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Influenza shares the same putative transmission pathway with coronavirus disease 2019

(COVID-19), and causes tremendous morbidity and mortality annually globally. Since the

transmission of COVID-19 in China, a series of non-pharmaceutical interventions (NPIs)

against to the disease have been implemented to contain its transmission. Based on

the surveillance data of influenza, Search Engine Index, and meteorological factors from

2011 to 2021 in Xi’an, and the different level of emergence responses for COVID-19

from 2020 to 2021, Bayesian Structural Time Series model and interrupted time series

analysis were applied to quantitatively assess the impact of NPIs in sequent phases

with different intensities, and to estimate the reduction of influenza infections. From

2011 to 2021, a total of 197,528 confirmed cases of influenza were reported in Xi’an,

and the incidence of influenza continuously increased from 2011 to 2019, especially, in

2019–2020, when the incidence was up to 975.90 per 100,000 persons; however, it

showed a sharp reduction of 97.68% in 2020–2021, and of 87.22% in 2021, comparing

with 2019–2020. The highest impact on reduction of influenza was observed in the phase

of strict implementation of NPIs with an inclusion probability of 0.54. The weekly influenza

incidence was reduced by 95.45%, and an approximate reduction of 210,100 (95% CI:

125,100–329,500) influenza infections was found during the post-COVID-19 period. The

reduction exhibited significant variations in the geographical, population, and temporal

distribution. Our findings demonstrated that NPIs against COVID-19 had a long-term

impact on the reduction of influenza transmission.
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INTRODUCTION

Influenza virus is an RNA-enveloped virus belonging to the
Orthomyxoviridae family and causes a highly contagious
acute respiratory illness. Approximately 3–5 million cases of
severe illness and 290,000–650,000 deaths worldwide have
been attributed to seasonal influenza annually (1). Many
factors influence the geographic heterogeneity and seasonality
of influenza, including temperature, relative humidity, and
population flow (2–4), which are also responsible for the
significantly different seasonality of influenza in northern and
southern China, especially in crowded metropolitan cities (5).
Vaccination is considered to be the most effective preventive
measure for reducing the incidence and severity of influenza
(6); however, it is still difficult to establish a strong community
immunity against influenza, because of the high variability and
the consequent uncertainty of the epidemic strain and the low
vaccination rate (7, 8). Therefore, developing effective measures
to prevent the transmission of influenza is essential.

Xi’an, located on the Silk Road in northwestern China,
experienced a serious outbreak of influenza during 2018–2019.
A multiple fold increase was observed in the number of influenza
cases from 2011 to 2019, with a total number of 186,610 cases.
During the influenza outbreak in 2019, there were 142,208
cases of influenza with an incidence rate of 109.79 per 10,000
population, which is nearly 100 times higher than that in previous
years and 20 times higher than the national average incidence.
It was predicted that influenza cases in Xi’an might reach an
unprecedented peak in 2020 and even cause an epidemic. Xi’an
is an internationally famous tourist city with a huge flow of
people. Therefore, if an epidemic breaks out here, it would
spread at a very fast speed and lead to serious consequences.
However, a sudden outbreak of coronavirus disease 2019
(COVID-19) disrupted the transmission of influenza when the
local government started taking strict measures to contain the
spread of COVID-19. As Xi’an is adjacent to Hubei province,
the focus of COVID-19 in the early stage of the pandemic,
the city was seriously affected by COVID-19. To control and
prevent the spread of COVID-19, various non-pharmaceutical
interventions (NPIs) such as quarantine, disinfection of public
places, closure of schools and offices, social distancing, closure of
borders, travel curbs, and restrictions on going out were adopted.
As a corollary to these measures, the number of influenza cases
in 2020 also dramatically decreased, and a predictable outbreak
seemed to disappear in Xi’an. It is reasonable to ratiocinate that
NPIs were equally effective in containing the spread of influenza.
Similar results have also been reported by many studies globally
(9–13). The incidence of laboratory-confirmed influenza cases
dropped by 65.02% in China (14). In Singapore, the influenza test
positivity decreased by 64% due to COVID-19 (15). However, it
is not clear (a) how did the influenza cases decrease so rapidly

Abbreviations: COVID-19, coronavirus disease 2019; NPIs, non-pharmaceutical

interventions; CDC, Center for Disease Control and Prevention; CNISIS, Chinese

National Influenza Surveillance Information System; BSI, Baidu Search Index;

BSTS, Bayesian structural time-series; MCMC, Markov chain Monte Carlo;

SMAPE, symmetric mean absolute percentage error; RMSE, root mean square

error; ITSA, interrupted time series analysis.

that the number of active cases became far lower than that in
the pre-COVID-19 period; (b) how did NPIs against COVID-
19 affect the epidemic of influenza; and (c) how would it affect
the dynamic pattern of influenza in Xi’an both in the short and
long terms. Very few studies have demonstrated the long-term
influence of NPIs against COVID-19 on influenza; most of the
studies have focused on the short-term impact only (9, 16). As the
SARS-CoV-2 Delta Variant and Omicron Variant spread globally
(17), it is crucial to quantify the NPIs on infectious diseases.

Here, we conducted the present retrospective epidemiological
study using data on influenza in Xi’an from 2010 to 2021 (a) to
identify and compare the seasonal pattern and epidemiological
features of influenza between 2020 and 2021 influenza outbreak
and that of previous years, (b) to lay a foundation for further
investigation into the social factors that influence the influenza
transmission, and (c) to assess the results of themeasures adopted
to fight against COVID-19 on the reduction in morbidity and
mortality caused by the influenza virus.

MATERIALS AND METHODS

Data Collection and Management
Influenza
We obtained weekly reports on the confirmed cases of influenza
surveillance data from March 28, 2011 to December 31, 2021
from Xi’anMunicipal Center for Disease Control and Prevention
(CDC). All sentinel hospitals in the Chinese National Influenza
Surveillance Network are required to report information on
influenza cases to the Chinese National Influenza Surveillance
Information System (CNISIS), as well as collect respiratory
samples (throat swab and nasal swab) within 3 days of onset
for influenza virus detection by using PCR. Demographic data
were also obtained, including sex, date of birth, occupation,
living address, and date of onset. The confirmed cases of
influenza were confirmed by laboratory testing. We defined
the 14th week to the 13th week of the following year as the
influenza year to conduct annual statistics and analyze the
influenza surveillance data (http://www.chinaivdc.cn/cnic/zyzx/
jcfa/201709/t20170930_153976.html), and the 2021 influenza
year was defined from the 14th week to the end of the year due
to the lack of data of 2022. Based on the influenza test positivity
rates, we categorized the average positivity across all epidemic
weeks of a monitoring year into high (positive rate ≥ 25%),
moderate (20–25%), and low (<20%) levels (9).

NPIs Against COVID-19
The emergence response against COVID-19 in China is divided
into four levels based on the character, degree of harm, and
impact scope. The Level I emergence response is the highest
and would initiate the strictest public health interventions such
as region lockdown, traffic restriction, social distancing, wearing
masks, and compulsory health quarantine (http://www.nhc.gov.
cn/). Since the first case of COVID-19 in Xi’an was reported on
January 23, 2020, the local government of Xi’an implemented
Level I emergence response on January 25, 2020 in the entire
city (http://xawjw.xa.gov.cn/). As a result, the number of new
confirmed cases and asymptomatic carriers of COVID-19 in
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Xi’an dropped to zero by February 22, 2020. Consequently,
the emergence response was revised down to Level III on
February 28, 2020 (http://xawjw.xa.gov.cn/), and schools, from
kindergartens to colleges, resumed classes in Xi’an from June
8, 2020. People returned to their normal life similar to that in
the pre-COVID-19 period, except for still wearing masks, doing
nucleic acid testing and scanning QR codes. The reported cases
were all imported from overseas until January 28, 2021 when a
local case of transmission was confirmed, which prompted Xi’an
government to immediately take intervention measures to stop
community spread. Hence, we divided our study period into four
phases: Pre-COVID19 Phase (from March 28, 2011 to January
24, 2020); Phase I (from January 25, 2020 to June 8, 2020); Phase
II (from June 9, 2020 to January 17, 2021); and Phase III (from
January 18, 2021 to December 31, 2021).

Web search index, such as Google Flu Trends, has been
successfully applied for improving the prediction of influenza
(18, 19). Baidu Search Index (BSI) from the shared platform
of Baidu (https://index.baidu.com/), the biggest Chinese search
engine, has become the most used trend analysis data in China.

The BSI of specific keyword indicates the normalized search
volume, which can provide dynamic trend about the search
behaviors for disease symptom and treatment of online users
in different regions. To measure public attention to influenza,
we selected five related keywords with detailed description
in Supplementary Table 1 and obtained BSI value of these
keywords within Xi’an from March 28, 2011 to December 31,
2021. Weather data in Xi’an, including temperature, relative
humidity, precipitation, evaporation, atmospheric pressure, and
sunshine duration, were obtained from the Meteorological
Data Sharing Service System. Vector boundaries of Xi’an were
obtained from the basic geographic database in the National
Catalog Service for Geographic Information of China (https://
www.webmap.cn).

Data Analysis
Descriptive Analysis
To compare differences in the dynamic pattern of influenza cases
between pre- and post-COVID-19 phases, descriptive statistical
methods were used to analyze the annual influenza cases and

FIGURE 1 | Temporal distributions of influenza in Xi’an, 2011–2021. (A) Weekly and annual incidence of influenza in Xi’an, from 2011 to 2021. (B) Number of positive

tests and positive rate of influenza reported by laboratories in Xi’an, from 2011 to 2021.
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TABLE 1 | Demographic characteristics of the confirmed cases of influenza from Chinese National Influenza Surveillance Information System (CNISIS) in Xi’an from 2011

to 2021.

Characteristics 2011–

2012

2012–

2013

2013–

2014

2014–

2015

2015–

2016

2016–

2017

2017–

2018

2018–

2019

2019–

2020

2020–

2021

2021

No. patients 1,018 3,310 901 1,152 1,656 3,158 15,691 56,045 99,576 2,308 12,713

Incidence rate

(1/100,000)

12.02 38.88 10.53 13.36 19.02 35.76 163.16 560.24 975.90 17.82 98.15

Sex, n (%)

Male 614

(60.31)

1,803

(54.47)

513

(56.94)

637

(55.30)

856

(51.69)

1,653

(52.34)

8,438

(53.77)

29,142

(52.00)

52,762

(52.99)

1,293

(56.02)

6,771

(53.26)

Female 404

(39.69)

1,507

(45.53)

388

(43.06)

515

(44.70)

800

(48.31)

1,505

(47.66)

7,253

(46.23)

26,903

(48.00)

46,814

(47.01)

1,015

(43.98)

5,942

(46.74)

Age group (years), n (%)

0–3 316

(31.04)

560

(16.92)

178

(19.76)

192

(16.67)

348

(21.01)

581

(18.40)

2,212

(14.10)

11,744

(20.95)

11,843

(11.89)

785

(34.01)

1,238

(9.74)

3–6 166

(16.31)

434

(13.11)

152

(16.87)

233

(20.23)

593

(35.81)

1,114

(35.28)

4,634

(29.53)

14,937

(26.65)

25,356

(25.47)

664

(28.77)

2,395

(18.84)

6–15 215

(21.12)

766

(23.14)

227

(24.08)

283

(24.57)

437

(26.39)

803

(25.43)

4,938

(31.47)

12,692

(22.65)

45,295

(45.45)

285

(12.35)

6,504

(51.16)

15–18 40 (3.93) 259 (7.82) 22 (2.44) 43 (3.73) 23 (1.39) 68 (2.15) 448 (2.86) 864 (1.54) 3,318

(3.33)

43 (1.86) 368 (2.89)

18–60 233

(22.89)

1,114

(33.66)

283

(31.41)

362

(31.42)

220

(13.29)

506

(16.02)

2,882

(18.37)

13,484

(24.06)

11,592

(11.64)

352

(15.25)

2,103

(16.54)

60+ 45 (4.42) 174 (5.26) 49 (5.44) 39 (3.39) 35 (2.11) 86 (2.72) 577 (3.68) 2,324

(4.15)

2,197

(2.21)

179 (7.76) 105 (0.83)

influenza epidemic strain from 2011 to 2021. Sex, age group
(0–3 years; 3–6 years; 6–15 years; 15–18 years; 18–60 years;
≥60 years) and counties of cases helped to gain detailed results
as classifications.

Statistical Analysis
To assess how influenza was affected by NPIs, we utilized
a composite approach for time-series analysis, including
quantifying the causal impact of NPIs, predicting the
counterfactual number of influenza cases, and investigating
the quantitative effects of interventions emerging in the
post-COVID-19 phase. We constructed a Bayesian structural
time-series (BSTS) model, which is widely used to predict
infectious diseases, to try and predict the counterfactual number
of influenza cases after the outbreak of COVID-19 (20–22).
The BSTS model produced better forecasts with the following
advantages: it allows the inclusion of prior information and
the model parameters to evolve over time; it is less dependent
on certain hypothesized specifications; and it assumes that the
relationship between covariates and time series remains stable
throughout the post-period of an infection (23). Markov chain
Monte Carlo (MCMC) algorithm helps to simulate posterior
probability distribution and Gibbs sampling algorithm was used
to generate posterior samples from conditional distribution
for predicting. We ran five chains with 20,000 iterations and
discarded 4,000 initial iterations as burn-in each (80,000 effective
samples in total) for BSTS model. By integrating the outpatient
data derived from the pre-COVID-19 phase with the predicting
model, we were able to predict the epidemic dynamics with

two types of covariates as regression components in the post-
COVID-19 phase when no preventive measures were taken.
A more detailed model using meteorological factors was built
to illustrate the epidemic pattern in different counties and age
groups. To estimate the prediction accuracy, we calculated the
symmetric mean absolute percentage error (SMAPE) and root
mean square error (RMSE) of different models.

We used interrupted time series analysis (ITSA) to determine
the effectiveness of interventions. ITSA is a powerful analysis
method to investigate time series data during trend shifting
caused by an interruption or intervention. It uses the segmented
regression approach to analyze the time series data during
two phases: before and after the intervention (24). Given that
the seasonal pattern has been controlled in the seasonality
component of BSTS, we applied ITSA as the regression
component with adjusting for autocorrelation. To assess the
impact of NPIs in different stages, we set three time points
of intervention changes corresponding with Phase I to Phase
III. Three indicator variables representing intervention changes
were coded 0 in the pre-intervention period and 1 in the post-
intervention period, respectively. The regression coefficients of
indicator variables represent level changes of influenza incidence,
and slope changes following interventions were also measured
by combining with continuous time variable. The posterior
distribution and inclusion probabilities of regression coefficients
were used to estimate the impact of NPIs on influenza and select
the best predictors.

All analyses were conducted with the R version 4.0.4. The
BSTSmodel was constructed by using the “bsts” version 0.9.7 and
“CausalImpact” packages version 1.2.7 was used to analyze the
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FIGURE 2 | Average weekly number of influenza cases in Xi’an, 2011–2021. (A) Sex. (B–G) Different age groups. (H) Proportions of male and female patients. (I)

Proportions of influenza cases in different age groups.
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FIGURE 3 | Spatial distribution of average annual incidence of influenza during 2011–2017 and 2018–2019 and relative reduction in 2020–2021. (A) The spatial

distribution of average annual incidence of influenza during 2011–2017 and the relative reduction comparing with 2020; (B) The spatial distribution of average annual

incidence of influenza during 2018–2019 and the relative reduction comparing with 2020–2021; (C) Relative change of the incidence of influenza between 2020–2021

and the previous 9 years, respectively.

causal impact of the influenza test positivity rate. The thematic
maps of average annual influenza cases during 2011–2017 and
2018–2019 and relative reduction in 2020 in Xi’an were produced
by using ArcGIS version 10.8 software.

Ethical Statement
The influenza surveillance is a governmental public health task
in the charge of the Xi’an Municipal CDC. Therefore, an ethical
review by an ethics committee was not required.

RESULTS

Characteristics of Influenza Epidemics
From March 28, 2011 to December 31, 2021, 197,528 influenza
cases were confirmed and 30,908 pharyngeal swabs were collected
in Xi’an. Among these samples, 4,987 tested positively for the
influenza virus by PCR. Figure 1 illustrates that influenza cases in
Xi’an increased every year from 2013 to 2019, especially in 2018–
2019 and 2019–2020, with 56,029 and 99,539 cases, respectively.

However, after the implementation of NPIs on January 25, 2020,
only 2,308 cases of influenza were reported in 2020–2021—a
decrease in the incidence of 97.68%. Even the influenza incidence
reduced by 87.22% in 2021, comparing with that of 2019–2020.
An annual periodicity in winter/spring was noted during the
entire surveillance period, except for 2018–2019, which had
a year-round periodicity. Additionally, we observed different
predominant pathogens, among which the influenza A virus was
the most predominant one (Figure 1).

We divided the study period before the COVID-19 pandemic
into two: 2011–2017 and 2018–2019. The proportion of the
affected children aged 6–15 years (n = 72,407, 36.66%) was
highest among the six age groups. However, the proportion
of patients of all age groups changed in 2020–2021; younger
children of age 0–3 years and 3–6 years accounted for 34.01%
and 28.77% of the total patients during 2020–2021, respectively
(Table 1). The epidemic dynamic pattern of all age and sex groups
was different between 2011–2017 and 2018–2019. Overall, the
epidemic peak during 2018–2019 happened earlier than that in
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FIGURE 4 | Observed seasonal influenza epidemic in 2020 and predicted levels using the influenza surveillance data of 2011–2019. The intensity of influenza activity

was divided into three levels in China: high, moderate, and low, corresponding to high (≥25%), moderate (20–25%), and low (<20%) average test positivity rates for all

epidemic weeks within a monitoring year from 2011 to 2019. The fitted curve for each intensity level is presented with lower and upper bounds (shaded color). The

black-dotted line indicates when the NPIs were implemented in Xi’an.

previous years, and the patients belonging to the 0–3 years group
shared the same pattern with that of the 18–60 years and older
than 60 years group, with two peaks, while the 3–6 and 6–15 years
groups had a similar pattern (Figure 2). The epidemic pattern of
15–18 years group combined the younger and adult groups. The
onset time was similar with 3–6 and 6–15 years groups but with
two epidemic peaks.

All counties of Xi’an had a similar epidemic pattern, except
for Zhouzhi and Huyi counties, in which the influenza incidence
rates were higher in 2020–2021 than that in 2011–2017 (Figure 3;
Supplementary Table 2). In addition, the influenza cases in
2020–2021 were higher than the average number in week 14–
40 and lower than that in week 41–13 when compared with
the average number from 2011 to 2017 and were below that
of 2018–2019.

Impact of NPIs Against COVID-19 on
Influenza
From January 25, 2020, Xi’an initiated the highest-level public
health emergence response against COVID-19. As a result,
the influenza test-positive rate dramatically decreased from
moderate to low (Figure 4). To assess the impact of NPIs,
we built BSTS models to fit influenza activities from 2011 to
2019 and predict the influenza epidemic levels in 2020–2021.
One-step ahead prediction accuracy indicated that these models
could be used for subsequent analyses (SMAPE: 0.058; RMSE:
0.371). As the number of influenza cases in 2018–2019 far
exceeded that in previous years, a logarithmic transformation

was performed on the number of influenza cases from 2011 to
2021 for a more accurate and reliable prediction. The prediction
made using BSI and meteorological factors was more accurate
than that made using meteorological factors only. The results
demonstrated that the observed influenza cases were significantly
lower than the predicted ones, especially in Phase II when another
epidemic peak of influenza was expected (Figure 5). The model
was used to predict the trends of influenza in each county
during 2020–2021. The results showed that the counties showed
different seasonal trends, although all the trends had an epidemic
peak in the winter of 2020–2021. The cumulative differences
compared with the actual values are summarized in Table 2 and
Supplementary Figure 1.

The ITSA results revealed that the slope change TX1 in
the long-term trend after Phase I had the highest impact on
the reduction of influenza cases (inclusion probability: 0.54)
and its β5 coefficient is negative, followed by level change
X1 in the beginning of Phase I (inclusion probability: 0.52)
with a negative coefficient (Table 3). To assess the long-term
impact of NPIs on seasonal influenza, we projected an influenza
dynamic pattern in 2020–2021 using influenza incidence data
and compared the predicted incidence under the counterfactual
scenario with the actual incidence. The results illustrated that
the weekly influenza incidence in Xi’an declined by 95.45% and
an approximate reduction of 210,100 influenza cases was found
[95% confidence interval (CI): 125,100–329,500] during post-
COVID-19 phase since the implementation of NPIs in Xi’an
(Figure 6; Table 4).
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FIGURE 5 | Observed and predicted influenza cases in Xi’an. (A) Predicted influenza cases based on meteorological factors; (B) Predicted influenza cases based on

meteorological factors and BSI; (C) Difference between observed and predicted cases. The red dot denotes the observed influenza cases. The blue line denotes the

predicted influenza cases with meteorological factors and the green line denotes the predicted influenza cases with BSI and meteorological factors. The shaded

denotes 95% confidence intervals of the predicted value.

DISCUSSION

Influenza is an acute respiratory disease that causes tremendous
morbidity and mortality annually worldwide. Our study showed
that an outbreak of influenza in 2020 in Xi’an was curbed by NPIs
adopted to contain the transmission of COVID-19.

We noted a dramatic increase in the incidence of influenza
over the past decade with an outbreak during 2018–2019 in
Xi’an, which was in line with other studies that showed that the
number of influenza cases in other areas continued to increase
in the past decade (5, 25). Several factors could be responsible
for this increase. Firstly, insufficient vaccination rate might lead
to the increased incidence, as the influenza vaccination of China
averaged 1.5–2.2% (26) and the decline of vaccination coverage
was associated with the influenza cases rise (27). Secondly,
enhanced influenza surveillance network and protocol might
also result in increased incidence of influenza. Previous study
has demonstrated that new update of the influenza surveillance
protocol was related to a 65.6% increase in the influenza
incidence risk in 2017 (5), and enhanced influenza surveillance
networkmight report more cases of influenza to CNISIS. Thirdly,
rapid variability of influenza viruses allows for the reinfection of

previously infected or vaccinated individuals and leads to the lack
of immunity to the current epidemic strain (7, 28). The result
showed that the influenza incidence in 2011–2017 was much
lower than that in 2018–2019, which was consistent with other
studies by Zhu et al. (29) and Wu et al. (30). Since the influenza
pandemic occurred in 2009, Xi’an has not experienced a similar
large-scale epidemic in later years, and the diversified influenza
epidemic spectrum showed co-circulated dynamics, resulting
in a generally low level of population immunity. In addition,
the influenza viruses in 2017–2018 were influenza B/Yamagata
and influenza A/H1, which was different from that in 2016–
2017 and 2018–2019, leading that the incidence of influenza in
2017–2018 and 2018–2019 increased significantly compared with
the previous year. The epidemic of influenza in Xi’an tends to
peak in winter and the predominant viruses change over time,
which can be partly explained by host susceptibility, limited
immunological cross-reactivity between influenza subtypes, and
climatic factors (31, 32). A previous study showed that influenza
A H3N2 variant viruses (H3N2v), responsible for influenza
cases of 2016–2017, had a higher antigenic drift and drug
resistance than those of international vaccine strains (33), which
might be partly responsible for the increased prevalence of
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TABLE 2 | Cumulative difference between the observed and predicted influenza cases in three post-COVID-19 phases in Xi’an, 2020–2021.

Time period

Phase I Phase II Phase III

Absolute difference Relative difference Absolute difference Relative difference Absolute difference Relative difference

Xi’an −8897.66

(−112912.14,

−245.59)

−0.90 (−0.99, −0.20) −20783.96

(−2291983.98,

841.42)

−0.95 (−1.00, 3.78) −3624.57

(−6551305.13,

12307.20)

−0.23 (−1.00,

247.15)

Xincheng −571.50 (−7075.62,

−34.20)

−0.91 (−0.99, −0.38) −867.11 (−52643.27,

48.07)

−0.93 (−1.00, 2.68) −577.69

(−167631.56, 332.47)

−0.63 (−1.00, 50.89)

Beilin −917.63 (−11443.34,

−81.79)

−0.96 (−1.00, −0.66) −1346.57

(−100916.34, 14.64)

−0.97 (−1.00, 0.72) −1077.60

(−330431.28, 278.52)

−0.79 (−1.00, 37.21)

Lianhu −1269.24

(−11573.42, −159.5)

−0.97 (−1.00, −0.80) −1885.54

(−84816.24, 14.38)

−0.97 (−1.00, 0.31) −910.90

(−225999.34, 882.42)

−0.50 (−1.00, 50.19)

Baqiao −539.99 (−7370.56,

−49.66)

−0.95 (−1.99 −0.66) −660.62 (−43830.87,

15.67)

−0.96 (−1.00, 1.27) −478.23

(−178342.11, 333.99)

−0.59 (−1.00, 66.72)

Weiyang −2021.98

(−19149.33,

−196.95)

−0.95 (−0.99, −0.63) −3450.08

(−141187.80, 55.45)

−0.96 (−1.00, 0.59) −2137.14

(−377331.91,

1203.45)

−0.63 (−1.00, 33.85)

Yanta −1116.49

(−18415.99, −54.07)

−0.92 (−0.99, −0.37) −2299.14

(−361558.96, 73.83)

−0.96 (−1.00, 4.30) −428.14

(−1181869.11,

1320.34)

−0.24 (−1.00,

360.62)

Yanliang −481.81 (−6459.38,

−49.66)

−0.96 (−1.00, −0.72) −537.63 (−34086.09,

−10.07)

−1.00 (−1.00, −1.00) −631.36

(−155505.01, 69.59)

−0.90 (−1.00, 15.77)

Lintong −1492.99

(−22316.64,

−139.86)

−0.97 (−1.00, −0.76) −1595.54

(−115654.58, −9.09)

−0.99 (−1.00, −0.36) −2048.05

(−564800.08, 92.20)

−0.95 (−1.00, 8.53)

Chang’an −996.76 (−15658.46,

−41.28)

−0.93 (−1.00, −0.35) −1943.95

(−242303.02, 59.79)

−0.96 (−1.00, 3.28) 978.85 (−811081.80,

2631.36)

0.59 (−1.00, 567.64)

Lantian −739.18 (−14337.54,

−45.71)

−0.95 (−1.00, −0.57) −972.02

(−112610.72, 4.07)

−0.99 (−1.00, 0.41) −851.91

(−470488.31, 207.77)

−0.80 (−1.00, 64.26)

Zhouzhi −1141.69 (−5718.52,

−213.11)

−0.95 (−0.99, −0.77) −1382.40

(−13559.73, −87.58)

−0.95 (−0.99, −0.53) −1354.70

(−29415.16, 383.88)

−0.73 (−0.98, 3.09)

Huyi −329.12 (−1689.96,

−65.25)

−0.91 (−0.98, −0.66) −250.20 (−3565.40,

58.54)

−0.72 (−0.97, 1.56) −285.83 (−10175.07,

185.29)

−0.57 (−0.98, 6.24)

Gaoling −1050.28

(−15273.51,

−105.15)

−0.98 (−1.00, −0.80) −1057.49

(−80581.33, −4.77)

−0.99 (−1.00, −0.30) −741.40

(−400877.34, 730.72)

−0.50 (−1.00,

100.34)

H3N2v during 2019–2020. Predominant influenza strains in
Xi’an showed an alternate co-circulated pattern. Influenza A
was the predominant strain during 2018–2020, and influenza
B should be the predominant in 2020–2021 according to the
previous epidemic pattern. However, we observed that both
influenza A and B showed significant decline, and only a few
cases of influenza B were detected in the laboratory, suggesting
that NPIs might have a more significant effect on influenza A.
This result was consistent with previous study (34). We found
that the incidence of influenza in 2021, from the 14th week to the
last week of 2021, was higher than that of 2020–2021. The NPIs
implemented in the first half of 2020 were very strict, including
home isolation, social distancing and delaying the start of school,
etc. At the beginning of the resumption of work, due to the
severe epidemic situation as before, people would subconsciously
abide by the previous NPIs. However, such self-consciousness
would change over time, making it usual to not wear masks when
going out. Furthermore, the decline in the level of immunity to

influenza in the population, and the different influenza strains
in 2021 from the previous year might also contribute to the
increasing incidence in 2021.

Our results demonstrated that men are more likely to be
affected by influenza than women, consistent with the results of
previous studies (35–37). Societal and behavioral factors, gender
differences in immune response to vaccines, and compliance
with prevention and control measures can influence exposure
and susceptibility to viruses differently in men and women (38–
40). The 0–3 and 3–6 years groups had a higher susceptibility
to influenza viruses than that of any other age groups. Most of
the children under 3 years have not entered schools, and their
societal relationships were simple, as they are in contact with
their families only, while children aged 3–18 years spend most
of their time in schools, with a more complex social network
and in more crowded spaces. Previous studies have proven that
the influenza virus transmits rapidly with a higher incidence of
human contact, and schools are important social environments
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TABLE 3 | Statistics of the regression coefficient of variables in ITSA.

Coefficients Standardized

coefficients

Inclusion

probability

Mean 2.5% 97.5%

β1(T) −0.00 0.00 0.00 0 0.02

β2(X1) −1.62 −3.74 0.49 −0.26 0.52

β3(X2) −3.04 −11.14 5.06 0 0.02

β4(X3) 0.66 −0.95 2.28 0.04 0.07

β5(TX1) −0.00 −0.00 0.00 −0.20 0.54

β6(TX2) 0.01 −0.01 0.02 0.41 0.02

β7(TX3) 0.00 −0.00 0.00 0.05 0.07

that can facilitate rapid transmission of influenza via touching
contaminated surfaces and close contact among students (41–
43). Although both the 6–15 and 15–18 years groups spent most
of their time in school, the influenza cases of 6–15 years group
were much higher than that of the 15–18 years group, which
might due to the immature immune system of children. These
factors might explain why the 6–15 years group accounted for the
highest number of cases and the 0–3 years group had the same
epidemic pattern with that of the adult group.

To control the rapid transmission of COVID-19, a series of
aggressive and extensive NPIs were implemented by the local
government. Many studies have reported that the influenza
incidence decreased during COVID-19 (9–13). Our study
showed that a potential outbreak of influenza in 2020 was curbed
by the outbreak of COVID-19. The observed influenza cases
in 2020–2021 decreased dramatically compared with those in
the past decades as well as compared to the expected numbers
in 2020–2021. This result is similar to that reported by other
studies (9–13, 43, 44). Qi et al. quantified the influence and
reported a reduction of more than 60% in the incidence of both
influenza A/H1 and B (34). In Guangdong, Xiao et al. found
that influenza decreased by 95.1% compared with the expected
numbers (44). The magnitude of reduction in Xi’an was different
when compared with the number of cases in 2011–2017 and
2018–2019; it was still higher than that of mainland China,
probably because of the strict and aggressive NPIs as Shaanxi
province adjoins Hubei province, the epicenter of COVID-19 in
the early stage. Our results also revealed that the largest reduction
in the number of influenza cases was observed in the 6–15 year
age group. Typically, children in this age group contributed to
the largest proportion of influenza cases in Xi’an. However, as
part of NPIs against COVID-19, schools were not opened until
June 2020, which reduced the opportunity of coming in close
contact with others. Previous studies have also highlighted the
importance of school closure for controlling the transmission of
infectious diseases (45, 46). A study in the U.S. demonstrated
that school closure is associated with 62% reduction in the
incidence and 58% reduction in mortality caused by COVID-
19 (47). Additionally, children and parents paid more attention
to personal hygiene, which further decreased the transmission of
influenza. We predicted the epidemic of influenza at the county
level and noted spatial heterogeneity in the relative reduction

of influenza. We noted that the influenza incidence rates of
Zhouzhi county and Huyi county in 2020–2021 were higher than
that in 2011–2017. As Xi’an experienced rapid urbanization, the
population of Xi’an has increased by 52.97% in the past decades,
especially in the central area of the city. Zhouzhi and Huyi have
the lowest population density, so the impact of NPIs such as
social distancing and avoiding gathering implemented in these
counties might be paid less attention to than that in center urban
areas. In addition, the confirmed cases of COVID-19 of Xi’an
in phase I were mostly concentrated in the center areas such as
Beilin and Xincheng counties, while Huyi and Zhouzhi reported
only a few. This might lead to the different implementation of
specificNPIs in these counties as well as the differences in people’s
intentions to seek medical care when they find themselves with
clinical symptoms. Furthermore, distribution of accessible health
services, population susceptibility and distribution of school can
also contribute to the spatial heterogeneity.

In addition, the ITSA result demonstrated that the NPIs
implemented in Phase I had the highest impact on influenza;
we observed the largest reduction in the test-positive rate
during Phase II, but not during Phase I, which might due
to the behavior change as a result of the implementation of
NPIs. This result was different form a study of Guangdong
province that the largest reduction was observed during weeks
9–19 (44). People started avoiding gatherings, wearing masks,
reducing travel, and paying more attention to personal hygiene.
Although various social and economic activities restarted in
Phase II, sporadic cases of COVID-19 were still reported
every few months in China, and strict NPIs were implemented
discontinuously, leading to persistent low levels of influenza,
which demonstrated that intermittent NPIs may play an
effective role in controlling the transmission of respiratory
infectious diseases. It was predicted that an epidemic peak
of influenza would occur in the winter of 2020 and 2021
when schools closed for the winter holiday and Spring Festival,
which might explain why the relative reduction in influenza
cases during Phase II was higher. However, most studies of
influenza reduction during COVID-19 were concentrated on
the overall decreased incidence, and few studies have reported
the specific phase after the implementation of NPIs when the
reduction of incidence of influenza was largest. Further studies
are needed. We observed a large reduction in the influenza
incidence during 2020–2021, possibly because people became
more conscious toward their health and started taking measures
to stop the community spread of the virus (48). This observation
emphasizes the long-term impact of NPIs on the transmission of
infectious diseases.

The present study has several limitations as well. Firstly,
the data did not include whether the patients had taken
vaccines. The lack of availability of vaccination data and
antigenic analysis in our study population limited our possibility
to determine the factual long-term effect of NPIs and draw
credible inference on this topic. Secondly, concerns regarding
the SARS-CoV-2 outbreak might have changed the detection
of influenza through changes in symptomatic individuals
seeking medical attention or in physicians’ inclination to
test for influenza, which might result in the underreporting
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FIGURE 6 | Observed and predicted incidence of influenza from 2011 to 2021, Xi’an. The gray line denotes the observed value. The red line denotes the predicted

value and the black-dotted line denotes 25 January 2020, when the NPIs were implemented in China; the red-dotted line denotes the cumulative incidence between

the observed and the predicted incidence, and pink shades denotes 95% confidence intervals of the predicted value.

TABLE 4 | Potential impact of COVID-19 and non-pharmaceutical interventions

on seasonal activity in Xi’an.

Actual value Prediction Absolute effect

Average 1.1 22 (14, 34) −21 (−33, −13)

Cumulative 111 2,212 (1,362, 3,406) −2,101 (−3,295, −1,251)

of influenza. Thirdly, the impact of NPIs on influenza in
our study was indirect because it is difficult to acquire
specific data on NPIs such as local consumption of masks
and disinfectants.

CONCLUSION

Our study revealed that NPIs against COVID-19 have both
significantly short-term and long-term impacts on the reduction
of influenza cases, and the impacts have heterogeneity
in population, time and space. In addition, the findings
suggested that effective prevention and control measures
targeting the 6–15 years age group can reduce the number
of influenza cases. Discontinuous implementation of strict
NPIs may also help in keeping the influenza epidemic at a
low level.
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