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As one of the most popular laboratory animal models, rodents have been playing crucial

roles in mechanistic investigations of oncogenesis as well as anticancer drug or regimen

discoveries. However, rodent tumors show different or no responses to therapies against

human cancers, and thus, in recent years, increased attention has been given to mouse

models with xenografted or spontaneous human cancer cells. By combining with the

human immune system (HIS) mice, these models have become more sophisticated and

robust, enabling in vivo exploration of human cancer immunology and immunotherapy.

In this review, we summarize the pros and cons of these humanized mouse models, with

a focus on their potential as an in vivo platform for human cancer research. We also

discuss the strategies for further improving these models.
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INTRODUCTION

The high morbidity and mortality rates associated with various cancers across the globe clearly
indicate that cancer-related research is one of the fastest-growing fields in the world (1). Although
great progress has been made in understanding the underlying mechanisms of cancer and the
discovery of anticancer drugs in the past few decades, efficient clinical translation of these
technologies remains very limited (2). One of the main reasons for this is that most of these studies
rely on rodent models, which have a number of important physiological differences from humans.
Thus, rodent cancer models cannot accurately simulate the physiology of cancer patients, which
necessitates the development of novel animal models that are better equipped to precisely and
comprehensively represent the complex feature of human cancers allowing for improved basic and
translational investigations (3).

Animals bearing tumors of human origin were first developed using T-cell-deficient nude mice
inoculated with human cancer cell lines [now known as cell-derived xenograft (CDX) models]
and these rodent models became a popular in vivo platform to study human oncogenesis and
test anticancer drug efficacy (4). Moreover, development of mouse strains with more severe
immunodeficiencies, such as NOD/SCID mice and NOD/SCID IL2rg−/− mice, further facilitated
the use of rodents to efficiently repopulate primary human cancer samples or cells and served to
mirror the heterogenous features of these cancers in patients [patient-derived xenograft (PDX)
models] (5). The application of CDX and PDX models in cancer research markedly facilitates
human cancer biology investigations and anticancer drug interventions. However, more recent
analysis has revealed that the absence of human immune elements in these models may severely
compromise their value in translational research and the development of novel human cancer
immunotherapies (6).
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It is widely accepted that the immune system is closely
related to oncogenesis and cancer prognosis as well as response
to anticancer therapies (7). Key breakthroughs in cancer
immunotherapies, including co-stimulatory molecule blockade
(8) and chimeric antigen T (CAR-T) cell transfer (9), further
highlight the importance of including human immunity in
cancer research. Humanized mice are novel animal models
designed to address some of these concerns, thereby making
them an attractive alternative for biomedical research (10).
Briefly, humanized mice are engineered to carry human genes,
cells, or tissues, allowing them to directly mirror human
physiological and pathological characteristics (10). Humanized
mice with functional human immune systems (HIS mice)
could be a powerful model for understanding the interaction
between human immune components and human cancer and
contributing to anticancer intervention development (11, 12).

Here, we have focused on cancer studies that use humanized
mice with functional human immune reconstitution and
discuss their advantages and disadvantages and prospect their
advancement in the future.

HUMANIZED MICE WITH HUMAN CANCER
DEVELOPMENT

Immunodeficient Mice
Robust xenogeneic immune rejection is a major barrier to
the engraftment of human cancer cells in immune-competent
rodents (13). Several immunodeficient murine strains have been
developed by disrupting the relevant genes crucial for immune
cell development/survival/function. The ability to construct
these immunodeficient animals is a cornerstone in producing
humanized mice for evaluating human cancer development.
The characteristics of these immunodeficient murine models
have been reviewed in detail in earlier studies (10). Briefly,
immunodeficient mice were designed to overcome the rejection
of human cancer cells mediated by the mouse adaptive (T
and B cells) and innate (NK cells and macrophages) immune
responses (11). For example, elimination of the forkhead box
N1 (Foxn1) gene (4), recombination activating gene 1 (Rag1)
(14), recombination activating gene 2 (Rag2) (15), protein
kinase, and DNA activated and catalytic polypeptide (Prkdc)
genes (16) results in mice with T and/or B cell deficiency;
deletion of interleukin 2 receptor subunit gamma (IL2rg) (17)
or β2-microglobulin (B2m) (18) genes leads to the absence or
functional impairment of mouse NK cells, whereas selection
of non-obese diabetic (NOD) mouse background (19) or
knock-in human (20) or NOD (21) Sirpa genes prevents
phagocytosis by mouse macrophages. Combinations of these
genetic engineering strategies have been applied to develop the
popular immunodeficient mouse strains, such as NOD/Prkdcscid

(NOD/SCID), NOD/SCID IL2rg−/− (NSG or NOG), and Balb/c
Rag1−/− IL2rg−/− (BRG) that have all been used in human
oncology studies (11) (Table 1).

CDX and PDX Mouse Models
Based on the type of human cells or samples used in the
transplantation, immunodeficient mice grafted with human

cancer cells can be classified as CDX or PDX mouse models
(4, 5). Following in vitro culture of human cancer cell lines
for many passages, they can easily form human tumors in
most T-cell deficient immunodeficient mouse strains, making
them a valuable initial model for cancer investigation. For
example, in order to study the underlyingmechanismswhy BRAF
mutations are co-related with aggressive, less-differentiated,
and therapy-resistant colorectal carcinoma clinically, Ricarda
Herr et al. established a CDX mouse model based on human
colorectal cancer cell lines whose B-RafV600E expression can be
conditionally knocked down by doxycycline treatment, through
which they revealed a novel facet of clinically applied B-
Raf or MEK inhibitors by promoting cellular adhesion and
differentiation of colorectal carcinoma cells (26). While long-
term in vitro culture does result in the loss of many of the
inherent features and heterogeneous characteristics of their
parental cancer tissues. These shortcomings are most apparent
when these cell lines are compared with their parental cancer
strains from sick patients, implying that using these cell lines may
compromise the value of any anticancer drug efficacy predictions
in a clinical setting (27, 28). PDX mouse models are usually
generated using mice with combined T/B/NK cell deficiency
and macrophage tolerance for human cells, like NOD/SCID and
NSG/NOG mice, which are repopulated with primary human
cancer cells or tumor samples in vivo. Compared with CDX
mouse models, PDX mouse models retain much more of their
parental malignancy characteristics and are considered a more
powerful tool for evaluating the effect of anticancer drugs in
pre-clinical studies (29) (Table 2). For instance, Dr. Sidransky’s
group performed PDX studies in a large heterogeneous
population (237 patients with various tumor types) and verified
that human tumor grafts in PDX models can faithfully
conserve genetic patterns of primary tumor. Additionally, their
analysis further demonstrates that PDXs accurately replicate
patients’ clinical outcomes after treatments, indicating the
capacity of this platform for assessment of anticancer drug
efficacy (47).

Mouse Models of Spontaneous Human
Oncogenesis
One major shortcoming of both the CDX or PDX models for
human oncogenesis is the lack of an oncologic transformation
process from normal cells into malignant cells. Transplantation
of healthy human cells in which tumor-suppressive genes
were disrupted and/or oncogenes were overexpressed into
immunodeficient mice has been used to simulate the entire
oncogenesis process for a number of cancers, including leukemia,
lymphoma, and melanoma (1) and so on (Table 3). For example,
mice with spontaneous human acute human B lymphoblastic
leukemia (B-ALL) were created by transplanting human
CD34+ hematopoietic stem cells (HSCs) after transduction with
retroviral vectors carryingMLL-AF9 genes into immunodeficient
mice, allowing the researchers to evaluate the underlying
mechanisms of human B-ALL development (52). Similarly,
seeding human melanocytes transformed with mutated
melanoma-associated genes, including N-RasG12V, CDK4R24C,
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TABLE 1 | Immunodeficient mouse strains for human cancer study.

Name Strain T B NK Macrophage (for human cells) Complement References

Nude Foxn1null No Yes Yes Phagocytose Yes (4)

Scid B6.CB17-Prkdcscid/SzJ No No Yes Phagocytose Yes (22)

BRG BALB/c.Rag2−/− IL-2Rg
−/−
c No No No Partial tolerant Yes (11)

NOD-scid NOD.CB17-Prkdcscid/J No No Function impaired Tolerant No C5 (23)

NOD/SCID B2mnull NOD.Cg-B2mtm1UncPrkdcscid/SzJ No No Function loss Tolerant No C5 (18)

NSG NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ No No No Tolerant No C5 (24)

NOG NOD.Cg-Prkdcscid IL2rgtm1Sug/JicTac No No No Tolerant No C5 (25)

BRGS BALB/c.Rag2−/− IL-2Rg
−/−
c NOD.sirpa No No No Tolerant Yes (21)

hSIRPa-BRG BALB/c.Rag2−/− IL-2Rg
−/−
c human.sirpa No No No Tolerant Yes (20)

TABLE 2 | Advantages and applications of PDX mouse models for cancer study.

Cancer Advantages Applications References

Lung cancer Retain genetic and histological characteristics. Predict the possibility of relapse after curative surgery. (30)

Colorectal cancer Retain the intratumor clonal heterogeneity and

chromosomal instability.

Predict responsiveness to cetuximab in patients. (31, 32)

Pancreatic cancer Maintain the original tumor architecture; retain a greater

proportion of stromal components and develop

locoregional and distant metastases.

Demonstrate the activity of mitomycin C and cisplatin in a patient

harboring a PALB2 mutation. Demonstrate that stromal modulation

may increase intra-tumor gemcitabine concentrations to improve

therapy efficacy.

(33–35)

Head and neck cancer Highly reflect promoter methylation in tumors and

reproduced tumor heterogeneity.

Predict phase II clinical drug activity of cisplatin, diaziquone,

pazelliptine, and retelliptine.

(36)

Breast cancer Retain basal-like morphology and tumor structure. Demonstrate the activity of cisplatin and ifosfamide combinatory

therapy; evaluate the efficacy of trastuzumab.

(37, 38)

Glioblastoma multiforme Retained genetic characteristics. Assess the efficacy of bevacizumab. (39, 40)

Renal cell carcinoma Maintain the ability to evaluate tumor angiogenesis;

Retain genetic and histological characteristics.

Evaluate the effects of sorafenib or sunitinib. (41–43)

Prostate cancer Exhibit the differentiation and expression of androgen

receptor and prostate-specific antigen (PSA).

Predict the efficacy of androgen ablation therapy. (44, 45)

Melanoma Retain histology, genetic profiles, and tumor antigen

characteristics.

Treatment with temozolomide exhibits similar responses to the

corresponding patients.

(46)

and dominant-negative p53R248W, which are critical for
p16INK4A-CDK4-Rb and ARF-HDM2-p53 tumor suppressor
pathways, into autologous human skin grafts in immunodeficient
mice results in the development of human melanocytic neoplasia
in vivo, demonstrating the value of mouse models in the
functional analysis and validation of mutations observed in
human melanoma (53).

Non-immune Factors Affect Human
Oncogenesis in Mouse Models
Other than immunological factors, non-immune factors related
to tumor-associated micro-environments may also influence
the feasibility and quality of using mouse models to study
human oncogenesis, especially for some human hematological
malignancies (54). Aberrant gene expression in different
stages of human HSC differentiation leads to a variety of
hematological malignancies, including B cell leukemia, myeloid
leukemia, and myeloma (55). The lack of or suboptimal
interaction with mouse cytokines/chemokines/ligands, which
are crucial for human hematological differentiation or cell
survival may impair human oncogenesis in recipient mice

(54). For example, poor interaction between mouse GM-
CSF/IL-3 and IL-6 and human cells reduces the practicality
of using immunodeficient mice to recapitulate human myeloid
leukemia (56) and myeloma (57), respectively. The generation of
immunodeficient mice with relevant human cytokine expression
markedly improves their value in investigating aberrant human
hematological complications, including acute myeloid leukemia
(AML) (56), myeloma (57), chronic myelomonocytic leukemia
(CMML) (58), juvenile myelomonocytic leukemia (JMML)
(58), and myelodysplastic syndromes (MDS) (59). In addition,
“humanization” of mouse bone marrow micro-environments
by adding human stromal cells also facilitates the pathogenesis
of human hematological disorders. For instance, Dr. Daniel
Nowak’s group showed that intra-bone injection of MDS patient-
derived mesenchymal stromal cells (MSCs) contributes to the
propagation of MDS-initiating stem cells and disease progression
in orthotopic xenografts of NSG and NSG-SGM3 animals (NSG
animals constitutively expresses human GM-CSF/IL-3 and stem
cell factors) (60). Majeti et al. reported that an artificial human
bone marrow (BM) microenvironment can be constructed by the
subcutaneous injection of human BM-derivedMSCs (humanized

Frontiers in Oncology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 1696

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tian et al. Humanized Rodents for Cancer Research

TABLE 3 | Spontaneous human cancer model.

Cancer Method References

Myeloid

neoplasia

Using CRISPR/Cas9 technology to introduce

FLT3-ITD and SMC3 mutation in CD34+ cells, and

transplant them to NSG mice.

(48)

Lung

cancer

Incorporate the mutated genes (CDK4, hTERT,

sh-p53, KRASV12, and c-MYC) by lentiviral vectors

into human bronchial epithelial cells, and transplant

them to NOD/SCID mice.

(49)

T-ALL Incorporate NOTCH11E (N) and LMO2/TAL1/BMI1

(LTB) gene by lentiviral vectors to into CD34+ cells,

and transplant them to NSG mice.

(50)

AML Incorporate BCR-ABL gene into CD34+ umbilical

blood cells by retroviral vectors, and transplant them

to NSG mice.

(51)

B-ALL and

AML

Incorporate MLL-AF gene into CD34+ cells by

retroviral vectors, and transplant them to BRG mice.

(52)

Melanoma Incorporate N-RasG12V, CDK4R24C, and

dominant-negative p53R248W into human

melanocyte by retro-viral vectors, and transplant

into the autologous human skin graft in CB.17 scid

mice.

(53)

TABLE 4 | Improvement of mouse models for human hematological

malignancy study.

Strategy Cancer Model construction References

Human

cytokine

expression

MDS Newborn MISTRG mice were intrahepatically

injected with split-donor MDS BM CD34+ cells.

(59)

AML Newborn MISTRG mice were intrahepatically

injected with primary favorable-risk AML cells.

(62)

CMML NSG-SGM3 mice were intravenously injected

with CD34+ cells sorted from CMML patients’

bone marrow or peripheral blood.

(58, 63)

JMML NSG-SGM3 mice were intravenously injected

with CD34+ cells sorted from JMML patients’

bone marrow or peripheral blood.

(58)

Human

MSCs

implantation

AML Inject primary human AML cells into human

BM-MSC formed ossicle in NSG mice.

(61)

APL Inject primary human APL cells into human

BM-MSC formed ossicle in NSG mice.

(61)

MDS Human CD34+ cells and MSCs collected from

MDS patients were simultaneously intra-bone

injected into NSG mice.

(60)

ossicles), which enables robust engraftment of healthy human
HSCs as well as primary human leukemia-initiating cells from
AML, acute promyelocytic leukemia (APL), and myelofibrosis
(MF) (61) (Table 4).

HUMANIZED MOUSE MODELS WITH
HUMAN IMMUNE SYSTEMS IN CANCER
RESEARCH

It is widely accepted that immune surveillance is closely involved
in oncogenesis and has a significant impact on treatment
efficacies and outcomes (7). Additionally, the successful

application of cancer therapeutic regimens, including co-
stimulation signal blockades and adoptive transfers of anticancer
immune subsets in treating metastatic malignancies, which show
poor prognosis using traditional therapies, further highlights the
importance of human immunity in the investigation of human
oncology (8, 64). Therefore, humanized mice reconstructed with
human immune systems are expected to aid the comprehensive
study of the interactions between human cancer and human
immunological elements.

Humanized mice with human immune systems have been
extensively studied over the past three decades and have been
reviewed in detail in several previous reports (10–12, 54). Various
humanized mouse models, including the Hu-PBL (peripheral
blood leukocyte)-SCID model (65), SRC (SCID repopulating
cell)-Hu model (17, 66), and Thy/HSC (23, 67) [also named
as BLT (68)] model, are commonly used in human oncology
studies with each model having their own unique advantages and
disadvantages (Table 5).

Hu-PBL-SCID Model
The Hu-PBL-SCID model is created by injecting human PBLs
into immunodeficient mice, which transiently host multi-lineage
human immune subsets (65). However, due to the lack of self-
renewing human hematopoietic stem/progenitor cells and the
relatively short life span of mature immune subsets, limited
numbers of human myeloid cells and B cells engrafted in
these mice. Instead, engrafted human immune cells primarily
belong to activated human CD4+ or CD8+ T cell driven by
mouse major histocompatibility (MHC) molecules, which cause
severe xenogeneic graft vs. host diseases (xeno-GVHD), thereby
restricting the experimental window for these animals to few
weeks (69). Due to the relatively simple handling and accessibility
of human PBL samples, the Hu-PBL-SCID model is widely used
to study interactions between human immune cells, including
T cells and NK cells, and human tumors in vivo. For example,
Jakobsen et al. reported the feasibility of using a Hu-PBL-SCID
model to evaluate the efficacy of a Bi-specific TCR (T cell
receptor)-anti-CD3 regimen for treating NY-ESO-1- and LAGE-
1-positive human tumors (70); Ignacio Melero et al. showed that
this model can be used to study the effects of human PD-1
(Nivolumab) and CD137 (Urelumab) antibodies on the T cell-
mediated anti-tumor response in vivo (71). Interestingly, Ryuzo
Ueda et al. reported that Hu-PBL-SCID can also be used to
study the anti-tumor effects driven by human NK cells through
antibody-dependent cellular cytotoxic (ADCC) approaches (72).
To overcome the constraints of xeno-GVHD, researchers went
on to develop MHC knockout immunodeficient mice, like NOG-
dKO or NOG-β2m, IAβdKOmice, which demonstrate a reduced
susceptibility to xeno-GVHD and extended experimental time
frames (73, 74).

SRC-Hu Model
The SRC-Humodel with human immunity is usually constructed
by transplanting human hematopoietic stem/progenitor cells into
neonatal or adult Il2 rg knockout immunodeficient recipients,
like NOG (17, 75), BRG (66), NSG (76), or other similar
murine strains. Here, mice present with a sustainable human
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TABLE 5 | Comparison between different HIS humanized mouse models.

Hu-PBL-SCID SRC-Hu Thy/HSC (BLT)

Accessibility of

human sample

Good Moderate Difficult (potential ethic problem)

Technique for model

construction

Easy Moderate Relative difficult (required anesthesia and

transplant technique)

Human immune cell

survival/development

Majority of activated human T cells;

Transient human B cells, myeloid cells and

NK cells;

Multi-lineage human immune cell

reconstitution;

Poor human thymopoiesis;

Lack of HLA mediate thymic selection for

human T cells.

Multi-lineage human immune cell

reconstitution;

Robust human thymopoiesis;

Human TCR repertoire influenced by

mouse antigen.

Human immune

function

T cell responses;

Lack of interaction between human T

cells, B cells, and myeloid cells.

Poor HLA restricted T cell responses;

Poor T cell-dependent humoral responses.

Good HLA restricted T cell responses;

Good T cell-dependent humoral response.

Time window Short Long Long

immune system composed of human T cells, B cells, and
myeloid cells. Due to the accessibility of cord blood and the
relatively easy construction procedure, the SRC-Humousemodel
is one of the most popular humanized mouse models for the
research of human immune relevant subjects (11). The SRC-Hu
model is a valuable tool to be used to evaluate co-stimulatory
molecule blockade effects and study anticancer drug effects in a
physiologically relevant immune environment (77). For instance,
Wang et al. showed that PD-1-targeted immunotherapy can be
modeled in SRC-Hu humanized NSG mice, but not control NSG
mice, bearing CDX and PDX partial HLAmatched human tumor
(referred to human immune system), demonstrating the value
of the SRC-Hu model for cancer immunotherapy investigation
(78). However, human T cells are educated in the mouse
thymus and these animals have very poor human thymopoiesis
(75). In addition, SRC-Hu mice cannot efficiently generate
HLA-restricting antigen-specific immune responses (79). These
limitations may restrict the value of the SRC-Humodel in human
immune-oncology studies.

Thy/HSC Model
In 2004, based on the Dr. McCune’s Thy/Liv SCID-Hu mouse
model (80), our group developed a novel humanized mouse
model by co-transplantation of human fetal liver and thymic
tissues into the renal capsule and intravenous injection of CD34+

human fetal liver cells (FLCs) into NOD/SCID mice after total
body sublethal irradiation (67). These humanized mice have
high levels of multilineage human lymphohematopoietic cell
reconstitution, including human T cells, B cells, conventional
dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs), and
macrophages, which can be detected in the blood as well as the
lymphoid organs (23). Later, we found that human fetal liver
tissue implantation is dispensable for human immune system
reconstruction in this humanized mouse model, and named
it as the Thy/HSC model (12). This method of construction
was confirmed by Dr. J. Victor Garcia and colleagues in 2006
who named them BLT mice (68). Unlike the SRC-Hu model,
robust human thymopoiesis occurs in engrafted human thymic
tissues, in which typical thymic structures including cortex,
medulla, and Hassall’s bodies are formed by human stromal

cells and human T cell progenitor cells can be identified (23).
Importantly, Thy/HSC humanized mice can generate potent
human immune responses as evidenced by the capability of
these animals to reject allogeneic (81) and xenogeneic grafts
(82), their generation of HLA-restricted antigen-specific human
T cell reactions, and their ability to produce antigen-specific
human IgM and IgG antibodies with subclass switching after
immunization or xenograft implantation (82, 83). In Thy/HSC
mice, mouse dendritic cells canmigrate into human thymic grafts
andmay play a role in human T progenitor cell thymic education,
thus explaining the reduced incidence of xeno-GVHD syndrome
in Thy/HSC mice. Moreover, cryopreservation and “pipetting”
of human thymic grafts before transplantation can eliminate
existing human T cell progenitor cells, further alleviating xeno-
GVHD syndrome, with some animals only experiencing xeno-
GVHD more than 25 weeks post-transplant (84–86). For these
reasons, Thy/HSC models are considered one of the most
powerful in vivo tools for investigating human immune responses
and their effects on therapeutic interventions (87) and are already
widely applied in many biomedical fields including pathogen
infection (88), allo/xeno-transplantation (81, 82), autoimmune
diseases (89), regenerative medicine (90), immune molecule-
targeting drug tests, and cancer research (91). For example,
Thy/HSC mice can be modified to act as TCR transgenic
humanized mice to study human T cell adaptive immunotherapy
(92). Briefly, a melanoma antigen (MART-1)-specific TCR
transgenic humanized mouse model was constructed by co-
transplanting HLA-A∗0201+ human fetal thymic tissues and
autologous human CD34+ FLCs transduced with lentiviral
vectors containing HLA-A∗0201 restrictedMART-1 specific TCR
genes into sub-lethal irradiation pre-conditioned NSG mice, in
which most MART-1-specific T cells contained only MART-1
TCR alpha and beta chains due to the allele exclusion process in
the human thymic grafts (93). Using this tool, we revealed that the
simultaneous inclusion of rapamycin for MART-1 TCR+ human
T cell expansion in vitro and supplementation with human IL-15
in vivo greatly improves the anti-melanoma effects mediated by
adoptive transfer of human MART-1 TCR+ T cells (92).

One of the main drawbacks of the Thy/HSC model is the
requirement of human fetal samples for model construction,
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which are difficult to obtain by researchers due to ethnic problem
and/or local policy (94). In addition, the TCR repertoire of
human T cells generated in Thy/HSC mice may be different
from the ones in human, because of the involvement of
mouse antigen in human thymic educating process in Thy/HSC
humanized mice.

IMPROVING HUMAN IMMUNITY IN
HUMANIZED MICE FOR CANCER
RESEARCH

Despite the fact that high human lymphohematopoietic
chimerism can be constructed in Thy/HSC and SRC-Hu
mice, there are still several limitations in the combination and
functionality of the human immune system in humanized mice
when compared with humans, which are primarily caused
by the “unfriendly” mouse microenvironment for human
immune cells to survival/differentiate/migrate/function (54).
For example, there are significantly lower levels of myeloid
cells and NK cells in humanized mice compared to human due
to a lack of sufficient cross-talk between the mouse cytokines
(GM-CSF/IL-3, M-CSF, Flt-3-l, IL-15, etc.) and the human cells,
which limits their application in the study of the interactions
between human myeloid/NK cells and human tumor tissues
(54). Human immunity in humanized mice can be improved
by supplementing the corresponding human cytokines by
injecting recombinant proteins (95) or hydrodynamic injections
of plasmids containing human cytokine genes (96) or using
immunodeficient transgenic mice expressing the relevant
proteins (97). Continuous overexpression of human cytokine
(such as NSG-SGM3) may lead to abnormal human cell function;
thus a series of human cytokine knock-in (human gene driven
by mouse promotor) immunodeficient mouse strains (such as
MISTRG) were developed to ensure an appropriate tissue-, cell-,
and context-specific expression of the incorporated protein
(98–100). These strategies greatly expand the application of
these humanized mice in immune and cancer research. For
example, Dr. Richard Flavell’s group showed that humanized
mice made using MISTRG (human M-CSF, GM-CSF/IL-3,
TPO knock in Rag2−/−Il2rg−/− mice with transgenic human
Sirpa expression) mice showed significantly improved cellular
ratios as well as function of human myeloid and NK cells
in blood and lymphoid organs when compared to Rag2−/−

Il2rg−/− or NSG mice (100). In addition, they also showed that
human macrophage infiltration in a human tumor xenograft in
MISTRG humanized mice used a similar mechanism to those
exhibited in human tumor biopsy samples (100). In another
report, they showed that humanized SRG-15 mice (knock-in
with human IL-15 and Sirpa gene in Rag2−/−Il2rg−/− mice)
have dramatically improved NK cell development and function.
These cells demonstrate similar expression patterns of killer
inhibitory receptors when compared to NK cells from human
donors, which is an important breakthrough in the application
of humanized mice in the study of human NK cell-mediated and
combinatory cancer immunotherapy strategies in vivo (20).

Although development of human cytokine transgenic/knock-
in immunodeficient mice optimizes human immune function,
researchers must still be aware of the potential interference
resulting from the persistent secretion of these inflammatory
human cytokines in recipient mice. Our recent studies have
shown that Thy/HSC humanized mice made on NSG-SGM3
but not NSG mice showed dramatically reduced life spans
and increased incidence of hemophagocytic lymphohistiocytosis
(HLH) syndrome, as evidenced by elevated levels of human
inflammatory cytokines, including IL-6, IL-4, IL-10, IFN-γ, TNF-
α, IL-18, severe anemia/thrombocytopenia phenomena, and
aberrant activation and infiltration of human macrophages and
T cells in systemic organs (85). Similar phenomena were also
observed in SRC-Hu models made using NSG-SGM3 (101)
mice and MISTRG mice (102). Bondanza et al. reported that
CAR-T cells induced cytokine-release syndrome (CRS) and
neurotoxicity caused by the secretion of IL-1 and IL-6 by human
monocytes can be modeled in humanized mice made using NSG-
SGM3 mice but not in NSG mice, which also highlights the
important role of inflammatory cytokine secretion in animal
mortality and aberrant human immune activation (103). Thus,
interpretation of the results collected from humanized mice
made using immunodeficient recipients with abnormal human
cytokine secretion may need to consider these factors.

HUMANIZED MOUSE MODELS OF HUMAN
ONCOGENESIS UNDER AUTOLOGOUS
HUMAN IMMUNE SURVEILLANCE

One major limitation of most humanized mouse models created
for human cancer study is that these reconstructed human
immune systems are allogeneic to the inoculated human tumors
(102). Thus, robust allogeneic responses conferred by human
T cells to human tumors may compromise the value of
the data collected from these models, making it difficult to
extend the observations from these humanized mice to the
complex interactions between the tumor antigen-specific T cells
and human tumor tissues in patients, or precisely predicting
anticancer drug effects (102). As such, the development of
humanized mouse models in which human oncogenesis occurs
under autologous functional human immune surveillance is
critical to the field’s continued development (Figure 1).

Recently, we developed a humanized mouse model with
spontaneous development of human B-ALL under autologous
human immune surveillance by incorporating the leukemia-
associated fusion gene, MLL-AF9, into human CD34+ FLCs,
which were then co-transplanted with human fetal thymus
tissue into NSG mice (104). Human B-ALL collected from these
humanized mice can survive and expand into the Thy/HSC
humanized mice made by autologous but not allogeneic
human fetal samples. Using this model, we were able to
show that recipient leukocyte infusions (RLI), a GVHD-
free immunotherapeutic approach, markedly reduced human
leukemia burden during induced lymphopenia, further validating
the safety and efficacy of human RLI for human leukemia
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FIGURE 1 | Application of humanized mouse models with human oncogenesis

under autologous human immune surveillance for cancer research.

treatment (104). Moreover, this model can also be utilized to
study chimeric antigen T (CAR-T) cell therapy, which still
requires modification to improve anticancer function while
restricting various side effects, including CRS and neurotoxicity.
We showed that Thy/HSC mice with autologous B-ALL treated
with anti-CD19 CAR-T cells exhibited similar kinetics and levels
to those observed in patients, and rapid production of T cell- and
myeloid cell-derived cytokines, such as GM-CSF, IFN-γ, TNF-α,
and IL-10, and elevation of regulatory T cell frequency, which
has been reported in patients receiving CAR-T therapy, were
also found in this mouse model (105). These results indicate that
these animal models could be reliably used to characterize human
CAR-T cell function in vivo and facilitate the development of
novel CAR therapies.

In addition, a novel humanized mouse model, named
PDXv2.0, was recently constructed by Dr. Jonas A. Nilsson’s
group through adoptive transfer of in vitro expanded human
tumor infiltrating lymphocytes (TILs) into the PDX mice that
host the tumor collected from the same patients (106). They
showed that the PDX2.0 mouse model made by immunodeficient
mouse recipients with human IL-2 continuous production
efficiently represents the reactivity of adoptive cell transfer
(ACT) immunotherapy that occurred in patients, offering a
powerful platform to model ACT-based immunotherapies as
well as combinatory therapies for heterogeneous human cancers
(106). Based on a similar model, Dr. Ignacio Melero et al.
verified that transient expression of IL-12 mRNA in human
antitumor CD8+ T cells by electroporation can markedly
improve their antitumor effects after intratumor adoptive
transfer (107).

DISCUSSION AND CONCLUDING
REMARKS

When compared to traditional rodent models, humanized
rodents provide a much closer approximation of human
physiology and pathology with broader application in basic
cancer research and anticancer drug/approach discovery. While
more effective methods of construction, design, and functionality
for these models will still be required to make them able
to address specific concerns and boost translation of basic
cancer research. We hypothesize that the optimization of
humanizedmice in cancer researchmay result from the following
scenarios: (1) Invention of humanized mouse models with
human immune systems and autologous human oncogenesis for
more types of human tumors including melanoma, lung cancer,
hepatocarcinoma, and colorectal cancer, in which pluripotent
stem cell technology (108) and gene editing tools, such as
CRISPR/Cas9, may play crucial roles (109); (2) Development
of humanized mouse models with functional human adaptive
and innate immunity that do not require human fetal or even
cord blood samples, to reduce ethical considerations and broaden
their application (94, 110); for example, substitution of human
fetal thymic tissue with HLA transgenic porcine thymic tissue
(111) to make Thy/HSC models or the generation of humanized
mice using pluripotent stem cell-derived human hematopoietic
stem/progenitor cells (112) and human thymic epithelial cells
(113); (3) Development of immunodeficient mouse strains
with relevant human cytokine/chemokine/ligand secretion under
physiological conditions to promote reconstructed human
immunity without aberrant human immune disorder; (4)
Establishment of humanized large animal models, such as
humanized pig models, in which human cancer therapy could
be modeled at more physiologically relevant scales and closer
physiological conditions using more relevant timelines (114);
(5) Generation of personalized humanized mouse models (86)
that can simultaneously host primary human cancer samples
and reconstitute the patients’ unique immune system as a
personalized platform to substitute patients for anticancer
therapy tests.

In summary, humanized mouse models with optimized
designs could offer a more powerful tool to not only better
understand the roles of human immune elements in human
cancer development and treatment but also facilitate the
invention and translation of novel anticancer therapeutic
drugs/approaches in the future.
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