIT- or TIGITCCD4C T cells in 14 samples. (c) Mean fluorescence intensity ratio (MFIR) of CD155 and CD112 on
CD5CCD19C CLL (top) or CD5C T cells (bottom). The histograms show representative FACS plots of CLL cells (gated for CD5CCD19Ccells) and T cells (CD5C cells)
stained with isotype controls (in gray) and CD112/CD155 specific antibodies (in black). The dot plots show results from n D 14 samples.
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interaction with antigen-presenting cells.13,37 The prosurvival
effect of TIGITC T cells could well be based on secretion of
these cytokines. Alhough the proinflammatory cytokine IFNg
has been associated with cytotoxic and antitumor mecha-
nisms,38 IFNg can also exert protumorigenic effects. IFNg
attenuates programmed cell death in CLL cells in vitro,39 and
CLL T cells produce increased levels of IFNg, while CLL cells
show high expression of IFNg-receptors.40 These data support
an ambiguous role for IFNg, which depends on the cellular,
microenvironmental and molecular context.38

Recently, Joller et al. reported that TIGITC Tregs exhibit
superior immunosuppressive functions compared to the
TIGIT- counterpart.41 In this study, we observed a general
increase of Tregs and we found that more Tregs were express-
ing TIGIT in CLL patients compared to healthy controls. This
fits to the substantial IL-10 production in TIGITC CD4C T
cells from CLL patients as IL-10 not only dampens anti-tumor
responses in vivo, but also has a direct protective and prosur-
vival effect on CLL cells.42 In line with our data, it has been
recently reported that a subset of TIGITC circulating Tfh cells
have a strong B cell-supportive effect due to protective cytokine
secretion and high expression of costimulatory molecules.43

Additionally, the occurence of Tfh cells is significantly
increased in CLL, particularly in high risk patients.44

Our results are of particular interest in light of recent
approaches for anticancer immune therapies aiming at

blocking TIGIT to reinvigorate anticancer immune responses
(NCT02794571, NCT02913313; clinicaltrials.gov). Similar to
therapeutic antibodies for CTLA-4 (ipilimumab) and PD-1
(nivolumab and pembrolizumab) or its ligand PD-L1 (atezoli-
zumab, durvalumab), which have already been approved for
multiple hematological malignancies, antibodies blocking
TIGIT were developed to impede inhibitory signals on cyto-
toxic T cells in order to regain anti-tumor immunity.

In this regard, our own results suggest that anti-TIGIT
antibodies could specifically target the CLL-supportive
TIGITCCD4CT cell compartment, defining an alternative
rationale for using these antibodies especially in combination
with other treatment options.

Materials and methods

Patients

Peripheral blood samples were obtained from patients with
confirmed diagnosis of CLL (Department of Haematology and
Oncology, University Hospital Salzburg, Austria) on basis of
>5000 light chain restricted B cells and CD5, CD19, CD20low

and CD79blow co-expression per ml blood and twenty-nine
age-matched healthy control samples (Stroke Prevention
Center, Department of Neurology). Monoclonal antibodies for
flow cytometric analysis were provided by Beckman coulter:

Figure 6. TIGIT blockade decreases CLL viability and interferes with production of prosurvival cytokines. (a, b) Impact of TIGIT blockade on cytokine production by CD4C T
cells. PBMCs (upper panel; n D 12) or purified T cells (bottom panel; n D 10) were activated with CD3/CD28 beads for 24 h in the presence of recombinant TIGIT-Fc pro-
tein (rhTIGIT Fc) or corresponding isotype control and cytokines were quantifiued by intracellular FACS staining. (b) FACS analysis of surface expression of TIGIT was per-
formed on peripheral blood samples from CLL patients (n D 12). Plot of percentages of CD4CTIGITC T cells are shown, discriminating between TIGITlow (<52.6%
CD4CTIGITCcells) and TIGIThigh (>52.6% CD4CTIGITCcells). (c) Plot represents difference in CLL viability between TIGIT-Fc or isotype control treated samples. Viability
was determined by 7AAD/Annexin V staining after stimulating T/CLL co-cultures from TIGITlow (left) and TIGIThigh (right) patients shown in (b) using anti-CD3/CD28 beads
for 5 days in the presence of recombinant TIGIT-Fc or isotype control.
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CD5-PC7 (A21690), CD19-APC- Alexa Fluor 750 (A94681),
CD23-APC (A69964), CD20-Pacific Blue (B49208)and CD79b-
PE (IM1612). Of 114 measured patients, 36 received treatment
and 78 were chemona€ıve. Analysis of the mutational status of
immunoglobulin heavy chain variable region (IgVH), expres-
sion of CD38, ZAP70, CD49d and assessment of genomic aber-
rations (Tri12, delChr11q, delChr17p and delChr13q) was
performed as described previously(2). Overall 73.7% of patients
showed genomic aberrations. For detailed patient information
and treatment status see supplementary table 1 (samples used
for respective experiments are given on individual excel spread-
sheets within supplementary table 1). Full informed consent
was obtained from all CLL patients and healthy volunteers and
the study was conducted in accordance with institutional
Guidelines and the Declaration of Helsinki and under approval
of the Salzburg Ethics committee (no. 415-E/1287/4–2011 and
415-E/1287/13–2016). Peripheral blood mononuclear cells
(PBMCs) were collected in heparinized or EDTA-coated tubes
during routine examinations and separated by density centrifu-
gation using Biocoll (Biochrom AG).

Immunofluorescence staining and flow cytometric analysis

PBMCs were separated by density centrifugation of fresh CLL
blood samples. PBMCs were incubated with directly conjugated
mAbs for 20 minutes at room temperature. Flow cytometric
analysis was performed after erythrolysis with IOTest� 3 Lys-
ing Solution (Beckman Coulter, IM3514) and washing steps.
Monoclonal antibodies for analysis were provided by Biole-
gend: anti-human PD-1-Brilliant Violet 421 (329920),CXCR3-
APC (353708), CXCR5-PerCP-Cy5.5 (356910), CCR4-PE-Cy7
(359410), CD62L-PerCP/Cy5.5 (304824) and CD226-PerCP/
Cy5.5 (338314). Monoclonal antibodies provided by Thermo-
Fisher included TIGIT-PE (12–9500-42), CD4-PE-Cyanine7
(25–0048-42), CD4-eFluor450 (48-0048-42), CD4-APC
(MHCD0405), 2B4-APC (17-5837-42), CD3-Alexa Fluor 700
(56-0032-82), CD3-FITC (11-0039-42), CD45RA-APC-
eFluor780 (47-0458-42), CD25-PE-Cyanine7 (25-0259-42),
CD127-APC-eFluor780 (47-1271-82), CD155-PE (12-1550-
41), CD112-APC (17-1128-42), CD19-FITC (11-0199-42),
rhAnnexin V-FITC (BMS147FI), 7-AAD Viability Staining
Solution (00-6993-50), TIM-3-PerCP-eFluor 710 (46-3109-42)
and CD8-Pacific Orange (MCD0830). For viability assays,
rhAnnexin V/FITC, 7-AAD Viability Staining Solution was
used. Data acquisition was performed on GalliosTM Flow
Cytometer research system (Beckman Coulter) and data analy-
sis was performed using Kaluza 1.2 Flow Cytometry Analysis
Software (Beckman Coulter).

Intracellular staining of cytokines

PBMCs were activated for 24 hours with CD3/CD28 coated
beads (ThermoFisher, 111.31D) with or without recombinant
human TIGIT Fc chimera protein, or the respective recombi-
nant human IgG1 Fc control (100 mg/mL, R&D Systems, 7898-
TG-050 and 110-HG). Monensin (ThermoFisher, 00-4505-51)
was added during the final four hours of culture. Intracellular
cytokines were stained with anti-human IFNg-FITC (Thermo-
Fisher,11-7319-82), IL-21-PE (ThermoFisher, 12-7219-42),

IL-10-PerCP-eFluor710 (ThermoFisher, 46-7108-42) and IL-4-
APC (ThermoFisher, 17-7049-42). For surface marker expres-
sion TIGIT-PE-Cyanine7 (ThermoFisher, 25-9500-42), CD3-
AF700 (ThermoFisher, 56-0038-42) and CD4-Brilliant Violet
650 (Biolegend, 300536) were used.

Depletion of T cells for in vitro co-culture experiments

The impact of specific T cells on the viability of autologous CLL
cells was assessed in in vitro experiments. To deplete PBMCs
from TIGITC and/or PD1C cells, we stained PBMCs using
TIGIT or PD1 antibodies and depleted positive cells by flow
cytometric cell sorting (FACS Aria III, Becton Dickinson). To
deplete PBMCs from all CD8C T cells together with TIGITC
or PD-1C cells (to keep CD4CTIGIT- or PD-1- T cells in co-
culture with CLL cells) we stained PBMCs using TIGIT or PD-
1 and CD8 antibodies and depleted positive cells by flow cyto-
metric cell sorting. To deplete PBMCs from all CD4C T cells
together with TIGITC or PD-1C cells (to keep CD8CTIGIT-
or PD-1- T cells in co-culture with CLL cells) we stained
PBMCs using TIGIT and CD4 antibodies and depleted positive
cells by flow cytometric cell sorting Purity of sorted cells was
>92% for all experiments. Similar to Chauvin et al.,24 sorted
PBMCs were stimulated in vitro with anti-CD3/CD28 coated
beads (ThermoFisher). After five days CLL and T cells were
stained with rhAnnexin V-FITC and 7-AAD Viability Staining
Solution (ThermoFisher) and analyzed on a GalliosTM Flow
Cytometer research system.

Blockade of TIGIT/PVRp

PBMCs were activated for five days with CD3/CD28 coated
beads (ThermoFisher) in presence of recombinant human
TIGIT Fc chimera protein or recombinant human IgG1 Fc con-
trol (100 mg/mL, R&D System). Antibodies used for viability
stain were anti-CD5-AF700 (Beckman Coulter, A78835),
CD19-PE, rhAnnexin V-FITC and 7-AAD Viability Staining
Solution (ThermoFisher).

Statistical analysis

Statistical analyses were performed using Graph Pad Prism
Version 5.02 (GraphPad Software, Inc.). Data are presented
either as dot plots or as box plots showing 25th and 75th percen-
tile and median inside the box. Whiskers represent minimum
to maximum of all data.

Correlations were performed using the parametric
pearson or nonparameric spearman test

Data was compared depending on Gaussian distribution
(unpaired t test/ paired t test or Mann-Whitney test/ Wilcoxon
matched pairs test). P values of less than 0.05 were considered
statistically significant (�p < 0.05, ��p < 0.01, ���p < 0.001).

Conflict of interest

The authors declare no conflict of interest.

e1371399-8 K. CATAKOVIC ET AL.



Acknowledgments

The authors thank the stroke prevention center of the Christian-Doppler-
Klinik Salzburg and the team of the Paracelsus 10,000 study for providing
blood samples from healthy volunteers upon informed consent. This work
was supported by the SCRI-LIMCR, the Province of Salzburg, the City of
Salzburg, and grants from the Austrian Science Fund FWF (Projects
P24100 to R.Gr., P28201 to R.Ge., I 2795-B28 to A.E., P25015 to T.N.H.
and T 516-B13 to N.Z.).

References

1. Pleyer L, Egle A, Hartmann TN, Greil R. Molecular and cellular mech-
anisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol.
2009;6(7):405-18. doi:10.1038/nrclinonc.2009.72. PMID:19488076

2. Gassner FJ, Zaborsky N, Neureiter D, Huemer M, Melchardt T, Egle
A, Rebhandl S, Catakovic K, Hartmann TN, Greil R. Chemother-
apy-induced augmentation of T cells expressing inhibitory receptors
is reversed by treatment with lenalidomide in chronic lymphocytic
leukemia. Haematologica. 2014;99(5):67-9. doi:10.3324/
haematol.2013.098459. PMID:24561794

3. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, Ram-
say AG, Gribben JG. T cells from CLL patients exhibit features of T-cell
exhaustion but retain capacity for cytokine production. Blood. 2013;121
(9):1612-21. doi:10.1182/blood-2012-09-457531. PMID:23247726

4. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W,
Byrd JC, Gribben JG. Chronic lymphocytic leukemia T cells show
impaired immunological synapse formation that can be reversed with
an immunomodulating drug. J Clin Invest. 2008;118(7):2427-37.
PMID:18551193

5. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory
ligands induce impaired T-cell immunologic synapse function in
chronic lymphocytic leukemia that can be blocked with lenalidomide:
eslishing a reversible immune evasion mechanism in human cancer.
Blood. 2012;120(7):1412-21. doi:10.1182/blood-2012-02-411678.
PMID:22547582

6. Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K,
Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B. Pro-
grammed death 1 protects from fatal circulatory failure during sys-
temic virus infection of mice. J Exp Med. 2012;209(13):2485-99.
doi:10.1084/jem.20121015. PMID:23230000

7. Brooks DG, McGavern DB, Oldstone MB. Reprogramming of antivi-
ral T cells prevents inactivation and restores T cell activity during per-
sistent viral infection. J Clin Invest. 2006;116(6):1675-85. doi:10.1172/
JCI26856. PMID:16710479

8. Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion:
from pathophysiological basics to tumor immunotherapy. Cell Commun
Signal. 2017;15(1):1. doi:10.1186/s12964-016-0160-z. PMID:28073373

9. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Free-
man GJ, Ahmed R. Restoring function in exhausted CD8 T cells during
chronic viral infection. Nature. 2006;439(7077):682-7. doi:10.1038/
nature04444. PMID:16382236

10. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for
CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol.
2013;94(1):25-39. doi:10.1189/jlb.1212621. PMID:23625198

11. N Jain SB, PA Thompson, M Ohanian, A Ferrajoli, N Pemmaraju
et al. Nivolumab Combined with Ibrutinib for CLL and Richter Trans-
formation: A Phase II Trial ASH. 2016.

12. WDing JL-R, TG Call, SA Parikh, JF Leis, TD Shanafelt et al. PD-1 Block-
ade with Pembrolizumab in Relapsed CLL Including Richter’s Transfor-
mation: An Updated Report from a Phase 2 Trial (MC1485) ASH. 2016.
https://ash.confex.com/ash/2016/webprogram/Paper95426.html.

13. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom
I, Ivelja S, Refino CJ, Clark H. The surface protein TIGIT suppresses
T cell activation by promoting the generation of mature immunoregu-
latory dendritic cells. Nat Immunol. 2009;10(1):48-57. doi:10.1038/
ni.1674. PMID:19011627

14. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Lev-
ine Z, Beiman M, Dassa L, Achdout H. The interaction of TIGIT with
PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad

Sci U S A. 2009;106(42):17858-63. doi:10.1073/pnas.0903474106.
PMID:19815499

15. Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Gen-
eration Z of Negative Checkpoint Regulators. Front Immunol.
2015;6:418. doi:10.3389/fimmu.2015.00418. PMID:26347741

16. Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng
X, Zhou L. T-cell immunoglobulin and ITIM domain (TIGIT) recep-
tor/poliovirus receptor (PVR) ligand engagement suppresses inter-
feron-gamma production of natural killer cells via beta-arrestin 2-
mediated negative signaling. J Biol Chem. 2014;289(25):17647-57.
doi:10.1074/jbc.M114.572420. PMID:24817116

17. Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B, Fan Z. Recruitment of
Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule
polarization and cytotoxicity of NK cells. Cell Death Differ. 2013;20
(3):456-64. doi:10.1038/cdd.2012.141. PMID:23154388

18. Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka
WB, George MR, Zeng H, Zheng H. T-Cell Immunoglobulin and
ITIM Domain (TIGIT) Associates with CD8C T-Cell Exhaustion and
Poor Clinical Outcome in AML Patients. Clin Cancer Res. 2016;22
(12):3057-66. doi:10.1158/1078-0432.CCR-15-2626. PMID:26763253

19. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T,
Kinoshita S, Nagai M, Konishi N, Nakajima Y. Clinical significance of
CD155 expression in human pancreatic cancer. Anticancer Res.
2015;35(4):2287-97. PMID:25862891

20. Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R, Bando
H, Sato T, Yoshikawa H, Hara H, Shibuya A. Increased Soluble CD155
in the Serum of Cancer Patients. PLoS One. 2016;11(4):e0152982.
doi:10.1371/journal.pone.0152982. PMID:27049654

21. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljungg-
ren HG, Kiessling R, Malmberg KJ. Primary human tumor cells
expressing CD155 impair tumor targeting by down-regulating
DNAM-1 on NK cells. J Immunol. 2009;183(8):4921-30. doi:10.4049/
jimmunol.0901226. PMID:19801517

22. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y,
Park S, Javinal V, Chiu H, Irving B. The immunoreceptor TIGIT regu-
lates antitumor and antiviral CD8(C) T cell effector function. Cancer
Cell. 2014;26(6):923-37. doi:10.1016/j.ccell.2014.10.018. PMID:25465800

23. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Teng
MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly
regulates the immune response via regulatory T cells. J Clin Invest.
2015;125(11):4053-62. doi:10.1172/JCI81187. PMID:26413872

24. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirk-
wood JM, Chen TH, Maurer M, Korman AJ. TIGIT and PD-1 impair
tumor antigen-specific CD8(C) T cells in melanoma patients. J Clin
Invest. 2015;125(5):2046-58. doi:10.1172/JCI80445. PMID:25866972

25. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to
whom? Immunology. 2000;101(2):169-77. doi:10.1046/j.1365-
2567.2000.00121.x. PMID:11012769

26. Ramsbottom KM, Hawkins ED, Shimoni R, McGrath M, Chan CJ,
Russell SM, Smyth MJ, Oliaro J. Cutting edge: DNAX accessory mole-
cule 1-deficient CD8C T cells display immunological synapse defects
that impair antitumor immunity. J Immunol. 2014;192(2):553-7.
doi:10.4049/jimmunol.1302197. PMID:24337740

27. Zhang T, Wang J, Zhou X, Liang R, Bai Q, Yang L, Gu H, Gao G,
Dong B, Zhu H. Increased expression of TIGIT on CD4C T cells
ameliorates immune-mediated bone marrow failure of aplastic ane-
mia. J Cell Biochem. 2014;115(11):1918-27. PMID:24905442

28. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S.
Melanoma Cells Control Antimelanoma CTL Responses via Interac-
tion between TIGIT and CD155 in the Effector Phase. J Invest Derma-
tol. 2016;136(1):255-63.

29. Tinhofer I, Weiss L, Gassner F, Rubenzer G, Holler C, Greil R. Differ-
ence in the relative distribution of CD4C T-cell subsets in B-CLL with
mutated and unmutated immunoglobulin (Ig) VH genes: implication
for the course of disease. J Immunother. 2009;32(3):302-9.
doi:10.1097/CJI.0b013e318197b5e4. PMID:19242370

30. Weiss L, Melchardt T, Egle A, Grabmer C, Greil R, Tinhofer I. Regula-
tory T cells predict the time to initial treatment in early stage chronic
lymphocytic leukemia. Cancer. 2011;117(10):2163-9. doi:10.1002/
cncr.25752. PMID:21523729

ONCOIMMUNOLOGY e1371399-9

https://doi.org/19488076
https://doi.org/10.3324/haematol.2013.098459
https://doi.org/24561794
https://doi.org/23247726
https://doi.org/18551193
https://doi.org/10.1182/blood-2012-02-411678
https://doi.org/22547582
https://doi.org/23230000
https://doi.org/10.1172/JCI26856
https://doi.org/16710479
https://doi.org/28073373
https://doi.org/10.1038/nature04444
https://doi.org/16382236
https://doi.org/23625198
https://ash.confex.com/ash/2016/webprogram/Paper95426.html
https://doi.org/10.1038/ni.1674
https://doi.org/19011627
https://doi.org/10.1073/pnas.0903474106
https://doi.org/19815499
https://doi.org/26347741
https://doi.org/24817116
https://doi.org/23154388
https://doi.org/26763253
https://doi.org/25862891
https://doi.org/27049654
https://doi.org/10.4049/jimmunol.0901226
https://doi.org/19801517
https://doi.org/25465800
https://doi.org/26413872
https://doi.org/25866972
https://doi.org/10.1046/j.1365-2567.2000.00121.x
https://doi.org/11012769
https://doi.org/24337740
https://doi.org/24905442
https://doi.org/19242370
https://doi.org/10.1002/cncr.25752
https://doi.org/21523729


31. Piper KP, Karanth M, McLarnon A, Kalk E, Khan N, Murray J, Pratt
G, Moss PA. Chronic lymphocytic leukaemia cells drive the global
CD4C T cell repertoire towards a regulatory phenotype and leads to
the accumulation of CD4C forkhead box P3C T cells. Clin Exp
Immunol. 2011;166(2):154-63. doi:10.1111/j.1365-2249.2011.04466.x.
PMID:21985361

32. Bartik MM, Welker D, Kay NE. Impairments in immune cell function
in B cell chronic lymphocytic leukemia. Semin Oncol. 1998;25(1):27-
33. PMID:9482524

33. Tinhofer I, Marschitz I, Kos M, Henn T, Egle A, Villunger A, Greil R.
Differential sensitivity of CD4C and CD8C T lymphocytes to the kill-
ing efficacy of Fas (Apo-1/CD95) ligandC tumor cells in B chronic
lymphocytic leukemia. Blood. 1998;91(11):4273-81. PMID:9596676

34. Zaborsky N, Holler C, Geisberger R, Asslaber D, Gassner FJ, Egger V,
Pi~n�on-Hofbauer J, Kocher T, Hartmann TN, Greil R. B-cell receptor
usage correlates with the sensitivity to CD40 stimulation and the
occurrence of CD4C T-cell clonality in chronic lymphocytic leukemia.
Haematologica. 2015;100(8):e307-10. PMID:25911550

35. Rezvany MR, Jeddi-Tehrani M, Wigzell H, Osterborg A, Mellstedt H.
Leukemia-associated monoclonal and oligoclonal TCR-BV use in
patients with B-cell chronic lymphocytic leukemia. Blood. 2003;101
(3):1063-70. doi:10.1182/blood-2002-03-0746. PMID:12393705

36. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM,
Tjønnfjord GE, Bogen B, Munthe LA. Chronic lymphocytic leuke-
mia cells are activated and proliferate in response to specific T
helper cells. Cell Rep. 2013;4(3):566-77. doi:10.1016/j.
celrep.2013.07.011. PMID:23933259

37. Zhao W, Dong Y, Wu C, Ma Y, Jin Y, Ji Y. TIGIT overexpression
diminishes the function of CD4 T cells and ameliorates the severity of
rheumatoid arthritis in mouse models. Exp Cell Res. 2016;340(1):132-
8. doi:10.1016/j.yexcr.2015.12.002. PMID:26683997

38. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer.
Clin Cancer Res. 2011;17(19):6118-24. doi:10.1158/1078-0432.CCR-
11-0482. PMID:21705455

39. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Bren-
ner MK. Interferon gamma inhibits apoptotic cell death in B cell
chronic lymphocytic leukemia. J Exp Med. 1993;177(1):213-8.
doi:10.1084/jem.177.1.213. PMID:7678114

40. Zaki M, Douglas R, Patten N, Bachinsky M, Lamb R, Nowell P, Nowell
P, Moore J. Disruption of the IFN-gamma cytokine network in
chronic lymphocytic leukemia contributes to resistance of leukemic B
cells to apoptosis. Leuk Res. 2000;24(7):611-21. doi:10.1016/S0145-
2126(00)00022-9. PMID:10867137

41. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG,
Sefik E, Yajnik V. Treg cells expressing the coinhibitory molecule TIGIT
selectively inhibit proinflammatory Th1 and Th17 cell responses.
Immunity. 2014;40(4):569-81. doi:10.1016/j.immuni.2014.02.012.
PMID:24745333

42. Fiorcari S, Maffei R, Audrito V, Martinelli S, Ten Hacken E, Zuc-
chini P, Grisendi G, Potenza L, Luppi M, Burger JA. Ibrutinib
modifies the function of monocyte/macrophage population in
chronic lymphocytic leukemia. Oncotarget. 2016;7(40):65968-81.
PMID:27602755

43. Godefroy E, Zhong H, Pham P, Friedman D, Yazdanbakhsh K.
TIGIT-positive circulating follicular helper T cells display robust
B-cell help functions: potential role in sickle cell alloimmuniza-
tion. Haematologica. 2015;100(11):1415-25. doi:10.3324/
haematol.2015.132738. PMID:26250578

44. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, Tu X, Song
H, Qian B. Association of peripheral CD4C CXCR5C T cells with
chronic lymphocytic leukemia. Tumour Biol. 2013;34(6):3579-85.
doi:10.1007/s13277-013-0937-2. PMID:23807677

e1371399-10 K. CATAKOVIC ET AL.

https://doi.org/10.1111/j.1365-2249.2011.04466.x
https://doi.org/21985361
https://doi.org/9482524
https://doi.org/9596676
https://doi.org/25911550
https://doi.org/12393705
https://doi.org/10.1016/j.celrep.2013.07.011
https://doi.org/23933259
https://doi.org/26683997
https://doi.org/10.1158/1078-0432.CCR-11-0482
https://doi.org/21705455
https://doi.org/7678114
https://doi.org/10.1016/S0145-2126(00)00022-9
https://doi.org/10867137
https://doi.org/10.1016/j.immuni.2014.02.012
https://doi.org/24745333
https://doi.org/27602755
https://doi.org/10.3324/haematol.2015.132738
https://doi.org/26250578
https://doi.org/23807677

	Abstract
	Introduction
	Results
	TIGIT expressing CD4+ T cells are elevated in patients with CLL
	TIGIT is preferentially expressed on antigen experienced and Th1 polarized cells in CLL
	TIGIT+CD4+ but not TIGIT+CD8+ T cells affect in vitro survival of autologous CLL cells
	Blocking TIGIT interactions decreases CLL viability and interferes with production of prosurvival cytokines

	Discussion
	Materials and methods
	Patients
	Immunofluorescence staining and flow cytometric analysis
	Intracellular staining of cytokines
	Depletion of T cells for in vitro co-culture experiments
	Blockade of TIGIT/PVRp

	Statistical analysis
	Correlations were performed using the parametric pearson or nonparameric spearman test
	Conflict of interest
	Acknowledgments
	References

